The present invention is drawn to a power line communications system for transmitting and receiving high frequency, high bandwidth signals safely over power lines. The system comprises a power line coupler, a fiber optic isolator and a communications interface to various media. The present invention is related to a portion of the system concerned with the fiber optic isolator and communications interface.
With well-established power distribution systems (PDSs) already in place throughout much of the world, an efficient power line communication system (PLCS) could provide more users with high-speed telecommunications access with the minimum investment of “add-on” devices.
The infrastructure for providing broadband Internet access is presently insufficient to meet demand. A power distribution system (PDS), however, could be an ideal vehicle for carrying communications signals in order to meet this demand. Development of a power line communication system (PLCS) would therefore provide more users with high-speed telecommunications access. Since the PDS is already built, the time required to implement a PLCS would be minimal.
Of course, there are a series of problems to be overcome before a PDS can be used as an efficient, high-speed power line communications medium. The following issues, while not exhaustive, are representative considerations of what such a system would require in order to use an existing PDS to transport communication data: a sufficient signal to noise ratio; non-disruptive installation of the “add on” device; safety means such that users and circuitry are protected and isolated from stray current; a signal carrier with a frequency sufficient to support high data transfer rate (e.g. 10 Mbps); means for the data signal to bypass a distribution transformer without loss; bi-directional data transmission; coupling devices that do not interfere with data signal handling; an independent power source for electronic conditioning circuitry at power line interfaces; a power line interface that is impervious to extreme environmental conditions; and means for the data to be readily routed to intended locations without loss.
Given the advantages of being able to use the existing PDS for high-speed data communication, an effective method is required to couple and decouple the signals onto and off of a high or medium voltage power line. The coupling and decoupling of the data signal must be at a level sufficient to maintain an adequate signal to noise ratio in order to discern between the data signal and noise or interference on the line. For any method developed, a significant challenge lies in being able to mitigate the adverse effects of the high voltage 50–60 Hz power signal might have on the communications signal. Additionally, safety from high voltage is of concern.
Whyte, et al. in U.S. Pat. No. 4,142,178 observe: “The use of the distribution network conductors for the transmission of carrier communication signals presents many problems not encountered in high voltage transmission line communication systems. Some of these problems include the poor high frequency impedance characteristics and the high level of electrical noise present on the distribution network conductors which, along with the plurality of distribution transformers and power factor correction capacitors attached to the distribution network, rapidly attenuate the communication signals.”
Whyte teaches using a direct circuitry from a line coupler to a remote data terminal thus bypassing the PDS transformer, which is the primary source of data attenuation. The main use for the transmission of communication signals addressed by Whyte was to perform distribution functions such as automatic reading of utility meters and selective load control. Those functions are still desirable, but the function of high speed, high bandwidth communication transmission preclude direct connection from a transformer to remote data terminals economically.
Use of a low voltage power distribution system as a data communications carrier within a premise is well known. Abraham, U.S. Pat. No. 6,014,386 teaches a communications network within a building using the AC wiring as the infrastructure of the network. Different types of appliances using digital signals may be included within the network. The Abraham patent uses an impedance matching scheme to direct a specific signal to a specific location. Couplers at a control location have unique impedances that are matched by corresponding couplers elsewhere within the building. Thus, specific signals will be de-coupled based an impedance match. Abraham also teaches the use of dielectric inductors in circuit with capacitors to tune the impedance characteristics of couplers.
In a similar manner, Abraham in U.S. Pat. No. 5,625,863 teaches the distribution of multiple video signals distributed within a building using the building's AC wiring as the distribution system. Unique impedance settings direct the signals to unique locations. Abraham in U.S. Pat. No. 5,818,127 describes a distribution system for FM signals within a building by use of the building's AC wiring.
Abraham in U.S. Pat. No. 5,717,685 describes the coupling of data signal on and off a building's AC wiring infrastructure. His invention uses capacitive circuits in serial connection. The circuitry also includes air-core transformers. This arrangement allows impedance tuning of the specific couplers. While Abraham claims a system with a fiber optic source for an input signal in his U.S. Pat. No. 6,014,386, there is no description as to the use of fiber optic isolators.
