The following description relates generally to control of light intensity, and in particular to light intensity control using pulses of fixed duration and frequency.
The control of the intensity of light emitting diodes (LEDs) in an LED display screen is crucial to overall performance of the screen. For example, screen contrast is the ratio between the brightest possible output of the display LEDs divided by the minimum brightness. In order to maximize the contrast ratio and provide the best black and/or deep colors, it is important to minimize and/or substantially eliminate the electrical current that flows through the LEDs when an LED array should be in the OFF state. However, typical LED display screens often have some current flow through the LEDs in the OFF state thereby decreasing overall contrast of the screen. In addition, due to the high density of electronics in a large display board and the relatively high current levels using in switching all the LEDs in such a display, pick up noise may be present in the control lines of the power switches. The undesired noise results in unwanted current flow through the LEDs and also decreases contrast.
In one general aspect, the use of a switched preconditioner at the power input end of a light source effectively drops the voltage of the source to zero volts whenever the light source is required to be in the OFF state thereby eliminating the problem of unwanted current through the LED arrays.
In one general aspect a system includes a first power potential supplying a voltage; a second power potential; a light source have a power supply side and a power return side; a power node connected to the power supply side of the light source; a current switch connected between the power return side of the light source and the second potential, the current switch including an input to receive a current switch control signal to place the switch in one of an ON state and an OFF state allowing current to flow through the current switch in the ON state; and a preconditioner circuit connected to the first power potential and the power node, the precondtioner circuit including an input to receive a preconditioner control signal to place the preconditioner circuit in one of an ON state and an OFF state, wherein the preconditioner circuit supplies the voltage to the power node in its ON state and effectively eliminates the voltage to the power node in its OFF state.
The precondition circuit may include a preconditioner connected between the first potential and the power node and a bleed path connected between the power node and the second potential. In one example, the preconditioner is a field effect transistor having a gate to receive the precoditioner control signal. In another example, the bleed path has a first impedance and the current switch has a second impedance in the OFF state that is greater than the first impedance.
The preconditioner control signal includes a pulse having a longer duration than a corresponding pulse of the current control single and is timed to pulse high before the current control signal pulses high and is timed to pulse low after the current control signal pulses low.
The system may further include a processing device to generate the current switch control signal and the preconditioner control signal.
The light source may be a light emitting diode or an array of light emitting diodes. The light source also may be a light emitting diode of a display device.
In another general aspect, a preconditioner circuit for use in a lighting circuit includes a first power potential supplying a voltage, a second power potential, a light source have a power supply side and a power return side, a power node connected to the power supply side of the light source, and a current switch connected between the power return side of the light source and the second potential, the current switch including an input to receive a current switch control signal to place the switch in one of an ON state and an OFF state allowing current to flow through the current switch in the ON state, and the precondition device includes: a terminal connected to the first power potential; a terminal connected to the power node, and an input to receive a preconditioner control signal to place the preconditioner circuit in one of an ON state and an OFF state, wherein the preconditioner circuit supplies the voltage to the power node in its ON state and effectively eliminates the voltage to the power node in its OFF state.
The preconditioner may further include a bleed path connected between the power node and the second potential to shunt all power supplied to the power node when the precondition circuit input receives a signal to place the preconditioner circuit in the OFF state. The bleed path may have a first impedance that is less than an impedance of the current switch when the current switch is in the OFF state.
The wherein the preconditioner control signal includes a pulse having a longer duration than a corresponding pulse of the current control single and is timed to pulse high before the current control signal pulses high and is timed to pulse low after the current control signal pulses low.
The precondition control signal may be received from a processing device.
Other features will be apparent from the description, the drawings, and the claims.
Like reference symbols in the various drawings indicate like elements.
The following description provides a circuit for improved performance and control of a light source, such as, for example, a light emitting diode (LED) and LED arrays. As described below, residual quiescent current and pick up noise current are eliminated and/or substantially reduced when the light source is in the OFF state. Conventional control of the electronic current through a light source is susceptible to both a leakage current and noise generated currents when the light source should be in the OFF state (with zero current flowing through the light source). According to the following description, a preconditioner circuit substantially eliminates and/or greatly reduces the influence of these undesired currents. The preconditioner circuit may be used with an light source; however, it is particularly applicable to LED video display screens and general LED illumination to improve the performance of the LED(s) when placed in the OFF state.
