The present disclosure relates generally to systems and methods involving power interconnects in a modular access panel.
There are various applications that require various current capabilities. For example, in one instance, a high amperage current may be necessary to perform a certain task, whereas, in another instance, a low amperage current may be necessary to perform another task. Although the power source itself may be configured to accommodate various amperage applications, the ability to utilize these different current capabilities may be limited by the connections that are made to the power source.
For example, in the field of welding systems, a typical welding apparatus may include a connector, which mates with a single power cable and which connects to a power source. Typically, the connector may be a twist-lock type power connector that is configured to connect to a single power cable. However, since only a single power cable is configured to connect to the power source via the twist-lock type power connector, such a welding apparatus is limited as to the amount of current that can be utilized in connection with this power source.
The systems and methods described herein attempt to cure the deficiencies of conventional systems by providing what is referred to herein as a bolt-through type power connector. The bolt-through type power connector is structured to accommodate various electrical coupling configurations and current capacities with respect to at least one power source. The bolt-through type power connector is compatible with mounting mechanisms of a twist-lock type power connector. This feature enables the bolt-through type power connector to be interchangeable with a twist-lock type power connector. The interchangeability of these power connectors is advantageous, as it allows for current capabilities to be modified in a relatively seamless manner.
The systems and methods described herein enable a greater range of amperage levels of at least one power source to be utilized with relative ease. In this regard, a bolt-through type power connector is able to provide these various amperage levels by being configured to electrically connect to a single power cable or a plurality of power cables. With the systems and methods described herein, a user is able to switch between a relatively low amperage capacity, as carried by a single power cable, to a relatively high amperage capacity, as carried by a plurality of power cables, or vice versa. The transition from a single power cable to a plurality of power cables (or vice versa) involves a simple action of connecting and/or disconnecting the requisite power cables to/from the bolt-through type power connector via a stud or a mechanical fastener (e.g., bolt and nut).
In an embodiment, a bolt-through type power connector includes a metal plate portion and a metal attachment portion. The bolt-through type power connector has a first end and a second end. The bolt-through type power connector includes a metal plate portion at the first end. The metal plate portion includes a structure that is configured to support one or more ring terminals of one or more power cables. The structure is (a) a through hole, which is in the metal plate portion and sized to receive a bolt that is configured to support the one or more ring terminals, or (b) a stud, which is configured to support the one or more ring terminals. The metal attachment portion extends from the metal plate portion to the second end. The metal attachment portion has a male engagement portion with a flange portion that provides a surface facing the second end. The male engagement portion has an outer profile for receipt of hardware to secure the bolt-through type power connector within an opening of a bulkhead assembly. The bolt-through type power connector is structured to effectively carry a current that is equal to or greater than 450 amperes.
In an embodiment, a modular access panel includes a mounting plate. A bulkhead assembly is mounted on the mounting plate. A bolt-through type power connector is inserted in the bulkhead assembly. The bolt-through type power connector has first and second ends. The bolt-through type power connector includes a metal plate portion and a metal attachment portion. The metal plate portion is at the first end of the bolt-through type power connector. The metal plate portion includes a structure that is configured to support one or more ring terminals of one or more power cables. The structure is (a) a through hole, which is in the metal plate portion and sized to receive a bolt that is configured to support the one or more ring terminals, or (b) a stud, which is configured to support the one or more ring terminals. The metal attachment portion extends from the metal plate portion to the second end. The metal attachment portion has a male engagement portion with a flange portion that provides a surface facing the second end. The male engagement portion has an outer profile for receipt of hardware to secure the bolt-through type power connector within an opening of the bulkhead assembly. The bolt-through type power connector is structured to effectively carry a current that is equal to or greater than 450 amperes.
