Power line telephony exchange

Information

  • Patent Grant
  • RE40492
  • Patent Number
    RE40,492
  • Date Filed
    Thursday, June 30, 2005
    19 years ago
  • Date Issued
    Tuesday, September 9, 2008
    16 years ago
  • US Classifications
    Field of Search
    • US
    • 379 322-324
    • 379 333000
    • 370 352000
    • 370 422000
    • 340 310010
    • 340 425100
    • 340 425200
    • 375 222000
  • International Classifications
    • H04M3/00
    • H04M5/00
    • H04M7/00
Abstract
Method steps and component combinations for establishing a telephony exchange, with benefits of hardwiring, free of a requirement for first installing telephone copper wire service to a concentration of electric power consumers. An operations center for the telephony exchange provides worldwide access by means of a public-switched telephone network and an Internet service provider. Communications received are converted to packetized data signals which are routed for sorting at a transformer service unit (TSU) for electrical power-line transfer with the output of a local transformer. The consumer voltage level transformer output is reactance coupled by the transformer service unit (TSU) to transfer packetized data signals, with transformer output electrical power to a plurality of subscriber service units (SSU's) served by the TSU. Each SSU sorts packetized data signals for an individual subscriber, selectively providing for plain old telephone service, digital phone service, and worldwide Internet service.
Description
INTRODUCTION

This invention relates to methods and apparatus for establishing a telephony exchange for multiple potential users within a designated area, free of a requirement for first installing a hardwired telephone line, cable, fiberoptic or other physical connection, for such users. More particularly, this invention is concerned with utilization of an electrical power grid, for a concentration of electrical power consumers, and use of existing consumer power lines to provide for worldwide voice and data telephony exchange.


OBJECTS OF THE INVENTION

A primary objective is providing hardwired voice and digital data communication, for potential telephony exchange subscribers, where no such service previously existed, free of a requirement to first install a hardwired telephone line to such users.


A related object is to provide receiving and sending capabilities for both voice and digital data to subscribers of a telephony exchange, established free of a requirement to first install telephone copper wire, or other dedicated physical carrier, extending to each such subscriber.


Another objective is to provide the advantages of a hardwired telephony exchange for local subscribers, free of a long-established prerequisite to install a new physical telephone linkage to such subscribers.


A specific objective is to enable use of existing electrical power lines to premises of consumers as a physical linkage for providing both voice and digital data services for potential consumer subscribers.


A further object is to adapt electronic technology for sorting voice and data, for controlling priority of voice and digital data transfers, for encoding packetized data signals for delivery to individual telephone exchange subscribers, and for enabling use of existing electrical power lines to consumer premises for sending and receiving such communications.


The above and other objects, contributions and advantages of the invention are described in more detail with references to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic general-arrangement of a power-line telephony exchange for describing the invention;



FIG. 2 is a schematic presentation of a power-line telephony exchange layout pattern for describing distribution of telephony exchange services of the invention to a plurality of subscribers concentrated within such pattern;



FIG. 3 is a diagrammatic presentation of components as combined for coaction with a local transformer enabling use of a consumer electrical power line to provide telephony exchange services to a plurality of subscribers, and for describing functions of those components in the power-line telephony exchange of the invention; and



FIG. 4 is a diagrammatic presentation of components, as combined for providing selective communication services to an electrical power consumer telephony exchange subscriber, for describing functions of those components in the power-line telephony exchange of the invention.





DETAILED DESCRIPTION

Needs persist worldwide for hardwired telephony exchange service in areas of advanced industrialized nations and advancing industrialized nations. Problems which have avoided resolution in fulfilling those needs have been found to be at least partially due to longstanding construction practices in certain areas which, previously, made installing a hardwired telephony exchange difficult and costly, while other developing telecommunication technologies confront serious difficulties in such areas.


Hardwired voice and digital data services are also lacking within industrial sites, and in other multiple user complexes in the above-mentioned areas. Present concepts not only make hardwired telephony exchange available in such areas but, also, cost effective.


