This invention relates to a cellular telephone network, and in particular to methods for controlling the power of signals transmitted by base stations within such a network, in order to reduce the interference effects of such transmissions, while maintaining required performance of the network. The invention also relates to base stations in such a network.
Fourth generation (4G) cellular systems such as the Long-Term Evolution (LTE) are currently being developed in order to improve both system performance and user data rate, compared with third generation systems. Although such systems are designed to improve system performance and user data rate, strong emphasis is given to enhancing system performance for users at the cell edge. One of the most effective ways to achieve such improvements is by power and interference management.
While power and interference management is originally designed to increase systems and user performance by reducing unnecessary interference, it is important to realize that this can be achieved by reducing transmit powers as much as possible while still meeting a certain satisfaction objective. By eliminating unnecessary transmit power, it is possible to significantly improve the energy efficiency. While the energy efficiency for a single base station may not be a serious matter, it is highly relevant if a large network of base stations is deployed.
In a typical deployment scenario, a cell does not exist alone, which means that each cell is likely to be surrounded by neighbouring cells. Thus, as a mobile user moves away from the serving base station towards a neighbouring cell, the call quality degrades, not only due to the weakening of the serving base station signal, but also the increase of the interference coming from the dominant neighbouring cell(s). Such interference is often known as inter-cell interference, and the mitigation of such interference has been considered, in order to boost the experience of the cell-edge users. Interference management for LTE is more complicated than in the legacy 3G systems such as the Wideband Code Division Multiple Access (WCDMA) systems, as LTE systems involve the allocation of power in both time and frequency domains, while WCDMA systems involve only the time-domain allocation.
One well-known method to mitigate inter-cell interference is via the use of what is known as fractional frequency reuse (FFR), in which mobile users in the centre of every cell are allocated the same frequency, whereas users at the cell edges are allocated a subset of frequencies that are different from those at the edges of the immediate neighbour cell. As a result, the inter-cell interference at the cell edges can be significantly reduced (R. Kwan, C. Leung, “A Survey of Scheduling and Interference Mitigation in LTE”, Volume 2010, Article ID 273486).
While FFR and its variants are well-known techniques for interference mitigation, they suffer from the drawback that the subsets of frequencies used for the cell-edge mobile users need to be carefully planned, and this planning is typically done statically during the network planning stage. As a result, such methods are not suitable for femtocells, in which base stations are deployed in an ad hoc manner. Also, these methods do not take into account the dynamic user traffic distributions, and thereby reduce the efficiency of the spectrum utilization.
On the other hand, it is possible to make the allocation of power and frequency resources vary dynamically by allocating frequency, power, modulation and coding schemes (MCS) jointly for each user in a cell in a centralized fashion (D. López-Pérez, G. de la Roche, A. Valcarce, A. Jüttner, J. Zhang, “Interference Avoidance and Dynamic Frequency Planning for WiMAX Femtocells Networks”, Proc. of ICCS, 2008). However, such an approach requires a centralized entity, and the computation complexity is impractically high.
In A. L. Stolyar, H. Viswanathan, “Self-organizing Dynamic Fractional Frequency Reuse for Best-Effort Traffic Through Distributed Inter-cell Coordination”, proc. of IEEE Infocomm, April 2009, a gradient-based algorithm is presented, in which the frequency reuse patterns are dynamically adapted to the traffic distribution. As this approach is self-organizing among cells in a distributive fashion, frequency planning is not required. Also, this method not only provides a way to assign frequency in a distributive manner, it also allows the power to be adjusted dynamically in frequency, and thereby provides an extra degree of flexibility. While this approach is useful, the document does not provide details regarding how Quality of Service (QoS) can be taken into account in the formulation. As a result, the power allocation may not necessarily be appropriate to what the services actually require, thereby reducing the power efficiency. Also, while the document provides a useful framework in dynamic interference mitigation, issues regarding implementation aspects remain open. For example, the formulation assumes an exact knowledge of the analytical relationship between the spectral efficiency and the signal-to-interference and noise ratio (SINR). In practice, there is no such fixed relationship, due to the fact that different vendors may have their own receiver implementation, and, therefore, different performance.