In an embodiment, a welding system includes a power source, a modular access panel, a bulkhead assembly, and a bolt-through type power connector. The modular access panel has a mounting plate. The bulkhead assembly is mounted on the mounting plate. The bolt-through type power connector is inserted in the bulkhead assembly and connected to the power source. The bolt-through type power connector has first and second ends. The bolt-through type power connector includes a metal plate portion and a metal attachment portion. The metal plate portion includes a structure that is configured to support one or more ring terminals of one or more power cables. The structure is (a) a through hole, which is in the metal plate portion and sized to receive a bolt that is configured to support the one or more ring terminals, or (b) a stud, which is configured to support the one or more ring terminals. The metal attachment portion extends from the metal plate portion to the second end. The metal attachment portion has a male engagement portion with a flange portion that provides a surface facing the second end. The male engagement portion has an outer profile for receipt of hardware to secure the bolt-through type power connector within an opening of a bulkhead assembly. The bolt-through type power connector is structured to effectively carry a current that is equal to or greater than 450 amperes.
Additional features and advantages of exemplary embodiments will be set forth in the description which follows, and in part will be apparent from the description. The objectives and advantages of the invention will be realized and attained by the structure particularly pointed out in the exemplary embodiments in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The preferred embodiments of the present invention are illustrated by way of example and not limited to the following figures:
Various embodiments and aspects of the invention will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.
The systems and methods described herein relate to interchangeable power connectors in a modular access panel with respect to at least one power source. The systems and methods are described in detail below.
Referring generally to
As mentioned above, welding system 100 includes at least one power connection point. Power connection point may be a primary welding power connection point or a secondary welding power connection point. Power connection point may be associated with at least one power cable 110 connected to at least one power source 120 via at least one electrical conductor 112. Power connection point may provide output welding power via power cable 110. Power source 120 may be a constant voltage (CV), a constant current (CC), a constant current/constant voltage (CC/CV), an alternating current (AC), a direct current (DC), a combination AC/DC source, or any suitable type of power supply for welding system 100. Power source 120 may supply various amperages. Power cable 110 may be a thermal set hose, a copper braided cable, any type of welding cable, or any other suitable power transmission means. Power cable 110 may provide electrical power to a welding device, such as a welding torch. Electrical conductor 112 may be a bus bar, a power cable, any suitable power transmission means, or a combination thereof.
Welding system 100 may include modular access panel 130. Modular access panel 130 may be separated and/or combined with one or more units that houses welding system 100. Modular access panel 130 comprises aluminum, steel, plastic, or any suitable material. Modular access panel 130 may be a mounting plate, which is configured to function as an interface for the user. Modular access panel 130 may include a plurality of mounting mechanisms by which various welding system 100 components may be mounted. For example, modular access panel 130 may include a means by which different welding connections may be mounted thereon.
Referring generally to
As shown, power connector holder 150 comprises a bulkhead assembly, which includes a front insulator bulkhead 150A and a rear insulator bulkhead 150B. Front insulator bulkhead 150A and the rear insulator bulkhead 150B may comprise the same materials or different materials. Front insulator bulkhead 150A may comprise an insulator, such as thermal set plastic, ceramic, or any suitable material. Rear insulator bulkhead 150B may comprise an insulator, such as a thermal set plastic, ceramic, or any other suitable material.
In one embodiment, front insulator bulkhead 150A may be mounted to a front side of the modular access panel 130. Rear insulator bulkhead 150B may be mounted to a rear side of the modular access panel 130. Front insulator bulkhead 150A is configured to mate with rear insulator bulkhead 150B. More specifically, a back-end portion of front insulator bulkhead 150A is configured to fit into a front-end portion of rear insulator bulkhead 150B.
