The present disclosure relates to power generation systems, processes for generating energy at an industrial mine site, water heating systems and processes of heating water.
At industrial sites it is becoming more important than ever to conserve on energy usage, and mining sites are no different. Mining sites utilize a vast amount of energy and there are many places that energy can be conserved and utilized for other sources. The present disclosure provides power generation systems, processes for generating energy at an industrial mine site, water heating systems and processes of heating water.
Embodiments of the disclosure are described below with reference to the following accompanying drawings.
Power generation systems are provided that include a circular loop of conduit, a dehumidifier coupled to the conduit, a power turbine coupled to the turbine and a pump coupled to the conduit. Processes for generating energy at an industrial mine site are provided that include providing an expanding fluid to the exhaust of the dehumidifier allowing the fluid to expand and drive a power turbine condensing the fluid and returning the fluid to the exhaust of the dehumidifier.
Water heating systems are provided that can include a dehumidifier associated with a conduit containing water, a holding tank coupled to the conduit and water heaters coupled to the holding tank.
Processes of heating water are provided with the processes including providing a tank from a dehumidifier to water within a conduit coupled to a water storage tank and utilizing the water within the conduit as a source of water to be heated by a hot water heater.
This disclosure is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
The present disclosure provides systems and processes that are described with reference to
According to example implementations, the expanding fluid via conduit 12 can be provided to within the mine site and more particularly to within a mine exhaust conduit. The fluid can be allowed to expand while proximate the site or exhaust conduit and continue along conduit 12 to drive power turbine 16, the fluid can then be pumped and condensed and the fluid can be returned to the site or proximate exhaust utilizing pump 18, for example.
Turbine 16 can be a low pressure turbine. Turbine 16 can be an expansion turbine configured to utilize fluids described herein. Turbines of the present disclosure can be pressure differential turbine, for example, such as a turbine that takes advantage of the expansive nature of a fluid. Example turbines include those turbines that can utilize the vapor pressure exhibited by a fluid when transitioning from the liquid state to the gaseous state. Example turbines can include low pressure turbines. Turbine suitable for utilization in the systems and methods of the present disclosure can include the BP-50 series offered by Trigen Ewing Power of Turner Falls Mass. These turbines can be purchased to utilize steam expansion but can easily be retrofitted with seals to allow for the use of refrigerant expansion such as the fluids described herein.
Pump 18 can be a commercially available refrigerant pump chosen to convey the fluid designed to be conveyed by the system. The system can include coils to facilitate exposure to mine conditions at the exhaust or within the mine site. These coils can be direct expansion coils and/or evaporator coils.
Referring next to
The heated water can be provided to the showerheads via conduit 32. Commercially available holding tanks and conduits as well as dehumidifiers and hot water heaters may be utilized to configure the system. The size and is design dependant primarily on the quantity of water to be heated and/or the size of the shower room to be dehumidified.
Referring to
According to example implementations, water can be provided in “A” and proximate a refrigerant provided in “B”. The water within “A” can be warmed as it is exposed to intake 44. Likewise the refrigerant provided within “B” can be warmed as well. Accordingly, the warmed water may be utilized as for domestic and/or commercial hot water purposes. The warmed refrigerant, now expanded, can be utilized to drive an expansion turbine as shown in
Referring to
While pump 56 is represented between turbine 54 and the portion of loop 52 associated with the water, this is not necessary for all cycling or configuration of system 50. Additional pumps not shown may be utilized in system 50. For example, system 50 can be configured to have multiple pumps and/or a pump in a different location than shown. Implementations of system 50 can include providing pumps between turbine 54 and the portion of loop 52 associated with soil 60, for example. Other implementations can include providing pumps on both side of turbine 54. The direction of pressure differential of the pumps is consistent with the direction of fluid in loop 52.
In compliance with the statute, embodiments of the invention have been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the entire invention is not limited to the specific features and/or embodiments shown and/or described, since the disclosed embodiments comprise forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
This application is a divisional of U.S. patent application Ser. No. 12/492,741 which was filed Jun. 26, 2009, entitled “Power Generation Systems, Processes for Generating Energy at an Industrial Mine Site, Water Heating Systems, and Processes of Heating Water” the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12492741 | Jun 2009 | US |
Child | 13541597 | US |