Telephony exchange methods combined with electrical and electronic technologies by the invention enable safe adaptation of existing electrical power grid structures for a concentration of electrical power consumers, for power-line telephony exchange services, including voice and digital data. The physical linkage telephony exchange provided by present teachings eliminates an initial requirement to install a new physical linkage to premises of potential telephony subscribers. Solid-state and electrical technologies, combined as taught herein, enable utilizing existing electrical power lines: (i) to control digital signal exchange, (ii) to provide for routing packetized voice communications, (iii) to provide access to the World Wide Web, and (iv) to provide for routing digital data.


In the general-arrangement view of FIG. 1, incoming communications are converted at operations center 10 into packetized data signals (also referred to as packets) for transfer by carrier line 12. The latter can take the form of an E-1 carrier as used in Europe and elsewhere, or a T-1 carrier as used in North America. Such packets include header information for routing purposes.


Electrical power is provided by a public utility substation 14 over power line 16 at a voltage level, prior to transforming, which is greater than that used at premises of most electrical power consumers. A local power transformer 18 transforms the higher voltage level of line 16 to a consumer voltage level. Transformer 18 which provides consumer electrical power is reactance coupled with transformer service unit 19. Transformer service units (TSU's) are shown schematically in FIG. 2 and a TSU is described in more detail in relation to FIG. 3, including reactance coupling to a respective transformer for power-line telephony purposes.


Power line 16 and carrier line 12 (FIG. 1) are separate, but can be coextensive in reaching a selected location for the above-mentioned coupling. Carrier line 12 extends to transformer service unit (TSU) 19 and power line 16 extends to transformer 18 in FIG. 1, as depicted schematically in FIG. 1 and shown in more detail in FIG. 3 in which transformer 18 and TSU 19 are reactance coupled.


As a result of such reactance coupling, line 20 of FIG. 1 carries both electrical power at consumer voltage level and packetized data signals to subscriber service units of loop 22. As shown schematically in FIG. 2, each such combination of a transformer and a TSU serves a plurality of telephony exchange subscribers; an individual subscriber service unit is shown by, and described in more detail in relation to, FIG. 4.



FIG. 2 presents a more detailed layout with telephony exchange operations center 10 providing worldwide access by means of public-switched telephone network (PSTN) 24, and with Internet service provider (ISP) access at 26. Gateway 28 processes digital telephone signals, forming packetized data packets at about a ten-to-one reduction ratio, which increases capacity and efficiency.


Gatekeeper 29 selects the optimum traffic path for such packets to respective end-user subscribers by initially making a sorting selection, based on the header information of a packet. Router 30 sorts, based on that header information, with router output to a selected carrier from those designated “A” through “J” in FIG. 2.


The power-line telephony exchange embodiment partially shown schematically in FIG. 2 is laid out to be capable of serving ten thousand (10,000) potential telephony subscribers. Each of the potential router selections (A through J) is laid out to include ten transformer service units (TSU's) located along the direction indicated by arrow 32. Each such TSU is powered by its respective power transformer; such transformers are disposed along a direction indicated by arrow 33, with one such transformer being positioned for its respective TSU.


Ten transformers and ten TSU's exist along schematically represented telephony exchange paths, A through J of FIG. 2, providing a system of one hundred (100) individual local transformers and one hundred (100) transformer service units.


One or more electrical power substations, such as 34 in FIG. 2, can be used. A power station directs power at a higher voltage level, to an individual local transformer, than is used within the premises of electrical consumers of a local transformer; and, each respective local transformer provides electrical power at a consumer voltage level to multiple subscribers, such as represented by loop 35 in FIG. 2, with each subscriber having a subscriber service unit, as shown in FIG. 4.


Centrally-located villages or groupings of residences, which have electrical power service but no central hardwired telephone service, utilize the embodiment shown schematically in FIG. 2. However, the numerical size for a power-line telephony exchange of the invention is also adaptable, for example, to use within an industrial site, where electrical power lines can extend to a lesser number, such as one thousand (1000) work stations and/or offices. Communication can be readily coordinated by the telephony exchange of the invention, and can extend to an existing power outlet at each such location; and that can be accomplished free of a requirement to first install a new telephone line to each such location. Voice phone and/or personal computer services can be made available at each such location, in accordance with present teachings.