Front insulator bulkhead 150A may be securely attached to rear insulator bulkhead 150B. To provide this secure attachment, front insulator bulkhead 150A may include an outer profile that comprises grooves, indentations, projections, threads, any suitable structure, or any combination thereof. Front insulator bulkhead 150A may have at least a portion with an outer surface that comprises this profile. In addition, rear insulator bulkhead 150B may include an inner profile that comprises mating grooves, indentations, projections, threads, any suitable structure, or any combination thereof. Rear insulator bulkhead 150B may have a portion with an inner surface that comprises this profile. The inner profile of rear insulator bulkhead 150B is configured such that at least a portion thereof securely mates with the outer profile of the front insulator bulkhead 150A. For example, front insulator bulkhead 150A may have a back-end portion with a profile on an outer surface thereof that mates with a profile on an inner surface of a front-end portion of the rear insulator bulkhead 150B.
The mating of front insulator bulkhead 150A and rear insulator bulkhead 150B allows their center portions to be aligned along a longitudinal direction. When joined, front insulator bulkhead 150A and rear insulator bulkhead 150B comprise a power connector holder 150 or power connector receiving portion 150. Power connector holder 150 is configured to receive a respective section of power connector 140 or 170 that is inserted therein. To that end, power connector holder 150 may comprise a female engagement portion, which is structured to securely receive twist-lock type power connector 170 or bolt-through type power connector 140. In addition, power connector holder 150 may include at least a portion with an anti-rotational mechanism or feature. For example, with regard to an anti-rotational mechanism or feature, power connector receiving portion 150 may comprise at least a portion that includes a substantially circular shape having two oppositely facing flat sides in cross section to receive power connector 140 or 170. As another example, power connector receiving portion 150 may comprise at least a portion that includes a hexagonal shape in cross section to receive power connector 140 or 170. Power connector holder 150 is not limited to the above-mentioned anti-rotational devices, but may include any suitable anti-rotational mechanism and/or feature.
Twist-lock type power connector 170 is configured to mate with power connector holder 150 by a twist-connect or twist-lock type mechanism. Twist-lock type power connector 170 is configured to connect with a power cable 110 by twisting a cable plug part of the twist-lock type power connector 170 into a cable socket part of the twist-lock type power connector 170. For example, twist-lock type power connector 170 may be a DINSE® connector. Alternatively, twist-lock type power connector 170 may be a Tweco® connector. However, each of these twist-lock type power connectors 170 is typically configured to connect to a single power cable 110 at a given time and is usually rated to provide a current capacity equal to or less than 450 amperes.
Bolt-through type power connector 140 is configured to support a greater range of current capacities than that of the twist-lock type power connector 170 discussed above. Bolt-through type power connector 140 is configured by way of suitable sizing and materials, such as a non-ferrous conductive metal or metals, to accommodate a current capacity equal to or less than 450 amperes. For example, bolt-through type power connector 140 is configured to support a single power cable 110 and a current capacity of 450 amperes or a current capacity less than 450 amperes.
Additionally or alternatively, bolt-through type power connector 140 is configured by way of suitable sizing and materials, such as a non-ferrous conductive metal or metals, to accommodate a current capacity of 450 amperes or a current capacity greater than 450 amperes. For example, bolt-through type power connector 140 is configured to electrically connect multiple ring terminals to power source 120. In the field of welding systems, the use of multiple ring terminals is particularly advantageous when welding or cutting at high amperage.
Referring generally to
More specifically, bolt-through type power connector 140 has a power cable connection portion 140A and an attachment portion 140B. Power cable connection portion 140A and attachment portion 140B may be a unitary body, as shown. Alternatively, power cable connection portion 140A and attachment portion 140B may be separable into a plurality of pieces while being structured to join together in a secure fashion. For example, power cable connection portion 140A could terminate in a male threaded member that engages a female threaded opening at an end of attachment portion 140B.