Abraham also states that the utility firm may use the communications system to communicate utility meter information over the PDS.
Methods for avoidance of distribution transformers are well known. Perkins in a series of patents including U.S. Pat. No. 4,473,816 teaches a communications signal bypassing a multi-phase power transformer where the signal uses the PDS as a carrier. The signal is bi-directional and uses conductive material to affect the bypass. The invention uses multiple capacitors in parallel to neutralize the coupling impedance. Further, the winding ratio, R, between the primary and secondary windings ratio is maintained in the signal frequency across the signal bypass. Signal carrier frequency is in the 3–10 KHz range. Similarly, Perkins in U.S. Pat. No. 4,473,817 teaches a communications signal bypassing a single-phase power transformer.
Kennon, U.S. Pat. No. 4,644,321 uses a non-intrusive coupler to capture the data signal. Kennon teaches the use of a toroid having a multiplicity of turns of a conductor that is in circuit with an amplifier and receiver. The toroid core is non-conductive. The signal thus inductively de-coupled is amplified and used for a load management and filed configuration utility terminal. The system requires a battery for circuitry management.
Brown, U.S. Pat. No. 5,949,327 teaches the use of transformer bypass by coupling using capacitors connected to the primary and secondary terminals of the step transformer. Brown recognizes the need for multiple couplings at different points within the EDN (Electrical Distribution Network or, as referred to in the present description as PDS). Brown also teaches that the communication system use a high frequency signal carrier technique such as CDMA.
Moore, U.S. Pat. No. 5,210,519, describes a communication system that couples data signal from a transmission source using an inductor and de-couples the data at the receiver. This methodology is applied in a closed network and requires selective de-coupling as opposed to routing of the signal. Further, Moore teaches the use of a second transformer for reversing any inductor core saturation that may have occurred in the data de-coupling. This method requires time division of the data coupler between data coupling and saturation neutralization.
Dzung, European Patent Application EP948143, describes a high voltage power line communication system that combines multiple source data signals, couples the combined signal onto multiple power lines using capacitive coupling and de-couples and demodulates the signals, separating and converting the signals back to the original form at the receiver.
Power lines can be located in areas with extreme environmental conditions. Thus, the mechanical design must ensure proper operation when exposed to these extreme conditions and also maintain the required level of safety. Furthermore, any methods developed should be designed so as to have minimal impact to service of customers during installation.
As stated above, public safety is an absolute requirement. Any system using the PDS must isolate the end user (and public in general) from exposure to electric current. The PDS steps medium and high voltage power down to low voltage power (approximately in the 100–240 volt range) using transformers. Transformers are designed to filter out and ground high frequency signals as a safety precaution. Since a high frequency signal carrier is the ideal medium for high bandwidth data transfer, a communications data delivery system needs to circumvent the transformer filtration process while preserving safety protection.
It is an object of the present invention to provide a safe interface to a power line coupler for use with a power line communication system (PLCS).
It is still another object of the present invention to provide a bypass between a high voltage power line coupler and across a power distribution transformer.
It is a further object of the present invention to provide a bypass across a power distribution transformer wherein the data signal is preserved and consistent on either side of each of the transformer.
It is yet another object of the present invention to provide electrical current isolation between components and circuits within the PLCS by use of dielectric materials between components of the PLCS.
It is another object of the present invention to provide a high speed power line communication system (PLCS) using inductive signal coupling where the coupler's core stay's unsaturated.
It is yet another object of the present invention to provide a PLCS that performs data packet management.
It is a further object of the present invention to provide a power line coupler for use with a PLCS that is non-intrusive.
It is still a further object of the present invention to provide a power line coupler for use with a PLCS that inductively draws operating power from the power line.
It is a further object of the present invention to provide a power line coupler device for use with a PLCS that is self-contained and is nearly impervious to environmental conditions.
It is another object of the present invention to provide a PLCS that uses a toroid inductor to inductively couple and de-couple signals to and from a power line.
It is yet another object of the present invention to provide a power line coupler that provides an electro-optical transducer to interface with a fiber optic insulator.
It is still another object of the present invention to provide a non-intrusive power line coupler that is hinged for ease of installation.
It is still a further object of the present invention to provide a quality monitoring feedback system whereby a power company.
