1. Field of the Invention
The present invention relates to a power impact tool capable of performing a hammering operation on a workpiece by the striking movement of a tool bit, and more particularly, to a technique of switching between operation modes of the tool bit.
2. Description of the Related Art
Japanese non-examined laid-open Patent Publication No. 2001-62756 discloses a power impact tool capable of performing a hammering operation on a workpiece. The known power impact tool includes a tool bit, a motor for driving the tool bit, an on-off power switch for the motor, a trigger for operating the power switch, and a mode-changing member for switching between respective operation modes of the tool bit. Specifically, the mode-changing member can switch between a hammer mode in which the hammer bit is caused to perform a striking movement and a hammer drill mode in which the hammer bit is caused to perform a combined movement of striking and rotating. The power impact tool further includes an engaging member that can releasably lock the trigger in a depressed position. In order to drive the hammer bit with the mode-changing member in the hammer mode, the trigger is depressed to turn on the power switch and then locked in the depressed position by the engaging member. Thus, in the hammer mode, the tool bit can be caused to perform continuous striking movement without needs of operating the trigger when the trigger is locked in the depressed position by the engaging member. When the lock of the trigger by the engaging member is released, the trigger is allowed to be operated to turn the power switch on and off, so that the tool bit can be caused to perform intermittent striking movement.
However, according to the known power impact tool, in order to effect continuous hammering operation by the tool bit, the user must depress the trigger and then operate the engaging member to lock the trigger in the depressed position every time when trying to drive the hammer bit.
Accordingly, it is an object of the present invention to provide an effective technique to improve ease of operation of the power impact tool.
The representative power impact tool according to the present invention includes a tool body, a tool bit, a motor, first and second switches and a mode changing mechanism. The tool bit performs a striking movement. The motor drives the tool bit. The motor is driven only when both of the switches are turned on. The first switch is urged from the on position side to the off position side and normally held in the off position. Typically and preferably, the first switch may be defined by a trigger provided on a hand-grip of the power impact tool. On the other hand, the second switch is turned between the on position and the off position and held in one of the on and off positions unless operated to be turned to the opposite position. Typically and preferably, the second switch may be defined by a toggle switch. The mode changing mechanism switches between hammer operation modes of the tool bit. According to the first hammer mode, the user is allowed to actuate the first switch while the second switch is locked in the on position. Further, according to the second hammer mode, the first switch is locked in the on position while the user is allowed to actuate the second switch.
According to the invention, when the power impact tool is operated in the second hammer mode, the first switch such like a trigger is locked in the on-position while the user is allowed to actuate the second switch such like a toggle switch to drive the motor. Therefore, while the first switch is normally urged and held in the off position, the user is not required to keep the first switch in the on-position by hand in the second hammer mode. As a result, ease of operation of the power impact tool is enhanced compared with the known art. Other objects, features and advantages of the present invention will be readily understood after reading the following detailed description together with the accompanying drawings and the claims.
Each of the additional features and method steps disclosed above and below may be utilized separately or in conjunction with other features and method steps to provide and manufacture improved power impact tools and method for using such power impact tools and devices utilized therein. Representative examples of the present invention, which examples utilized many of these additional features and method steps in conjunction, will now be described in detail with reference to the drawings. This detailed description is merely intended to teach a person skilled in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed within the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe some representative examples of the invention, which detailed description will now be given with reference to the accompanying drawings.
A representative embodiment of the present invention will now be described with reference to
The body 103 includes a motor housing 105 that houses a driving motor 111, a gear housing 107 that houses a motion converting mechanism 131 and a striking mechanism 115, and a handgrip 109. The driving motor 111 is mounted such that a rotating shaft 111a of the driving motor runs generally perpendicularly to the longitudinal direction of the body 103 (vertically as viewed in
The striking mechanism 117 includes a striker 118 and an impact bolt 119. The striker 118 is slidably disposed within the bore of the cylinder 121 together with the piston 137. The impact bolt 119 is slidably disposed within the tool holder 113 and is adapted to transmit the kinetic energy of the striker 118 to the hammer bit 115.