One criterion for determining a limitation, if any, for a single telephony exchange of the invention is a time-lag factor (latency) of the exchange, which is dependent on the number of transactions in the exchange; a nominal delay of fifty (50) milliseconds has been selected for achieving optimum communications for a single telephony exchange of the invention.


As taught herein, differing electrical power substations can serve local transformers for electric power consumers within a single power-line telephony exchange. The preferred location for is within about a half-mile radius of each transformer/transformer service unit; that radius is selected for purposes of maintaining desired signal strength, without relying on supplementary transponders/repeaters.


Referring to the combination of FIG. 2, certain individual components of such exchange can be ordered for manufacture commercially to specifications determined by the size of the telephony exchange, as follows:












TABLE I







COMPONENT
MANUFACTURER









Gateway Switch 28
Nuera




San Diego, CA 92121



Gatekeeper 29
Nuera




San Diego, CA 92121



Router 30
CISCO Systems, Inc.




San Jose, CA 95134










Also, as taught herein, in the event a “right-of-way” is not available for an E-1 or T-1 packetized data line between in-line sequential transformer service units of FIG. 2, a point-to-point radio frequency microwave system can be adapted to use between such transformer service units in the power-line telephony exchange of the invention. RF microwaves in the Ku/X band are currently preferred.


In FIG. 3, reactance line couplers within control access board 40 couple remaining components of transformer service unit (TSU) interrupted line 42 to local three-phase transformer 44. As shown, three reactance couplers are provided within access control board 40, one for coupling each low (transoformed) voltage phase line of the three-phase transformer 44 to enable power-line transfer of both consumer electrical pwoer and packetized data pokets.


In areas where each residence is served by single-phase electricity, a three-phase transformer enables increasing the number of subscriber units served in a loop such as 45 of FIG. 3. For example, That is, transformer low voltage line 46 delivers electrical power and packetized data signals to thirty-four subscriber service units in segment 47 of loop 45; transformer low voltage line 48 supplies electrical power and packetized data signals to thirty-three subscriber service units in segment 49 of loop 45, and transformer low voltage line 50 supplies electrical power and packetized data signals to thirty-three subscriber service units in segment 52 of loop 45. Each telephony exchange subscriber has a subscriber service unit (as shown in FIG. 4) connected to an outlet at the premises of the consumer for electrical power and transfer of packetized data signals. Loop 45 of FIG. 3 enables one hundred (100) subscriber service units to receive packetized data signals. Each segment (47, 49, 52) of the loop 45 is reactance coupled, by control access board 40, to enable providing electrical power from the local transformer to each one of those segments, while providing an interface between the transformer voltage level and the high frequency-low voltage level of the packetized data signals.


Additional components within a transformer service unit (TSU), shown within the interrupted line boundary 42 of FIG. 3, include power line modem 56 for sorting packetized data signals for individual designated subscriber service units (of segments 47, 49, 52 of loop 45); and CPU 58 for directing such packetized data signals.


Further, in FIG. 3, single chip transceiver unit 60 receives and sends packetized data signals, by means of a designated traffic path (A through J) as shown in FIG. 2, to operations center 10; single chip transceiver unit 62 receives and sends packetized data signals, in accordance with packet header information, to transformer service units for respective subscribers of remaining transformer/TSU combinations.


Certain individual components of the combination of FIG. 3 can be ordered for commercial manufacture to specifications of a particular telephony exchange of the invention, as follows:












TABLE II







COMPONENT
MANUFACTURER









Control Access Board 40
Telkonet, Inc.




Annapolis, MD 21401



Power Line Modem 56
Inari




Draper, Utah 84020, or




Intellon




Ocala, FL 34482



CPU 58
Intel Corp.




Santa Clara, CA 95052



Single Chip Transceivers
Dallas Semiconductors




Dallas, TX 75244










Referring to FIG. 4, electrical power and packetized data signals are directed by power/signal line 70 to a subscriber served by a single transformer service unit (TSU) (which can comprise one hundred subscribers as described in relation to the embodiment of FIG. 3).