According to an aspect of the present invention, there is provided a method of controlling the respective transmit powers allocated by a base station of a cellular communications network to each of a plurality of sub-bands, the method comprising:
According to an aspect of the present invention, there is provided a method of controlling the respective transmit powers allocated by base stations of a cellular communications network to each of a plurality of sub-bands, the method comprising:
A method of controlling the respective transmit powers allocated by base stations of a cellular communications network to each of a plurality of sub-bands, the method comprising:
According to an aspect of the present invention, there is provided a method of determining an effect of interference in a cell served by a base station of a cellular communications network, said interference being caused by transmissions from a base station in at least one neighbouring cell of said network, the method comprising:
According to an aspect of the present invention, there is provided a method of estimating a spectral efficiency of a sub-band in a base station on a cellular communications network, the method comprising:
According to an aspect of the present invention, there is provided a method of controlling a base station in a cellular communications network, the method comprising:
According to an aspect of the present invention, there is provided a method of calculating a value for a load on a base station of a cellular communications network, wherein the base station can use a plurality of sub-bands and can use frequency-selective power control, the method comprising:
According to an aspect of the present invention, there is provided a method of controlling the respective transmit powers allocated by a base station of a cellular communications network to each of a plurality of sub-bands, the method comprising:
According to an aspect of the present invention, there is provided a basestation adapted to perform the method of any other aspect.
For a better understanding of the present invention, and to show how it may be put into effect, reference will now be made, by way of example, to the accompanying drawings, in which:—
Located within the cells 16, 18 are a number of femtocell base stations, or Home enhanced Node B's (HeNBs), 20, 22, 24, 26, 28, 30, 32, 34, each serving a respective cell in its immediate vicinity. As is well known, there may be tens, hundreds, or even thousands of femtocells within one macrocell.
The base station 40 has transceiver circuitry 42, for converting signals to and from the formats required for transmission over the air interface. As mentioned above, in this illustrative example, the base station is intended to form part of an LTE network, and the transceiver circuitry therefore converts the signals to and from the formats required for this. An antenna 44 is connected to the transceiver circuitry 42.
The base station also has interface circuitry 46, for connection to the rest of the network. Where the base station 40 is a femtocell base station, the interface circuitry 46 might for example be suitable for converting signals to and from the formats required for transmission over a broadband internet connection. Where the base station 40 is a macrolayer base station, the interface circuitry 46 might for example be suitable for converting signals to and from the formats required for transmission over a dedicated link to the core network of the cellular communications network.
A modem 48 is connected between the transceiver circuitry 42 and the interface circuitry 46, for processing the signals and extracting relevant data therefrom. The modem 48, the transceiver circuitry 42 and the interface circuitry 46 operate under the control of a processor 50, as described in more detail below.
One of the aspects of the operation of the base station 40 that is controlled by the processor 50 is the allocation of users to particular frequency channels, and the allocation of particular power levels to the available channels. Increasing the power of signals to one particular user will typically improve the service that can be provided to that user, for example by increasing the available data rate, but it might worsen the service that can be provided to other users, for example by increasing the level of interference that they will detect.
We assume here that we have K cells, with kε{tilde over (K)}={1, 2, . . . , K} and J sub-bands jε{tilde over (J)}={1, 2, . . . {tilde over (J)}} in the system. Furthermore, we assume that each sub-band consists of a fixed number of sub-carriers. Also, it is assumed that time is slotted, and that transmissions within each cell are synchronized, so that intra-cell interference is not present. Two generic quantities are particularly relevant to an inter-cell interference coordination scheme for LTE-based systems.
The first one is the concept of utility, which generally quantifies the level of satisfaction of the entity involved. Let U be a global utility function of the system, which is given by
U=Σ
k
U
k. (1)
It represents the sum of all utility functions among all cells, where Uk is the utility function of cell k, which is given by the sum of the utility Uk,i among all users for cell k, i.e. Uk=ΣiUk,i. The idea is to find a way (or ways) to improve, or preferably maximize, the global utility function U.