The tool holder 113 is rotated by the driving motor 111 via a power transmitting mechanism 141 having a gear train. A clutch mechanism 151 is disposed in the power transmitting mechanism 141 and is adapted to enable or disable the power transmitting mechanism 141 to transmit rotation of the motor 111 to the tool holder 113 via the clutch mechanism 151.
As shown in
The trigger 123 is mounted on the handgrip 109 such that it can rotate about a pivot 123a. When the user depresses the trigger 123, the trigger 123 is turned to a position that places the main switch 125 in the ON position. When the user releases the trigger 123, the trigger 123 is returned to its initial position as the main switch 125 returns to the OFF position.
As shown in
The hammer drill 101 includes a mode changing mechanism 161. The mode changing mechanism 161 can change between a hammer-drill mode, a first hammer mode and a second hammer mode. In the hammer-drill mode, the hammer bit 115 is caused to perform a combined movement of striking and rotation. In the first hammer mode, the hammer bit 115 is caused to perform a striking movement by the operation of the trigger 123. In the second hammer mode, the hammer bit 115 is caused to perform a striking movement by the actuation of the switch actuating member 129.
As shown in
The switch actuating member 165 is defined by a plate member and has a slot 165a in one end portion. The first eccentric pin 163c is engaged in the slot 165a. Thus, the switch actuating member 165 is caused to move lineally in the longitudinal direction of the body 103 (or the tool bit 115) via the first eccentric pin 163c when the mode-changing operating member 163 is operated (turned) to switch between the hammer drill mode, the first hammer mode and the second hammer mode. In other words, the switch actuating member 165 moves in a direction generally perpendicular to the moving direction of the switch actuating member 129 and in the direction of depressing the trigger 123. The trigger 123 and the switch actuating member 129 are arranged substantially side by side in the moving direction of the switch actuating member 165. The switch actuating member 165 is disposed within the motor housing 105 and extends generally horizontally toward the trigger 123 over the switch actuating member 129. The switch actuating member 165 has a cam groove 167 extending in its moving direction. The switch actuating member 129 has a lug 129a and the lug 129a is engaged with the cam groove 167. Further, the switch actuating member 165 extends into the handgrip 109 across the connection between the handgrip 109 and the body 103. An end 165b of the switch actuating member 165 in the handgrip 109 faces an end 123b of the trigger 123 (which is remote from the pivot 123a) and can abut on it.
The end 165b of the switch actuating member 165 moves away from the end 123b of the trigger 123 when the mode-changing operating member 163 is turned to the hammer drill mode position or the first hammer mode position. In this state, the on-off operation of the main switch 125 by the trigger 123, or the depressing and releasing of the trigger 123 is allowed. When the mode-changing operating member 163 is turned to the second hammer mode position, the end 165b of the switch actuating member 165 moves toward the trigger 123 and presses on the end 123b of the trigger 123. As a result, the trigger 123 is moved to a depressed position, or a position that places the main switch 125 in the ON position, and locked in the depressed position.
As shown in
The cam groove 167 further has a switching region 167c between the locking region 167a and the switch actuation allowing region 167b. In the switching region 167c, the switch actuating member 129 is forced to be switched between the ON position and the OFF position according to the movement of the switch actuating member 165. The cam groove 167 in the switching region 167c is inclined a predetermined angle with respect to the moving direction of the switch actuating member 165. The cam groove 167 in the switching region 167c has a V-shaped guide wall 167d that guides the lug 129a of the switch actuating member 129 from the ON position to the OFF position according to the movement of the switch actuating member 165 and a guide wall 167e that guides the lug 129a of the switch actuating member 129 from the OFF position to the ON position. The V-shaped guide wall 167d has a height H (see
As shown in
As shown in
Operation and usage of the hammer drill 101 constructed as described above will now be explained.