The light source 120 may be implemented by any configuration of LEDs to provide illumination or a display. In the example shown in
The light source 120 is connected to the second potential by the current switch 125. The current switch 125 determines when the electrical current flows through the light source 120 or in this case the LED array. The current switch 125 includes an input 135 for a current control signal that may be used to trigger an ON or an OFF state of the current switch 125. When the control signal 135 triggers an ON state, current flows from the light source 120 to the second potential 110. The current control signal may be generated by a processing device (not shown). The processing device may be implemented using, for example, a processor, an ASIC, a digital signal processor, a microcomputer, a central processing unit, a programmable logic/gate array to generate, among other things, the current control signal. The processing device also may include associated memory. The processing device may implement a digital counter to generate pulses of a particular duration and timing on inputs 135 to control the intensity of the light emitted by the source 120.
By providing a return path for the electrical connection of the LED array to ground, current flows through the array, and the LEDs light while in the ON state. If there is no connection or return path, then no current should flow, and the LED(s) should be in the OFF state. The current switch 125 provides or breaks the connection to allow flow of current by placing or removing a high impedance on the return path. It is noted that, if the ON state were continuously maintained, the maximum possible current would flow through the LED(s). As a result, the LED array would heat to the point of destroying the circuit 100. Therefore, the current switch 125 is placed in the ON state only for short periods of time followed by the OFF state to allow for cooling. The maximum average current that may be supplied to the LED array is set by the LED manufacturer's specification.
The average current supplied to the LEDs is controlled by providing current control pulses to place the current switch 125 in a corresponding ON or OFF state. There are several approaches to provide control pulses, such as, for example, Pulse Width Modulation (PWM), frequency modulation, and Fixed Frequency/Fixed Duration FF/FD. PWM, also referred to as a pulsed duty cycle, generally requires that the width or duration of a pulse is varied in length to control the current supplied to a light source. Typically, the longer the pulse duration, the longer the current flows through the light source, the greater the average current flows through the circuit, and the brighter the LED light radiation or intensity is. Frequency control varies the frequency of the control pulses. A higher frequency provides more pulses, a greater average current, and a brighter intensity. The FF/FD control process provides a short burst of constant duration pulses at a fixed frequency. According to the FF/FD process, the higher number of pulses per burst means the greater the average current, and hence the brighter the LED. Further description of the FF/FD process is described in concurrently filed U.S. patent application Ser. No. 11/882,323 filed on Jul. 31, 2007 titled “Control of Light Intensity Using Pulses of a Fixed Duration and Frequency,” which is hereby incorporated by reference in its entirety for all purposes.
Although the current switch 125 provides a high impedance on the return path in the OFF state, it does not switch off completely when placed in the OFF state. For example, when the current switch 125 is placed in the OFF state by a low level of the current control pulse, some residual current leakage occurs through the current switch 125.
As shown, when the current switch 125 is initially place in the ON state, there is a delay as the induction of the electronic path through the power lines, LED array, and current switch 125 causes a ramp up of current flow. In addition, the power line source 105 is initially unloaded and is at its highest value. As a result, there is an excess flow of current as the inherent capacitance of the circuitry discharges. The current flow then experiences some ringing before the current waveform settles to a constant level. When the waveform is in the high state, the maximum current does occur but with considerable ringing.
When the waveform is in the low state, a zero flow of current is desired. However, the current switch 125 allows some current to leak even when the switch 125 is placed in the OFF state. The quiescent current 215 is higher than the desired ideal zero current level 217. Since the maximum contrast ratio of an LED screen is greatly dependant on the ratio of the maximum current divided by the minimum current, any decrease in the minimum current during the OFF state provides a better maximum contrast ratio.
The circuit of
The preconditioner circuit also includes the bleed path 310 providing an electrical connection from a node 320 (e.g., between the preconditioner 301 and the anode side of the LED array). The bleed path 310 pulls the node 320 to zero volts (or ground) whenever the preconditioner 310 is placed in the OFF state. The bleed path 310 may include a high value resistor or a slightly reactive circuit to maximize settling time between the start of the preconditioner control pulse to the high level state (i.e., preconditioner ON state) and the start of the current control pulse to the high level (current switch ON state). The resistance of the bleed path 310 should be less than the resistance of the current switch 125 in its OFF state to allow the path to bring node 320 to nearly zero volts when the preconditioner is in the OFF state.
The preconditioner 301 isolates the power bus or first potential 105 from the light source 120. By isolating the power bus 105 from the light source 120, the input voltage to the LED array of the light source 120 may be switched from full V+ voltage to nearly zero volts. When the preconditioner 301 is set to the OFF state by a low level of the preconditioner control pulse to input 315, the light source 120 is isolated from the first potential 105, and any current that leaks through the preconditioner 301 is shunted to ground by the current bleed path 310. As a result, when the preconditioner control pulse input to the preconditioner 301 is at a low level, the voltage at node 320 becomes nearly zero volts. Therefore, the current flow through light source 120 is substantially zero during the OFF state of the current switch 125 thereby eliminating the quiescent current level and any current spikes due to noise on input 135.