The PDS topology can be used to deliver high-speed communications to residential homes in a cost effective way. Applications for such communication systems include high speed Internet, telephony, video conferencing and video delivery. This recitation of applications is not meant to be exhaustive.
The system involves coupling and de-coupling communications data between a data source and a PDS. High frequency signals allow high bandwidth transfers (the higher the frequency of the data carrier, the more cycles per unit time available for data transfer). The carrier should exhibit high signal to noise characteristics relative to the underlying system of a 50 or 60 Hz PDS. (The US standard is 60 Hz, but most countries use a 50 cycle per second power system.)
The data signals are coupled on to and off of the power line with a power line coupler (PLC). One embodiment of the present invention uses an inductive method to couple and de-couple data signals off of the power line. A toroid with conductive windings is placed around the power line. This method effectively provides a transformer between the power line and the PLC thus facilitating the transmission and receiving of the data signal. For the PLC side of the transformer, the number of windings and the orientation of the windings around the magnetic toroid is guided by the desire to maximize the flux linkage.
The type of signal used on this channel can be almost any signal used in communications (CDMA, TDMA, FDM, OFDM to name a few). A wideband signal such as CDMA that is relatively flat in the spectral domain is preferred to minimize radiated interference to other systems while delivering high data rates.
Since communications signals are very high frequency, a step down transformer would filter a signal coupled on the power line. The present invention avoids this by bypassing the transformer with a power line bridge (PLB). The PLB de-couples data signals from the medium or high voltage line a short distance from a transformer. The PLB interfaces between the power line on the primary of the transformer and the LV line on the secondary of the transformer. (The primary is the side of the transformer where the relatively high voltage enters; the secondary is the side of the transformer where the stepped down, lower voltage exits the transformer.)
The PLB is used to prevent the relatively high voltage from passing to the transformer's secondary side yet allowing the communications signal to pass between the PDS on either side of the transformer by using an isolator. A preferred embodiment of the present invention is to use an optical medium. The de-coupled signal from the relatively high voltage power line is converted to light energy (i.e. light signal) by using a transducer and transmitting the light signal over a non-electric conductive but light conductive medium. In a like manner, light signals from the light conductive medium are converted to electrical signals for coupling to the power line.
One embodiment of the present invention uses a fiber optic cable as the isolator. The isolator is a light pipe that bypasses the transformer. Fiber optic cable is a dielectric thus insulating the PDS on the secondary transformer side from relatively high voltage.
The signal is next modulated and de-modulated by a first modem. The signal goes through a data router and then a second modem. The router serves the purpose of matching data packets with specific messages and destinations. The second modem modulates and de-modulates the signal in a form consistent with transport over a LV power line.
The light signal is converted back to an electronic signal and then coupled onto the LV power line (LV coupler). In an embodiment of the present invention a second isolator is inserted in the system between the second modem and the data router for conversion of the light signal to electrical signal. Additionally the isolator proves an additional layer of safety because of the dielectric quality of the second isolator.
The high speed, high frequency signal is then delivered, over the LV power line to the end user's residence or place of business. A power line interface device (PLID) serves as the gateway between the end user's various data appliances and local area network (LAN) and the high speed data transport.
Referring to
The present invention may be implemented in a high voltage and medium voltage PDS environment. For purposes of this description and subsequent claims, the high and medium voltage portion of the PDS is described as “primary” voltage (PV). The low voltage portion of the system is described alternatively as LV or “secondary” voltage (SV). These terms are arbitrary but used to improve clarity of the description. Similarly, the side of a transfer where the PV line enters is called the “primary” side. The SV side of the transformer is referred to as the “secondary” side of the transformer.
A sub-station 10 delivers PV power to a half loop distribution point, pole dip 12. The power is delivered in parallel to multiple transformers 20 over a PV power line 14. After the transformer is stepped down to a SV power (in the range of 100 to 240 VAC), several end user premises 26 are serviced via a SV power line 24. The step down transformer 20 grounds high frequency signals for safety purposes. Since a high data transfer (high bandwidth) power line communication delivery system requires a high frequency signal carrier, an object of the present invention is to avoid the removal of the high frequency signal by the transformer 20. It is noted that the PV power lines 14 may be above ground or subterranean. The transformers 20 may be aerial mounted on a pole or pad mounted on the ground.