The second quantity is the transmit power. Here, in the context of Orthogonal Frequency Division Multiple Access (OFDMA) systems such as LTE, the transmit power is expected to be frequency dependent. Let Pk,j be the power allocated in sub-band j of cell k, and the maximum power cell k can have is Pk, i.e. ΣjPk,j≦Pk. The whole problem of inter-cell interference coordination reduces to how Pk,j, ∀j is allocated for each k in order to improve or maximize U.
In A. L. Stolyar, H. Viswanathan, “Self-organizing Dynamic Fractional Frequency Reuse for Best-Effort Traffic Through Distributed Inter-cell Coordination”, proc. of IEEE Infocomm, April 2009, a gradient-based method is proposed, in which the global utility is improved sub-optimally in a distributive fashion. The main idea of the proposed method is as follows:
Let Dj(m,k)=∂Uk/∂Pm,j i.e. the rate of change of the utility function Uk for cell k, with respect to the transmit power cell m has allocated for sub-band j. The quantity corresponds to the change of the level of satisfaction that a cell m would incur at sub-band j of cell k. For the purpose of discussion, this quantity will also be called the D value for simplicity. Obviously, an increase in Pm,j may potentially have negative impact on Uk when k≠m (i.e. cell m is a neighbour cell), as such an increase would give rise to additional interference at sub-band j coming from cell m, and vice versa. On the other hand, when k=m, an increase of power at sub-band j would enhance the signal quality at this particular sub-band, and would have a positive impact on its own utility.
It can be noted that Dj(m,k) is not very useful if it is considered in only one cell at a time. However, when it is exchanged among neighbour cells, it allows the neighbour cells to know the level of impact caused in the other cells when a certain power level is allocated at each sub-band. By receiving Dj(m,k) from the neighbour cells, cell k would then aggregate them for each sub-band j, i.e.
D
j(k)=ΣmDj(k,m), (2)
(where the switch of the indices m and k represents the fact that cell k is now the neighbour cell of each of the neighbour cells m), including the case of k=m.
In other words, Dj(k) corresponds to the aggregate sensitivity of the utility function to all cells due to the perturbation of its own transmit power at sub-band j.
When Dj(k)<0, a positive power increment would incur a negative impact on the aggregate satisfaction among all cells, and vice versa. The general idea proposed in the prior art document discussed above is for cell k to increase the power by selecting a sub-band associated with the largest positive value of Dj(k), and vice versa.
Let δP>0 be a fixed parameter, let Pk=ΣjPk,j be the total power currently used, and let {tilde over (P)}k be the power limit. In each of np time slots, cell k updates the power sequentially as follows:
In this illustrated embodiment, the downlink power adjustment algorithm takes account of the quality of service (QoS) experienced by the users.
A common utility function for cell k is typically defined as the sum of the logarithms of the average bit rates over all users within the cell k. This utility function is rooted in economics, and is motivated by the fact that a fixed increase in bit rate is more important for low bit rate than for users who are already enjoying a high bit rate. Another advantage of such a function is that it is smooth and continuously differentiable, thereby simplifying the complexity in computing the utility sensitivity. Despite the above advantages, such a utility function does not readily provide a means to incorporate QoS into the power adjustment mechanism. For example, consider three users served by a base station, having bit rates of 1 Mbps, 2 Mbps, and 3 Mbps respectively. If all three users only require a bit rate of 500 kbps, it may not be efficient to provide more than necessary from the point of view of resource utilization. An unnecessarily high power generates an unnecessary level of interference, which would then have a knock-on effect on the neighbouring cells. In order to maintain a good level of satisfaction, the neighbours would require a higher power, thereby boosting the overall background interference. The reverse is also true: if a base station reduces its power to a level which just meets the user bit rate requirements, the level of interference to its neighbours would reduce. The neighbours, in turn, would require less power to maintain the call quality, thereby emitting lower interference to the original base station. As a result, the original base station, in turn, would then need less power to maintain the call quality. This process continues until the background interference, and, therefore, the transmit powers of all base stations, eventually settles to a lower level.
The implication of the above process is important, as the idea of removing unnecessary power provides a “feedback” mechanism which eventually helps to further reduce the power requirement for a fixed QoS due to the lowering of the overall interference. This lowering of the power requirement translates to an energy saving for the network.