Conversely, when the preconditioner control pulse is at high level, the preconditioner 301 conducts current and the node 320 rises to V+ volts of the first potential 105. Once node 320 is placed at the high potential and the current switch 125 is place in the ON state, maximum current flow is provided to the LED array of light source 120 (as the impedance through the current switch 125 is substantially less than the impedance of the bleed path.
By comparing
The control signal waveform 410 used to control the preconditioner 301 is longer in duration and encapsulates the current control waveform 401. As a result, the V+ voltage is applied to the LED array with the voltage waveform 420. Since the preconditioner waveform 420 is longer in duration and encapsulates both ends of the current control pulse (i.e. both the rising and falling edges of the current control pulse), the preconditioner waveform 420 does not interfere with the maximum current flow state of the current switch 125. By beginning slightly before the leading edge (e.g., on the order of a few nanoseconds), the preconditioner 301 ensures that the V+ voltage stabilizes prior to the transition of the current switch 125 to the ON state. Similarly, by ending a bit later (e.g., on the order of a few nanoseconds) than the trailing edge of the current control pulse, the preconditioner 301 does not interfere with the timing of the current control pulse. The preconditioner waveform 420 does limit the quiescent current level 445 to a very short duration thereby minimizing the overall minimum current level. In addition, the current waveform 430 does not experience any current spikes 225.
As mentioned above, pulse control techniques used to switch the LEDs using timed pulses of ON time are interspersed with periods of OFF time. However, when an LED is switched into the OFF state, some quiescent current still flows due to leakage of the current switch. This undesired quiescent current increases with temperature. As a result, as heat builds up in the light source, such as a display, and the LEDs of the display experience an even higher level of quiescent current. In addition, due to the density of electronics in display boards, the control pulse lines may pick up noise from the switching of adjacent electronics, such as other LED arrays (i.e., other pixels) resulting in spurious pulses of unwanted current through the LEDs.
Inserting a preconditioner circuit between the first potential (e.g., the power supply or the voltage rail) and the power supply or anode side of the LED array provides power to the LED array only when a current flow is required. The preconditioner circuit effectively drops the power supply voltage to zero volts when the LED current is desired to be zero. As a result of providing a zero voltage on the power supply side, there is no leakage of current through the power switch when in the switch is placed in off condition. In addition, any current flow previously associated with noise of adjacent circuits during the OFF periods of the switch is effectively eliminated. Therefore, the description provided herein, drastically reduces the leakage or quiescent current and prevents pickup noise on the current control line providing a higher maximum contrast ratio. The preconditioner circuit also ensures that the initial starting conditions are identical for each control pulse. This results in nearly full linear accuracy for control of the intensity of the light source using the FD/FF control process.
A number of exemplary implementations and examples have been described. Nevertheless, it will be understood that various modifications may be made. For example, suitable results may be achieved if the operations of described techniques are performed in a different order and/or if components in a described system, architecture, device, or circuit are combined in a different manner and/or replaced or supplemented by other components. Accordingly, the above described examples and implementations are illustrative and other implementations not described are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4001667 | Bober | Jan 1977 | A |
5034757 | Godlove | Jul 1991 | A |
5164329 | Moyer et al. | Nov 1992 | A |
5166702 | Mattern et al. | Nov 1992 | A |
5444531 | Foreman et al. | Aug 1995 | A |
5701133 | Miller et al. | Dec 1997 | A |
5859592 | Carlin | Jan 1999 | A |
6160354 | Ruvinskiy | Dec 2000 | A |
6262440 | Haberern et al. | Jul 2001 | B1 |
6489728 | Guthrie et al. | Dec 2002 | B2 |
6529182 | Burton | Mar 2003 | B1 |
6600274 | Hughes | Jul 2003 | B1 |
6614056 | Tarsa et al. | Sep 2003 | B1 |
6621235 | Chang | Sep 2003 | B2 |
6795321 | Balakrishnan et al. | Sep 2004 | B2 |
6798152 | Rooke et al. | Sep 2004 | B2 |
6885036 | Tarsa et al. | Apr 2005 | B2 |
7005914 | Balakrishnan et al. | Feb 2006 | B2 |
7038594 | Voreis et al. | May 2006 | B2 |
7119498 | Baldwin et al. | Oct 2006 | B2 |
7190215 | Balakrishnan et al. | Mar 2007 | B2 |