Referring to
The PDS is viewed as having three channels: PV power line; SV power line; and the premise's wiring. The first channel (the PV cable) has the least amount of noise and least amount of reflections. This channel has the highest potential bandwidth for communications. This is important because it is the channel that concentrates all of the bandwidth from the other channels. The type of signal used on this channel can be almost any signal used in communications (CDMA, TDMA, FDM, OFDM to name a few). A wideband signal such as CDMA that is relatively flat in the spectral domain is preferred to minimize radiated interference to other systems while delivering high data rates.
The second channel (SV line from the transformer to the premise) and third channel (premise wiring) have noise present from electrical appliances and reflections due to the “web” of wires. These channels can support a lower bandwidth than the PV channel and they need a more intelligent (with more overhead) modulation schemes. There are several companies with chip sets to achieve good communications for local area networks (LANs) such as: Adaptive Networks (Newton, Mass.), Inari (Draper, Utah), Intellion (Ocala, Fla.), DS2 (Valencia, Spain) and Itran (Beer-Sheva, Israel). These devices would work well for the SV and premise channels.
Data signal and power are carried over the PV power line 14 as previously stated. A power line bridge 46 (PLB) allows the data signal to bypass the transformer 20 thus avoiding the grounding of the high frequency data signal. More description of the PLB follows in the
In one embodiment of the present invention, the signal is carried through the premise's wiring and is available to various digital appliances 29, 30, including PC's, by a power line interface device 28 (PLID). The PLID 28 plugs into a standard electrical socket and allows the digital appliance to send and receive digital data. An alternative embodiment as described later, uses a communications interface located outside of the premise and the data signal is directly fed to the premise.
Referring next to
A backhaul interface 50 allows direct communication with POP 40. The signal is passed through a signal modem 52 (PV modem). An isolator 54 is used to prevent electric current from flowing between the PDS and the components leading to the POP 40. The isolator 54 is made from dielectric material. The isolator, in a preferred embodiment of the present invention, is a fiber optic light pipe. More description of the isolator and its components occurs in the description referring to
The isolator 54 bridges between the PV modem 52 and a power line coupler 56 (PLC). The PV modem 52 within the AP 44 conditions the signal for transmission over the PV power line 14. When data is transmitted by the end user and is de-coupled off of the PV power line, the PV modem 52 conditions the signal for transmission back to the POP 40.
In one embodiment of the present invention the PLC 56 comprises, along with other components, an inductor having a toroid (donut-like) shaped core. The toroid core has permeability qualities to maximize signal to noise ratio. More description of a preferred embodiment for the PLC is presented below. The inductor component couples and de-couples a high frequency signal to and from the power line without invading the power line. Once the data signal has been coupled to the PVpower line, it is transported on the PV power line 14.
Referring to
An isolator is present between the PLB end couplers 60,72 and the interior of the PLB 46. The isolators, a PV isolator 62 and a SV isolator 70, are composed of dielectric material and insulate the balance of the PLB from potential electrical damage and user injury. A preferred embodiment of the isolator uses fiber optic material. The isolator will be discussed in more detail below.
A PV modem 64 modulates and de-modulates the signal to and from the PV isolator. The PV modem conditions the high frequency signals for transmission over the PV power line 14. The SV modem 68 conditions the signal for communication over a SV power line. In one embodiment of the present invention, a data router 66 is between the SV modem 68 and the PV modem 64. The function of the data router 66 is to prioritize and gather packets from all of the devices on SV power line side PV power line side. The data router 66 provides data packet management of end user transmission.
The signal (going to the end user) is coupled onto the SV power line by the SV coupler 72. The SV power line 24 delivers the power service to an end user premise 26. A “web” of wires distributes power and signal within the premise. The user draws power on demand by plugging an appliance into a power outlet. In a similar manner, the user may use a power line interface device 28 (PLID) to digitally connect data appliances to receive and send data signals carried by the power wiring.
A PLID 28 can have a variety of interfaces to the subscriber's equipment 29, 30. Some examples are RJ-11 Plain Old Telephone Service (POTS), RS-232, USB, and 10 Base-T. A subscriber can have multiple PLIDs 28 on the same internal wiring.
