1. Technical Field
The present disclosure relates to a power management circuit and a liquid crystal display using the same.
2. Description of Related Art
LCDs have the advantages of portability, low power consumption and low radiation, and are used in products such as notebooks, personal digital assistants (PDAs), video cameras, for example. However, when an LCD is powered off, the LCD may still display and not shut down cleanly, experiencing what is called the “shutdown ghost phenomenon.” In addition, the LCD may also display what is called “the boot splash screen phenomenon” during a power-on process of the LCD.
Therefore, an LCD to overcome the above described shortcomings is desired.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views, and all the views are schematic.
Reference will be made to the drawings to describe various embodiments in detail.
In one embodiment, when the liquid crystal display 10 is turned on and working normally, the control signal outputted from the control signal output terminal 122 of the driver circuit 120 is at logic high (1). The power management circuit 130 transmits the power-on signal to the display module 150 according to the received logic high signal. When the liquid crystal display 10 is turned off, the control signal outputted from the control signal output terminal 122 of the driver circuit 120 is at logic low (0). The power management circuit 130 stops transmitting the power-on signal to the display module 150 and discharges any residual electrical charges in the display module 150 quickly when the logic low signal is received.
In
In this embodiment, the power management circuit 130 further comprising a filter unit 135. The filter unit 135 is connected to the switching unit 133 and output terminal 143 for filtering noise of the power-on signal.
In
The switching unit 133 includes a third resistor 1331 and a second transistor 1333. The second transistor 1333 includes a control terminal 1330, a first conducting terminal 1332 and a second conducting terminal 1334. The control terminal 1330 of the second transistor 1333 is electrically coupled to the power-on signal input 139 via the third resistor 1331 and to the second resistor 1319 of the control unit 131. The first conducting terminal 1332 is also electrically coupled to the power-on signal input 139. The second conducting terminal 1334 is electrically coupled to the filter unit 135. In this embodiment, the second transistor 1333 is a p-type metal oxide semiconductor field-effect transistor (P-MOSFET). The control terminal 1330, the first conducting terminal 1332 and the second conducting terminal 1334 are respectively a source electrode, a gate electrode, and a drain electrode of the P-MOSFET.
The discharge unit 137 includes a fourth resistor 1371, a fifth resistor 1373 and a third transistor 1375. The third transistor 1375 includes a control terminal 1370, a first conducting terminal 1372, and a second conducting terminal 1374. The control terminal 1370 of the third transistor 1375 is electrically coupled to the second resistor 1319 of the control unit 131 via the fifth resistor 1373. The first conducting terminal 1372 of the third transistor 1375 is electrically coupled to the output terminal 143. The second conducting terminal 1374 of the third transistor 1375 is grounded.
The filter unit 135 includes a first capacitor 1351, a second capacitor 1353, a third capacitor 1355, an inductor 1357, a sixth resistor 1359 and a diode 1361. The inductor 1357 and the sixth resistor 1359 are electrically coupled between the second conducting terminal 1334 of the second transistor 1334 and the output terminal 143 in series. One end of the inductor 1357 is electrically connected to the second conducting terminal 1334 and grounded via the first capacitor 1351, and the other end of the inductor 1357 is electrically connected to the output terminal 143 via the sixth resistor 1359 and grounded via the second capacitor 1353. The diode 1361 connects in parallel with the sixth resistor 1359. The output terminal 143 is grounded via the third capacitor 1355.
In operation, when the liquid crystal display 10 is turned on, a logic high (1) is defined as the control signal and is transmitted to the control unit 131 via the control signal input 141. The first transistor 1317 is then turned on. As the second conducting terminal 1320 of the first transistor 137 is grounded, a divided voltage between the second resistor 1319 and the third resistor 1331 is transmitted to the control terminal 1330 of the second transistor 1333 via the second resistor 1319. In this embodiment, a resistance of the third resistor 1331 is much greater than that of the second resistor 1319, such that the divided voltage can be defined as a logic low signal, to turn on the second transistor 1333. The power-on signal is filtered by the filter unit 135 and then output to the display module via the output terminal 143.
Furthermore, when the liquid crystal display 10 is turned off, a logic low (0) is defined as the control signal and transmitted to the control unit 131 via the control signal input 141. Thus the first transistor 1317 is turned off and the power-on signal from the power-on signal input 139 is defined as a logic high signal and transmitted to the control terminal 1330 of the second transistor 1333. Thus the second transistor 1333 is turned off and no power-on signal is outputted from the output terminal 143. Thus the display module 150 is turned off. Simultaneously the power-on signal from the power-on signal input 139 is also transmitted to turn on the third transistor 1375. Thus, any residual electrical charges in the display module 150 may be immediately discharged via the current path formed by the fourth resistor 1371 and the third transistor 1375, to ground.
Referring to
Referring to
In alternative embodiments, when the control signal is a logic low signal (0), the first transistor 1317 is a pnp-BJT.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the embodiments or sacrificing all of their material advantages.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0172830 | Jun 2011 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5982105 | Masters | Nov 1999 | A |
20090237385 | Lee et al. | Sep 2009 | A1 |
20100156883 | Yamato et al. | Jun 2010 | A1 |
20110012539 | Skwarlo | Jan 2011 | A1 |
20110056399 | Yan et al. | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120326619 A1 | Dec 2012 | US |