Power cable connection portion 140A preferably has an outer profile that is substantially rectangular or square in cross-section, as shown in
As mentioned, power cable connection portion 140A is mechanically and electrically structured to support one or more power cables 110. Power cable connection portion 140A may include a suitable structure to achieve this effect. For example, in one embodiment, the structure is a through hole 140C1, as shown in at least
In the first structural configuration, as shown in
Bolt 141 and nut 142 are configured to secure a single power cable 110 and/or a plurality of power cables 110 to power cable connection portion 140A, as illustrated in
In the second structural configuration, as shown in
In the alternative, stud 140C2 may be separate and distinct from power cable connection portion 140A and/or bolt-through type power connector 140 as long as stud 140C2 is enabled to mechanically and electrically support one or more power cables 110 in connection with bolt-through type power connector 140. In this regard, when configured as a separate member, stud 140C2 may be securely attached to power cable connection 140A by a suitable means. For example, stud 140C2 may be welded onto power cable connection portion 140A. As another example, stud 140C2 may be securely attached to power cable connection portion 140 by mechanical fasteners.
Stud 140C2 is sized to receive and support one or more ring terminals of one or more power cables 110. Stud 140C2 may be threaded or may include a threaded portion. This threaded feature enables the one or more ring terminals to be securely attached to stud 140C2 by at least one mechanical fastener such as nut 142. In this regard, bolt-through type power connector 140 is structured to allow proper torque to stud 140C2 and nut 142 that will produce a safe clamping force to a single power cable 110 and/or a plurality of power cables 110. Stud 140C2 is not limited to threads and nut 142. Additionally or alternatively, stud 140C2 may include other equivalent and/or suitable mechanical features that enable the one or more power cables 110 to be securely attached.
Attachment portion 140B includes a male engagement portion, which is structured to mate with female engagement portion of power connector holder 150, and a connection portion 140F to which at least one electrical conductor 112, such as an incoming power cable, can be attached. More specifically, an outer surface of the attachment portion 140B of bolt-through type power connector 140 has a profile that mates with that of an inner surface of bulkhead assembly 150. Importantly, attachment portion 140B includes a flange portion 140E that functions as a stopper against a mating portion of front insulator bulkhead 150A, as made clear in
Also, connection portion 140F preferably includes a threaded hole 140D at a power source end thereof. This threaded hole 140D is sized to receive bolt 165, which supports the attachment of at least one electrical conductor 112, such as an incoming power cable, to bolt-through type power connector 140. Connection portion 140F also preferably includes a threaded outer surface to receive mounting hardware 160, such as nuts, to secure bolt-through type power connector 140 in the modular access panel 130, as shown in greater detail in
When bolt-through type power connector 140 comprises power cable connection portion 140A and attachment portion 140B as a unitary member, bolt-through type power connector 140 may comprise a same material for both portions. As another example, bolt-through type power connector 140 may comprise a single material (i.e., a same material composition) even when it is constructed from multiple pieces.
Alternatively, bolt-through type power connector 140 may comprise a plurality of materials. For example, bolt-through type power connector 140 may comprise one or more materials, but is further plated with one or more materials. Additionally or alternatively, power cable connection portion 140A of the bolt-through type power connector 140 may comprise one or more materials while attachment portion 140B of the bolt-through type power connector 140 may comprise one or more materials.
As discussed above, bolt-through type power connector 140 may comprise a single material or a plurality of materials. Bolt-through type power connector 140 may comprise a non-ferrous conductive metal. Bolt-through type power connector 140 may comprise copper or an alloy thereof. Bolt-through type power connector 140 may comprise aluminum or an alloy thereof. Bolt-through type power connector 140 may comprise zinc or an alloy thereof. Bolt-through type power connector 140 may comprise brass, which may be a preferable material in terms of cost.
A series of tests were conducted to ensure that bolt-through type power connector 140 could properly and safely handle a high amperage load, such as a current capacity equal to or greater than 450 amperes. For example, bolt-through type power connector 140, when made of brass, was able to safely handle a load of at least 650 amperes. Based on these tests, the above-mentioned materials (e.g., copper, brass, and etc.) were found to be suitable for bolt-through type power connector 140. It was found that these materials do not overheat when a relatively high amperage level (e.g., 450 amperes or more) is applied to bolt-through type power connector 140. In addition, these materials are relatively safe and reliable in relatively high amperage conditions, such as that associated with welding outputs of 450 amperes or above.