Referring to
Referring to
The toroid has direct electrical connection to the signal conditioning electronics used for transmitting and receiving the data signal. Transmit and receive circuitry 110 carries data signal to signal conditioning electronic components. As depicted in
The design of the transmit side is done to maximize the power of the drive signal in order to keep the signal to noise ratio of the coupled signal at least to the level acceptable for the overall communications system. The receive side contains a low noise amplifier designed to handle the lowest acceptable transmit signal level of the system. At a system level, the modulation and signaling scheme is done to minimize interference between transmit and receive signals.
The signal conditioning circuitry is connected to the fiber optics interface via an electro-optical transducer 116, such as laser diodes. The transducer converts an electrical signal to a light signal in the receive circuitry 114. The transducer converts light signals to electrical signals in the transmit circuitry 112. The light signal is transmitted to and from a light pipe 130 to a fiber-optic isolator 120 (fiber optic line or cable). The data signals are communicated back and forth between the PLC 100 and the Communications Interface 140 via a fiber optic line 120. The Fiber Optic Isolator breaks any electrical path between the two devices and provides the inherent safety required by the power distributors.
With the PLC being a “closed” system, power for the electronics must be derived internally. Although batteries may be an option, replacement would be costly and impractical. As a result, the PLC contains a power draw toroid 106 having magnetic characteristics appropriate for coupling 60 Hz signals that will inductively draw some of the 60 Hz signal off of the power line charging a power supply 118 component. The power supply 118 powers the PLC electronics.
For additional safety, the PLC housing 102 is constructed with high dielectric, corrosive resistant materials and is designed to significantly reduce any possible exposure to the high voltage potential present on the power line. The fiber optic isolator 120 and light pipe 130 is the only connection between the PLC 100 and the communications interface 140. Further, the light pipe 130 is encased in the insulated housing 102. The housing's 102 first priority is to protect exposure to the high voltage potential. It is also designed to ensure proper operation under extreme environmental conditions.
In another embodiment of the present invention, a “hinged” toroid design allows for easy installation and minimal impact to customer service. The toroid simply snaps around the power line using existing utility tools and techniques.
The communications interface 140 communicates with the PLC 100 via the fiber optic isolator 120. Received signals are separated into digital data signals and any other communication signal that may be carried by the PV power line.
The description of one embodiment of the present invention for the PLB 46 providing a means for converting light signals received via a PV isolator to coupled digital data signals as delivered to a premise over SV power line has been offered above. The communications interface implements the coupling and de-coupling of digital data signal on and off the SV power line in a similar fashion.
A system as disclosed herein is useful to provide data services to the residential market place at 10 Mbps. This makes an entire new range of applications practically available. Each device that is connected to the power would (if desired) have an address and would be accessible remotely. Some examples include remote utility meter reading, Internet Protocol (IP)-based stereo systems, IP-based video delivery systems, and IP telephony, although these are not meant as limitations.
The present invention has been described in terms of preferred embodiments, however, it will be appreciated that various modifications and improvements may be made to the described embodiments without departing from the scope of the invention.