Referring to FIG. 4, the subscriber service unit (SSU) within the interrupted border line to 72 includes components for plain old telephone service (POTS) and digital phone service. As described above, each combined transformer/transformer service unit (TSU) can serve a plurality of subscribers. As indicated, each subscriber service unit, such as 72, includes a power line modem 74 which sorts packetized data signals for the subscriber of SSU 72, while ignoring packets for other subscriber service units which are served by the same designated TSU.


Central processing unit (CPU) 76 directs voice coded packetized digital signals (VOIP signals) to telephone chip 78; and, line 82 directs packetized data signals for digital signal phone or Internet use by computer 86 and/or for printing at printer 88. Telephone chip 78 is an integrated circuit (ASIC) containing a voice coder for processing plain old telephone service at phone 90.


Individual components selected for the subscriber service unit combination of FIG. 4 can be ordered for commercial manufacture to specifications for a particular power-line telephony exchange of the invention, as follows:












TABLE III








MANUFACTURER/



COMPONENT
SUPPLIER









Power Line Modem 56
Inari




Draper, Utah 84020




Intellon




Ocala, FL 34482



CPU 76
Intel Corp.




Santa Clara, CA 95052



Telephone Chip 78
Netergy Networks, Inc.



(vocoder)
Santa Clara, CA 95054










While specific steps, components and uses for components have been set forth for purposes of describing the invention, it should be recognized that other specific method steps and components would be available, in the light of the above teachings, to those skilled in the art; therefore, for purposes of determining the scope of patent coverage of the present invention, reference shall be made to the appended claims, in combination with the above disclosure.