As shown in
In this state, when the trigger 123 is depressed to turn the main switch 125 to the ON position and the driving motor 111 is driven, the rotation of the driving motor 111 is converted into linear motion via the motion converting mechanism 131. The piston 137 of the motion converting mechanism 131 then reciprocates within the bore of the cylinder 121. The linear motion of the piston 137 is transmitted to the hammer bit 111 via the striker 118 and the impact bolt 119 which form the striking mechanism 117. Further, the rotation of the driving motor 111 is transmitted as rotation to the tool holder 113 and the hammer bit 111 (supported by the tool holder 113 such that the hammer bit 111 is prevented from rotating with respect to the tool holder 113) via the power transmitting mechanism 141. Specifically, the hammer bit 115 is driven with the combined movement of string (hammering) and rotation (drilling). Thus, a predetermined hammer-drill operation can be performed on the workpiece.
When the user turns the mode-changing operating member 163 from the hammer drill mode position as shown in
Further, as shown in
In this state, when the trigger 123 is depressed to turn the main switch 125 to the ON position and the driving motor 111 is driven, the rotation of the driving motor 111 is converted into linear motion via the motion converting mechanism 131. Then, the linear motion is transmitted to the hammer bit 111 via the striker 118 and the impact bolt 119 which form the striking mechanism 117. At this time, the clutch mechanism 151 of the power transmitting mechanism 141 is in the disengaged state, so that rotation is not transmitted to the hammer bit 115. Therefore, in the first hammer mode, the user can perform a predetermined hammering operation solely by the striking movement (hammering) of the hammer bit 115 by depressing the trigger 123 to turn the main switch 125 to the ON position. In the first hammer mode, the hammer bit 115 can be readily driven and stopped by depressing and releasing the trigger 123. Therefore, this mode is particularly useful for a hammering operation in which the hammer bit 115 is driven on an on-again off-again basis.
When the mode-changing operating member 163 is turned from the first hammer mode position shown in
Further, as shown in
Thus, when the mode-changing operating member 163 is turned to the second hammer mode position, the main switch 125 is locked in the ON position. At the same time, the sub-switch 127 is forced to be turned from the ON position to the OFF position, and then in the switch actuation allowing region 167b, the user is allowed to turn the sub-switch 127 on and off.
In this state, when the switch actuating member 129 is pushed to turn the sub-switch 127 from the OFF position to the ON position, the driving motor 111 is driven. The clutch mechanism 151 of the power transmitting mechanism 141 is in the disengaged stat in the second hammer mode, so that the hammer bit 115 only performs a linear motion via the motion converting mechanism 131 and the striking mechanism 117. In the second hammer mode, once the switch actuating member 129 of the sub-switch 127 is pushed in to the ON position, it is held in the ON position unless pushed in the opposite direction. Further, the trigger 123 of the main switch 125 is also locked in the ON position. Therefore, the user can perform a hammering operation by continuously driving the tool bit 115.
Further, in the second hammer mode, when the mode-changing operating member 163 is turned to the first hammer mode position after the switch actuating member 129 of the sub-switch 127 is pushed in to the OFF position, the end 165b of the switch actuating member 165 is moved away from the end 123b of the trigger 123. As a result, the trigger 123 returns to the ON position together with the main switch 125. Further, by this movement of the switch actuating member 165, the lug 129a of the switch actuating member 129 is pressed by the guide wall 167e in the switching region 167c of the cam groove 167 from the OFF position to the ON position. Thus, like in the above-mentioned case, the user can perform a predetermined hammering operation by the striking movement of the hammer bit 115 by depressing the trigger 123 to turn the main switch 125 to the ON position. According to this embodiment, in the hammering operation in the second hammer mode, the user can drive and stop the hammer bit 115 by sliding the switch actuating member 129 to turn the sub-switch 127 between the ON position and the OFF position as necessary.