This application is a divisional of U.S. patent application Ser. No. 09/915,459, filed Jul. 26, 2001, now abandoned which claims priority under 35 U.S.C. § 119(e) from provisional application No. 60/268,519, filed Feb. 14, 2001, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2577731 | Berger | Dec 1951 | A |
3656112 | Paull | Apr 1972 | A |
3810096 | Kabat et al. | May 1974 | A |
3911415 | Whyte | Oct 1975 | A |
3942168 | Whyte | Mar 1976 | A |
3942170 | Whyte | Mar 1976 | A |
3944723 | Fong | Mar 1976 | A |
3967264 | Whyte et al. | Jun 1976 | A |
3973087 | Fong | Aug 1976 | A |
3973240 | Fong | Aug 1976 | A |
4004110 | Whyte | Jan 1977 | A |
4012733 | Whyte | Mar 1977 | A |
4057793 | Johnson et al. | Nov 1977 | A |
4060735 | Pascucci et al. | Nov 1977 | A |
4250489 | Dudash et al. | Feb 1981 | A |
4263549 | Toppeto | Apr 1981 | A |
4357598 | Melvin, Jr. | Nov 1982 | A |
4408186 | Howell | Oct 1983 | A |
4433284 | Perkins | Feb 1984 | A |
4473816 | Perkins | Sep 1984 | A |
4473817 | Perkins | Sep 1984 | A |
4475209 | Udren | Oct 1984 | A |
4569045 | Schieble et al. | Feb 1986 | A |
4599598 | Komoda et al. | Jul 1986 | A |
4638298 | Spiro | Jan 1987 | A |
4642607 | Strom et al. | Feb 1987 | A |
4675648 | Roth et al. | Jun 1987 | A |
4686382 | Shuey | Aug 1987 | A |
4701945 | Pedigo | Oct 1987 | A |
5272462 | Teyssandier et al. | Dec 1993 | A |
5481249 | Sato | Jan 1996 | A |
5559377 | Abraham | Sep 1996 | A |
5625863 | Abraham | Apr 1997 | A |
5684450 | Brown | Nov 1997 | A |
5717685 | Abraham | Feb 1998 | A |
5726980 | Rickard | Mar 1998 | A |
5777769 | Coutinho | Jul 1998 | A |
5818821 | Schurig | Oct 1998 | A |
5856776 | Armstrong et al. | Jan 1999 | A |
5870016 | Shrestha | Feb 1999 | A |
5929750 | Brown | Jul 1999 | A |
5933071 | Brown | Aug 1999 | A |
5937342 | Kline | Aug 1999 | A |
5949327 | Brown | Sep 1999 | A |
5952914 | Wynn | Sep 1999 | A |
5977650 | Rickard et al. | Nov 1999 | A |
5978371 | Mason, Jr. et al. | Nov 1999 | A |
5994998 | Fisher et al. | Nov 1999 | A |
6014386 | Abraham | Jan 2000 | A |
6034964 | Fukushima et al. | Mar 2000 | A |
6040759 | Sanderson | Mar 2000 | A |
6091709 | Harrison et al. | Jul 2000 | A |
6130896 | Lueker et al. | Oct 2000 | A |
6140911 | Fisher et al. | Oct 2000 | A |
6144292 | Brown | Nov 2000 | A |
6151480 | Fischer et al. | Nov 2000 | A |
6157292 | Piercy et al. | Dec 2000 | A |
6160795 | Hosemann | Dec 2000 | A |
6172597 | Brown | Jan 2001 | B1 |
6175860 | Gaucher | Jan 2001 | B1 |
6243413 | Beukema | Jun 2001 | B1 |
6243571 | Bullock et al. | Jun 2001 | B1 |
6275144 | Rumbaugh | Aug 2001 | B1 |
6282405 | Brown | Aug 2001 | B1 |
6300881 | Yee et al. | Oct 2001 | B1 |
6304578 | Fluss | Oct 2001 | B1 |
6331814 | Albano et al. | Dec 2001 | B1 |
6373377 | Sacca et al. | Apr 2002 | B1 |
6396392 | Abraham | May 2002 | B1 |
6407987 | Abraham | Jun 2002 | B1 |
6441723 | Mansfield, Jr. et al. | Aug 2002 | B1 |
6449646 | Sikora et al. | Sep 2002 | B1 |
6452482 | Cern | Sep 2002 | B1 |
6463068 | Lin et al. | Oct 2002 | B1 |
6480510 | Binder | Nov 2002 | B1 |
6526581 | Edson | Feb 2003 | B1 |
6590867 | Ash et al. | Jul 2003 | B1 |
6624532 | Davidow et al. | Sep 2003 | B1 |
6628609 | Chapman et al. | Sep 2003 | B2 |