Claims
  • 1. A method for providing hardwired telephony service, comprising the steps of: (A) laying out a concentration of electrical power consumer premises selected from the group consisting of individual users and multiple-user apartment buildings, office buildings, and industrial complexes, with existing electrical power wiring; (B) preparing a pattern, within the concentration of electrical power consumer premises, for estimating potential subscribers for telephony exchange service, by: (i) determining thea number and location of transformers supplying consumers with electrical power within such concentration, (ii) determining thea number of such consumers supplied with electrical power by each respective transformer with electrical power consumers being located within a selected preferred radius of each such respective transformer; (C) establishing an operations center, selectively located with relation to such concentration, for control of reception and re-transmitting of telecommunications for potential telephony exchange subscribers in such pattern; (D) providing public-switched telephone access means and a worldwide Internet service provider at such operations center; (E) extending a packetized data signal carrier, or predetermined capacity, from such operations center to a location for at least one electrical power transformer connected for delivery of transformer output by means of an electrical power line to respective consumers within such preferred radius, from such at least one transformer; (F) electrically connecting a transformer service unit (TSU), for potential telephony exchange subscribers, to such transformer output by reactance coupling, so as to enable transferring both electrical power and packetized data signals, for such power and telephony exchange subscribers; (G) sorting packetized data signals, being carried by such reactance coupled connection between such transformer and such TSU, for transfer on such existing electrical power wiring extending from such respective transformer unit to such power consumers and telephony exchange subscribers; (H) installing a subscriber server means connected to a power outlet, at such electrical power consumer's premises, for receiving packetized data signals; (I) converting packetized data signals for subscriber use selected from the group consisting of (i) plain old telephone communications, (ii) digital phone communications, and (iii) worldwide Internet communications.
  • 2. The method of claim 1, further including extending such packetized data signal carrier to a plurality of sequential combinations of a power transformer, with a respective transformer service unit for sequentially sorting of packetized data signals, for telephony exchange subscribers receiving transformer output power from each such respective sequential power transformer for power line delivery with packetized data signals, to its respective TSU.
  • 3. The method of claim 2, further including sorting such packetized data signals carrier supplied to at least one TSU, with remaining packetized data signals being directed to sequential TSU's for other subscriber server means.
  • 4. The method of claim 2, in which suchwherein the subscriber server means enables selecting from such group consisting of plain old telephone service, digital phone service, and worldwide Internet communication.
  • 5. The method of claim 1, further including thea step of selecting from the group consisting of (a) end-user location within about a half-mile radius of each such respective transformer, and (b) adding a transponder/repeater for an end-user located at a distance greater than about one-half mile from such transformer.
  • 6. ApparatusAn apparatus for providing hardwired telephone services to a concentration of electrical power consumer premises selected from the group consisting of individual users and multiple-user apartment buildings, office buildings, and industrial complexes, with existing electrical power wiring, comprising (A) means for establishing an operations center, selectively located with relation to such concentration of electrical power consumers, for control of reception of telecommunications and re-transmitting for potential telephony exchange subscribers; (B) means for providing public-switched telephone access means and a worldwide Internet service provider at such operations center; (C) packetized data signal means extending from such operations center to a location for at least one electrical power transformer with power line for delivery of transformer output by means of an electrical power line to respective consumers within such preferred radius, from such at least one transformer; (D) reactance means electrically connecting a transformer service unit (TSU), for potential telephony exchange subscribers, to such transformer so as to be capable of transferring both electrical power and packetized data signals for potential telephony exchange subscribers; (E) means for sorting packetized data signals for transfer on such transformer power line to such electrical power consumers and telephony exchange subscribers; (F) subscriber server means connected to a power outlet, at such electrical power consumer's premises, for receiving packetized data signals; (G) means for converting packetized data signals for subscriber use selected from the group consisting of (i) plain old telephone communications, (ii) digital phone communications, and (iii) worldwide Internet communications.
  • 7. The apparatus of claim 6, further including a means for extending such packetized data signal carrier to a plurality of sequential combinations of a power transformer with a respective transformer service unit for sorting of packetized data signals, for delivery with electrical power, to subscribers of each transformer with its respective transformer service unit.
  • 8. The apparatus of claim 7, further including means for sorting such packetized data signals supplied for at least one transformer service (TSU) unit electrical power to telephony exchange subscribers (TSU) , with remaining packetized data signals being directed to sequential TSU's for other subscriber server means.
  • 9. The apparatus of claim 7, further including means for enabling a subscriber to select from such group consisting of plain old telephone service, digital phone service, and worldwide Internet communication.
  • 10. The method of claim 1, further including extending such packetized data signal carrier to a plurality of sequential combinations of a power transformer, with a respective transformer service unit for sequentially sorting of packetized data signals, for subscribers receiving transformer output power from each such respective sequential power transformer for power line delivery with packetized data signals, to its respective TSU.
Parent Case Info

More than one reissue application has been filed concurrently herewith for the reissue of U.S. Pat. No. 6,668,058. This is a divisional reissue of U.S. Pat. No. 6,668,058. One of the other applications is a divisional reissue of U.S. Pat. No. 6,668,058 and the other application is a reissue of U.S. Pat. No. 6,668,058. This application claims the priority of U.S. Provisional Patent Application Ser. No. 60/187,394 filed Mar. 7, 2000, and is a continuation-in-part of U.S. patent application Ser. No. 09/781,346, entitled METHODS AND APPARATUS FOR PROVIDING COMMUNICATION SERVICES, filed Feb. 12, 2001, which claims priority to U.S. Provisional Patent Application Ser. No. 60/181,519 filed Feb. 10, 2000.

