Exemplary embodiments of the present invention relate generally to latch mechanisms and, more particularly, to latch mechanisms having a power lock.
Latches, such as those used in vehicles commonly employ a power lock system as a convenience feature. The power lock system may use an electrically powered actuator associated with multiple components of the vehicle such as a door latch or the trunk latch, to move the lock between a locked and an unlocked position. To protect the components of the door latch, most door latches are of the freewheeling type such that when the door latch is in the locked position, the door latch does not exert any resistance to actuation of a connected release handle. However, most freewheeling door latches are configured in such a manner that if the latch is in a locked position, the door latch cannot be unlatched if the door handle is pulled before or at the same time that power is applied.
In a common situation, a person will try to open a handle connected to a latch, such as a handle on a lift gate for example, before the latch has been unlocked. Subsequently or simultaneously, the person will attempt to unlock the latch but will not be able to do so since the handle is pulled. After the person lets go of the handle, the unlock mechanism must again be actuated to unlock the door. Thereafter, the person may pull on the handle again to gain access to the vehicle.
Accordingly, it is desirable to provide a latch wherein if the handle is pulled and the latch is unlocked simultaneously, the unlock mechanism need not be actuated again to open the latch.
According to an exemplary embodiment of the present invention, a latch is provided including a locking lever pivotally mounted to the latch. An intermittent lever is pivotally coupled to the locking lever proximate to a first end of the locking lever. Movement of the locking lever causes a corresponding movement of the intermittent lever. A gear is pivotally coupled to the locking lever proximate to a second end of the locking lever. Rotation of the gear causes the locking lever to move. The locking lever is formed from a resilient material and has an area of reduced thickness as opposed to the first end and the second end. Movement of the second end of the locking lever with respect to the first end will create a biasing force in the locking lever.
According to another embodiment of the present invention, a method for preventing misalignment of a latch during an unlock operation is provided including compressing a locking lever so as to create a biasing force. A handle is then released. Engagement between a blocking member and a blocking pin is maintained until an intermittent lever is in a normal position. Once in the normal position, the intermittent lever is slid into an unlocked position.
According to yet another embodiment of the present invention, a latch is provided including a locking lever pivotally mounted to a housing of the latch. An intermittent lever is pivotally coupled to a locking lever proximate to a first end of the locking lever. A gear is pivotally coupled to a second end of the locking lever such that rotational movement of the gear causes movement of the locking lever which causes a corresponding movement of the intermittent lever. The gear is rotated by a motor. A release lever is pivotally mounted to the housing and operably coupled to a handle external to the housing. The intermittent lever is slidably mounted to the release lever via a pin integrally formed with the release lever. The locking lever is formed from a resilient material and is configured to have an area of reduced thickness as opposed to the first end and second end of the locking lever such that movement of the second end of the locking lever relative to the first end creates a biasing force in the locking lever. The biasing force in the locking lever will cause the intermittent lever to move relative to the housing after a motor after the motor has been de-energized and the release lever has been rotated by the handle prior to rotational movement of the gear by the motor.
The above-described and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description, drawings, and appended claims.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Reference is made to the following U.S. Pat. Nos. 5,934,717; 6,076,868; 6,565,132; and 7,192,066 the contents each of which are incorporated herein by reference thereto.
Referring to the FIGS., portions of a latch 20 in accordance with one exemplary embodiment is illustrated. The latch 20 includes a locking assembly 30, movable between a locked and an unlocked position, and a latching assembly 80, movable between a latched and an unlatched position, positioned within a housing 72 (see at least
The latching assembly 80 includes a fork bolt 90 and a cooperating detent lever 82. The fork bolt 90 and the detent lever 82 are pivotally mounted to the housing 72 or other structure by a stud positioned in holes 102 and 88 respectively. The fork bolt 90 is biased in the direction of arrow F by a coil spring (not shown) and the detent lever 82 is biased in the direction of arrow D into engagement with the fork bolt 90 by a second coil spring (not shown). The fork bolt 90 has slot or throat 92 for receiving and retaining a striker (not shown) located on a complementary vehicle component, such as a lift gate or trunk. The fork bolt 90 also includes a primary shoulder 100, an intermediate secondary shoulder 98, and a radially projecting foot 96. The detent lever 82 has a sector shaped catch 84 that engages the radially projecting foot 96 when the fork bolt 90 is in an unlatched position. The sector shaped catch 84 positively engages the primary and secondary latch shoulders 100, 96 to hold the fork bolt 90 against the bias of the spring in either a primary or secondary latched position respectively. The aforementioned fork bolt and detent lever are provided as a non-limiting embodiment. Numerous other types or configurations of the fork bolt and detent lever are considered to be within the scope of an exemplary embodiment of the present invention.