6646447 | Cern et al. | Nov 2003 | B2 |
6668058 | Grimes | Dec 2003 | B2 |
6748435 | Wang et al. | Jun 2004 | B1 |
6798743 | Ma et al. | Sep 2004 | B1 |
6842459 | Binder | Jan 2005 | B1 |
6844809 | Manis et al. | Jan 2005 | B2 |
6922135 | Abraham | Jul 2005 | B2 |
6933835 | Kline | Aug 2005 | B2 |
6950567 | Kline | Sep 2005 | B2 |
6958680 | Kline | Oct 2005 | B2 |
6965302 | Mollenkopf et al. | Nov 2005 | B2 |
6965303 | Mollenkopf | Nov 2005 | B2 |
6980090 | Mollenkopf | Dec 2005 | B2 |
6980091 | White et al. | Dec 2005 | B2 |
6985714 | Akiyama et al. | Jan 2006 | B2 |
6998962 | Cope et al. | Feb 2006 | B2 |
7042351 | Kline | May 2006 | B2 |
7046882 | Kline | May 2006 | B2 |
20010054953 | Kline | Dec 2001 | A1 |
20020002040 | Kline et al. | Jan 2002 | A1 |
20020027496 | Cern | Mar 2002 | A1 |
20020097953 | Kline | Jul 2002 | A1 |
20020105413 | Cern et al. | Aug 2002 | A1 |
20020109585 | Sanderson | Aug 2002 | A1 |
20020110310 | Kline | Aug 2002 | A1 |
20020110311 | Kline | Aug 2002 | A1 |
20020118101 | Kline | Aug 2002 | A1 |
20020121963 | Kline | Sep 2002 | A1 |
20020154000 | Kline | Oct 2002 | A1 |
20030039257 | Manis | Feb 2003 | A1 |
20030054793 | Manis et al. | Mar 2003 | A1 |
20030129978 | Akiyama et al. | Jul 2003 | A1 |
20030133420 | Haddad | Jul 2003 | A1 |
20030160684 | Cern | Aug 2003 | A1 |
20030169155 | Mollenkopf et al. | Sep 2003 | A1 |
20030224784 | Hunt et al. | Dec 2003 | A1 |
20030227373 | Lou et al. | Dec 2003 | A1 |
20040047335 | Proctor et al. | Mar 2004 | A1 |
20040056734 | Davidow | Mar 2004 | A1 |
20040067745 | Belsak | Apr 2004 | A1 |
20040083066 | Hayes et al. | Apr 2004 | A1 |
20040110483 | Mollenkopf | Jun 2004 | A1 |
20040113756 | Mollenkopf | Jun 2004 | A1 |
20040113757 | White, II et al. | Jun 2004 | A1 |
20040135676 | Berkman et al. | Jul 2004 | A1 |
20040157551 | Gainey et al. | Aug 2004 | A1 |
20040198453 | Cutrer et al. | Oct 2004 | A1 |
20040223470 | Smith | Nov 2004 | A1 |
20040223617 | Corcoran et al. | Nov 2004 | A1 |
20040227621 | Cope et al. | Nov 2004 | A1 |
20040227622 | Giannini et al. | Nov 2004 | A1 |
20040242185 | Lee | Dec 2004 | A1 |
20050068223 | Vavik | Mar 2005 | A1 |
20050076149 | McKown | Apr 2005 | A1 |
20050085259 | Conner et al. | Apr 2005 | A1 |
20050128057 | Mansfield et al. | Jun 2005 | A1 |
20050164666 | Lang et al. | Jul 2005 | A1 |
20050226200 | Askildsen et al. | Oct 2005 | A1 |
20050249245 | Hazani et al. | Nov 2005 | A1 |
20050285720 | Cope et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
197 28 270 | Jan 1999 | DE |
100 61 584 | Jun 2002 | DE |
100 61 586 | Jun 2002 | DE |
0 470 185 | Nov 1995 | EP |
0 913 955 | May 1999 | EP |
1 217 760 | Jun 2002 | EP |
1 251 646 | Oct 2002 | EP |
2 293 950 | Apr 1996 | GB |
1276933 | Nov 1989 | JP |
9013950 | Nov 1990 | WO |
9529536 | Nov 1995 | WO |
9840980 | Nov 1995 | WO |
9959261 | Nov 1999 | WO |
WO-0108321 | Feb 2001 | WO |
02054605 | Jul 2002 | WO |
02065684 | Aug 2002 | WO |
0330396 | Apr 2003 | WO |
03039022 | May 2003 | WO |
04102868 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040246107 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60268519 | Feb 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09915459 | Jul 2001 | US |
Child | 10884564 | US |