US Referenced Citations (94)
Number Name Date Kind
3771069 Levacher Nov 1973 A
3846638 Wetherell Nov 1974 A
3924223 Whyte Dec 1975 A
4130861 LaForest Dec 1978 A
4142178 Whyte Feb 1979 A
4188619 Perkins Feb 1980 A
4417207 Sato Nov 1983 A
4429299 Kabat Jan 1984 A
4602240 Perkins Jul 1986 A
4622535 Ise Nov 1986 A
4636771 Ochs Jan 1987 A
4644320 Carr et al. Feb 1987 A
4675648 Roth et al. Jun 1987 A
4772870 Reyes Sep 1988 A
4815106 Propp Mar 1989 A
4835517 van der Gracht et al. May 1989 A
4845466 Hariton Jul 1989 A
5066939 Mansfield Nov 1991 A
5101191 MacFayden Mar 1992 A
5206777 Clarey et al. Apr 1993 A
5210519 Moore May 1993 A
5257006 Graham et al. Oct 1993 A
5351272 Abraham Sep 1994 A
5369356 Kinney Nov 1994 A
5394402 Ross Feb 1995 A
5406249 Pettus Apr 1995 A
5491463 Sargeant Feb 1996 A
5559377 Abraham Sep 1996 A
5592482 Abraham Jan 1997 A
5623542 Schneider et al. Apr 1997 A
5684450 Brown Nov 1997 A
5684826 Ratner Nov 1997 A
5717685 Abraham Feb 1998 A
5740175 Wakeman Apr 1998 A
5774526 Propp Jun 1998 A
5805053 Patel et al. Sep 1998 A
5818127 Abraham Oct 1998 A
5828293 Rickard Oct 1998 A
5864284 Sanderson Jan 1999 A
5903553 Sakamoto May 1999 A
5929749 Slonim Jul 1999 A
5929750 Brown Jul 1999 A
5933071 Brown Aug 1999 A
5933073 Shuey Aug 1999 A
5949327 Brown Sep 1999 A
5977650 Rickard Nov 1999 A
5978371 Mason, Jr. et al. Nov 1999 A
5994998 Fisher et al. Nov 1999 A
6005477 Deck Dec 1999 A
6014386 Abraham Jan 2000 A
6023106 Abraham Feb 2000 A
6037678 Rickard Mar 2000 A
6040759 Sanderson Mar 2000 A
6091722 Russell et al. Jul 2000 A
6104707 Abraham Aug 2000 A
6115429 Huang Sep 2000 A
6130896 Lueker Oct 2000 A
6144292 Brown Nov 2000 A
6172597 Brown Jan 2001 B1
6205495 Gilbert Mar 2001 B1
6252503 Berger Jun 2001 B1
6252952 Kung Jun 2001 B1
6255935 Lehmann Jul 2001 B1
6272551 Martin et al. Aug 2001 B1
6282405 Brown Aug 2001 B1
6288631 Shinozaki Sep 2001 B1
6297730 Dickinson Oct 2001 B1
6384580 Ochoa et al. May 2002 B1
6396392 Abraham May 2002 B1
6396841 Co May 2002 B1
6404348 Wilfong Jun 2002 B1
6404773 Williams Jun 2002 B1
6407987 Abraham Jun 2002 B1
6417762 Comer Jul 2002 B1
6480748 Gerszberg Nov 2002 B1
6483870 Locklear Nov 2002 B1
6504851 Abler Jan 2003 B1
6510152 Gerszberg et al. Jan 2003 B1
6560234 Ben-Michael May 2003 B1
6590493 Rasimas Jul 2003 B1
6614326 Merriman et al. Sep 2003 B2
6686832 Abraham Feb 2004 B2
6714534 Gerszberg et al. Mar 2004 B1
6741439 Parlee May 2004 B2
6756776 Perkinson Jun 2004 B2
6809633 Cern Oct 2004 B2
6842668 Carson Jan 2005 B2
6885674 Hunt Apr 2005 B2
6950567 Kline Sep 2005 B2
6958680 Kline Oct 2005 B2
6975212 Crenshaw et al. Dec 2005 B2
20020075097 Brown Jun 2002 A1
20020186699 Kwok Dec 2002 A1
20030016631 Piner Jan 2003 A1
Foreign Referenced Citations (6)
Number Date Country
0 756 785 Jul 1998 EP
362274829 Nov 1987 JP
5145450 Jun 1993 JP
405316000 Nov 1993 JP
WO 0007304 Jun 2000 WO
WO 0167630 Sep 2001 WO
Provisional Applications (2)
Number Date Country
60187394 Mar 2000 US
60181519 Feb 2000 US
Continuation in Parts (1)
Number Date Country
Parent 09781346 Feb 2001 US
Child 09799599 US
Reissues (1)
Number Date Country
Parent 09799599 Mar 2001 US
Child 11170705 US