On the other hand, according to the prior art, the trigger 123 is locked in the depressed position by an engaging member in order to effect continuous hammering operation. In this case, in order to drive the hammer bit in the hammer mode, the user must depress the trigger 123 and then operate the engaging member to lock the trigger in the depressed position. In other words, the user needs to perform two operations every time when trying to drive the hammer bit. To the contrary, according to this embodiment, the need for any operation of the trigger 123 is eliminated in the second hammer mode. The user only needs to actuate the switch actuating member 129 to toggle the sub-switch on and off. Therefore, ease of operation of the hammer drill 101 is enhanced compared with the prior art.
Further, according to this embodiment, when the mode-changing operating member 163 is turned from the first hammer mode position to the second hammer mode position, the sub-switch 127 is forced to be turned from the ON position to the OFF position. Therefore, even if the user changes from the first hammer mode to the second hammer mode with the trigger 123 inadvertently left depressed, the hammer bit 115 is not driven. Further, in this embodiment, when the mode-changing operating member 163 is turned from the second hammer mode position to the first hammer mode position, the sub-switch 127 is forced to be turned from the OFF position to the ON position. Therefore, the user need not operate the sub-switch 127 when operating the mode-changing operating member 163.
Further, according to this embodiment, the trigger 123 and the switch actuating member 129 are linked with the switch actuating member 165, so that both can be actuated by the switch actuating member 165 as single device. Therefore, the number of parts can be reduced and the structure can be simplified. Further, with the construction in which the actuation of the switch actuating member 129 is controlled by the cam groove 167 of the switch actuating member 165, inadvertent push of the switch actuating member 129 can be reliably prevented in the hammer drill mode or the first hammer mode.
Further, in this embodiment, the switch actuating member 165 moves in the longitudinal direction of the body 103, and the switch actuating member 129 is actuated in a direction perpendicular to the moving direction of the switch actuating member 165 or in a direction of extending through the side surfaces of the body 103. With this construction, the switch actuating member 165 is arranged in a position to keep out of the way of the other functional parts, so that effective arrangement of parts can be realized.
The above-described invention can be applied to an electric hammer in which the hammer bit 155 only performs a striking movement. Further, the lug may be formed on the switch actuating member 165 and the cam groove in the switch actuating member 129.
Number | Date | Country | Kind |
---|---|---|---|
2004-178964 | Jun 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4381037 | Cuneo | Apr 1983 | A |
4428438 | Holzer | Jan 1984 | A |
4763733 | Neumaier | Aug 1988 | A |
4776406 | Wanner | Oct 1988 | A |
5842527 | Arakawa et al. | Dec 1998 | A |
6109364 | Demuth et al. | Aug 2000 | A |
6176321 | Arakawa et al. | Jan 2001 | B1 |
6489578 | Jung et al. | Dec 2002 | B1 |
6520267 | Funfer et al. | Feb 2003 | B2 |
6548776 | Jong | Apr 2003 | B1 |
6550545 | Manschitz et al. | Apr 2003 | B1 |
6555773 | Broghammer et al. | Apr 2003 | B1 |
6610938 | Funfer | Aug 2003 | B2 |
6725944 | Burger et al. | Apr 2004 | B2 |
6868919 | Manschitz et al. | Mar 2005 | B1 |
7073605 | Saito et al. | Jul 2006 | B2 |
20030037937 | Frauhammer et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
2 625 931 | Jul 1989 | FR |
24796 | Oct 1913 | GB |
2 314 288 | Dec 1997 | GB |
A 2001-062756 | Mar 2001 | JP |
2 076 801 | Apr 1997 | RU |
41467 | Jan 1935 | SU |
614937 | Jul 1978 | SU |
WO 9001786 | Feb 1990 | WO |
Number | Date | Country | |
---|---|---|---|
20060011361 A1 | Jan 2006 | US |