The intermittent lever 40 of the locking assembly 30 engages the detent lever 82 of the latching assembly 80 to pivot the detent lever 82 between an engaged position and a disengaged position. The foot portion 44 of the intermittent lever 40 contacts a protrusion 86 extending from the planar surface of the detent 82. If the intermittent lever 40 is in an unlocked position such that the foot portion 44 is adjacent the protrusion 86 of the detent, on the same side as the fork bolt 90, rotation of the intermittent lever 40 will cause the detent lever 82 to pivot opposite the direction of arrow D into a disengaged position (See at least
The locking assembly 30 includes a release lever 32 rotatable about a pin 38 (see
A second gear 64, such as a worm gear, is coupled to the shaft of a motor 66 and is engaged with the first gear 60 such that energizing the motor 66 will rotate the first gear 60. As the first gear 60 rotates, a sidewall of opening 62 contacts the pin 55 extending from the locking lever 50 into the opening 60. The force applied to pin 55 by a sidewall of opening 62 causes the locking lever 50 to rotate about the stud located in hole 58 such that the first end 52 of the locking lever 50 coupled with the intermittent lever 40 causes the intermittent lever 40 to slide relative to the release lever 32. When the retaining pin 36 is disposed adjacent the lower edge of elongated opening 42 of the intermittent lever 40, the locking assembly 30 is in a locked position because the foot portion 44 of the intermittent lever 40 cannot contact protrusion 86 of the detent lever 82. When the motor is energized such that the locking lever 50 pivots about hole 58 in the direction of arrow L, and the intermittent lever 40 is in a first position such that the foot portion 44 is aligned with protrusion 86 of detent lever 82, the locking lever 50 slides the intermittent lever 40 away from the release lever 32 until the retaining pin 36 is adjacent the top surface of the elongated opening 42. In this unlocked position, the foot portion 44 of the intermittent lever 40 is adjacent protrusion 86 of detent lever 82. If a force is then applied to handle 110 when the intermittent lever 40 is in this position, the rotation of the release lever 32 will cause the foot portion 44 to engage the protrusion 86 and rotate the detent lever 82 out of engagement with the fork bolt 90, thereby allowing the fork bolt 90 to rotate to an unlatched position.
In one embodiment, a blocking post or pin 70 extends from a surface of housing 72 toward the surface of intermittent lever 40. The blocking pin 70 may be formed integrally with the housing 72. Alternately, the blocking pin 70 may be mounted elsewhere within the latch 20. A blocking member 46 extends from the surface of the intermittent lever 40 in the direction of the blocking pin 70. In an exemplary embodiment, the blocking member 46 protrudes from the surface of the intermittent lever 40 adjacent the top edge of elongated opening 42. The blocking member 46 is substantially complementary to the blocking pin 70. The blocking pin 70 does not protrude into the elongated opening 42; therefore the engagement between the blocking member 46 and the blocking pin 70 occurs on a different plane than the engagement between the elongated opening 42 of the intermittent lever 40 and the retaining pin 36 of the release lever 32.
Referring now to
Referring now to
By releasing the handle 110, illustrated in
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/579,877 filed, Dec. 23, 2011, the contents of which are incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
5803515 | Arabia et al. | Sep 1998 | A |
5934717 | Wirths et al. | Aug 1999 | A |
6076868 | Roger, Jr. et al. | Jun 2000 | A |
6126212 | Fujihara | Oct 2000 | A |
6371538 | Inoue | Apr 2002 | B1 |
6511106 | Perkins et al. | Jan 2003 | B2 |
6565132 | Mork et al. | May 2003 | B2 |
7192066 | Ilea et al. | Mar 2007 | B2 |
7543861 | Dupont et al. | Jun 2009 | B2 |
8182004 | Yoda | May 2012 | B2 |
8684424 | Wattebled et al. | Apr 2014 | B2 |
20040113438 | Kachouh | Jun 2004 | A1 |
20050212302 | Fisher | Sep 2005 | A1 |
20090160198 | Yoda | Jun 2009 | A1 |
20100170308 | Wattebled et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
1699717 | Nov 2005 | CN |
101463684 | Jun 2009 | CN |
101680246 | Mar 2010 | CN |
2412405 | Sep 2005 | GB |
Entry |
---|
First Office Action for Chinese Patent Application No. 201210563146.8. |
English Translation for CN101680246 Abstract. |
English Translation for CN101463684 Abstract. |
English Translation for CN1699717 Abstract. |
Number | Date | Country | |
---|---|---|---|
20130161961 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61579877 | Dec 2011 | US |