Referring generally to
Mounting hardware 160 is configured to securely mount and fasten bolt-through type power connector 140 to bulkhead assembly 150 and modular access panel 130. Mounting hardware 160 may include one or more of various types of fasteners and any of their related pieces. As examples, mounting hardware 160 may include one or more of various types of fasteners, bolts, nuts, screws, washers, or other similar mechanical elements. In the illustrated embodiment, mounting hardware 160 includes an internal-tooth type washer 161, a nut 162 (before voltage sense tab 163), a nut 164 (after voltage sense tab 163), and a bolt 165.
Voltage sense tab 163 is configured to enable voltage or voltage related feedback and/or information to be read or sensed at its location. Voltage sense tab 163 may be a standard element, as is known in the art.
Further information regarding applications of these components follows below. The description below provides illustrative examples that highlight the interchangeability of the power connectors. The interchangeability of the power connectors enables the current capabilities to be changed without also having to change the modular access panel 130 and the bulkhead assembly 150. That is, the systems and methods described herein allow the same modular access panel 130 and the same bulkhead assembly 150 to be compatible with twist-lock type power connector 170 in one instance and compatible with bolt-through type power connector 140 in another instance.
Referring generally to
Referring generally to
In
In
Referring generally to
More specifically, in
As discussed above, bolt-through type power connector 140 is structured to support a plurality of electrical configurations and current capabilities. Similarly to the twist-lock type power connector 170, bolt-through type power connector 140 is structured to support a connection to a single power cable 110 while enabling a current less than 450 amperes to be output for use by the welding system 100. However, unlike twist-lock type power connector 170, bolt-through type power connector 140 is structured to support a connection to a plurality of power cables 110. This enables a current equal to or greater than 450 amperes to be output for use by the welding system 100.
The systems and methods described herein also provide a number of other advantages. For example, from at least a manufacturing standpoint, an advantageous feature of the bolt-through type power connector 140 is its compatibility with the same modular access panel 130 and bulkhead assembly 150, which are structured to support twist-lock type power connector 170. This compatibility allows for a commonality of parts (e.g., modular access panel 130 and bulkhead assembly 150) in welding system 100 for bolt-through type power connector 140 and twist-lock type power connector 170. In effect, this reduces the number of different parts that need to be manufactured in association with these different types of power connectors.
Also, due to the interchangeability of these different types of power connectors, modular access panel 130 and bulkhead assembly 150 are not limited to one of these power connectors. In this regard, for example, various combinations and permutations can be made with regard to the interchangeability of these power connectors in relation to modular access panel 130 and bulkhead assembly 150. For example, one bolt-through type power connector 140 may be replaced with another bolt-through type power connector 140 in a given bulkhead assembly 150 of modular access panel 130. As another option, bolt-through type power connector 140 may be switched to twist-lock type power connector 170 in a given bulkhead assembly 150 of modular access panel 130. As another example, one twist-lock type power connector 170 may be replaced with another twist-lock type power connector 170 in a given bulkhead assembly 150 of modular access panel 130. Also, twist-lock type power connector 170 may be switched to bolt-through type power connector 140 in a given bulkhead assembly 150 of modular access panel 130. As discussed, the systems and methods described herein provide interchangeability, as well as increased design flexibility.
Furthermore, by enabling the same modular access panel 130 to be utilized, welding systems, such as the Continuum® line of products, are able to have a common look and feel irrespective of whether they include bolt-through type power connector 140 or twist-lock type power connector 170. This provides the added benefit of a familiar user experience.
The embodiments described above are intended to be exemplary. One skilled in the art recognizes that numerous alternative components and embodiments that may be substituted for or included in the particular examples described herein and such additions or substitutions still fall within the scope of the invention.