One way to take the QoS into account is to modify the utility function. However, such an approach potentially makes the utility function more complex, and thereby complicates the sensitivity calculation. In this embodiment, we quantify whether a user's expectation is met by a quantity known as the “Happiness Factor”, Hk,i, which is given by:
where:
{tilde over (R)}k,i is the corresponding bit rate requirement, which can be directly proportional to the guaranteed bit rate (GBR) (for example as discussed in 3GPP TS 36.413, S1 Application Protocol (S1AP), Release 9, v9.5.1) or can be some function of the GBR.
When Hk,i>1, the user is experiencing a bit rate that exceeds expectation. The opposite is true when Hk,i<1. Let Hk(n) be the weighted n-th moment of happiness of cell k, i.e.
where
Nk is the number of users in cell k, and
wk,i is a cell-specific weight for user i in cell k.
This weight can be used to bias the emphasis among users within the cell, and follows the constraint
As a special case, when wk,1=wk,2= . . . =wk,N
Note that
H
k
=
k−λkĤk (5)
where Hk is known as the “true” happiness, and λk is a scaling factor which controls the level of “conservativeness”. The quantity Ĥk is the weighted standard deviation of happiness within cell k, and is then given by
Ĥ
k=√{square root over (Hk(2)−(Hk(1))2.)} (6)
The effect of offsetting the happiness factor in order to increase conservativeness for power adjustment is shown in
In step 70, a sub-band index j* is picked, such that Dj
The process then passes to step 72, in which the power is reduced in the sub-band index j*. Specifically, the power is reduced by a decrement value δP from its current value Pk,j
After completing step 72, the process passes to step 74. In step 74, it is determined whether the total transmit power for the cell Pk is less than the maximum allowed total power {tilde over (P)}k.
If the total transmit power for the cell is less than the maximum allowed total power, then the power can be increased in one of the sub-bands, and this sub-band is selected in step 76. Thus, step 76 selects the sub-band for which a power increase would produce the largest beneficial effect. That is, sub-band j* is picked, such that Dj
The happiness of the cell is then used to decide whether in fact to increase the power in that sub-band. Specifically, the process passes to step 78, in which it is tested whether the cell is happy. This is determined by testing whether the true happiness is less than unity, i.e. whether Hk<1. If this condition is met, then it is determined that the cell is not happy enough, and the process passes to step 80, in which the power is increased in the sub-band selected in step 76. Specifically, the power is increased by an increment value δP from its current value Pk,j*, or by the maximum increment that can be applied without increasing the total power of the cell beyond the maximum allowed total power {tilde over (P)}k, if the latter increment is smaller. That is, step 80 sets Pk,j*=Pk,j*+min (δP, {tilde over (P)}k−Pk).
If it is determined in step 78 that the cell is happy enough, i.e. Hk≧1, the power is reduced, in order to save energy and increase efficiency. Specifically, the power is reduced by a decrement value δP from its current value Pk,j*, although of course it cannot be reduced below zero. Thus, step 82 sets Pk,j*=max (Pk,j*−δP, 0).
If it was determined in step 74 that the maximum total power for the cell is already being used, then the power can be increased in one sub-band only if it is also decreased in another sub-band. Therefore, if it is determined in step 74 that the inequality is not true, the process passes to step 84, in which sub-bands are selected. Thus, a sub-band j* is selected as the most favourable for a power increase, and a sub-band j* is selected as the most favourable for a power decrease, on the basis that Dj*(k) is the largest value of Dj(k), among all j's, and Dj
Having selected in step 84 the sub-band that is now the most favourable for a power decrease, the process passes to step 86, in which the power is reduced by a decrement value δP from its current value Pk,j
It is then determined whether it is advantageous to increase the power in one of the sub-bands, by reallocating the power that was removed from one of the sub-bands in step 86. Specifically, in step 88, it is tested whether the cell is happy. This is determined by testing whether the true happiness is less than unity, i.e. whether Hk<1. If this condition is met, then it is determined that the cell is not happy enough, and the process passes to step 90, in which the power is increased in the sub-band selected in step 86, namely the sub-band in which the increase in power has the greatest beneficial effect. Specifically, the power is increased by the amount by which the power in the sub-band j* was decreased in step 86. Thus, the power is increased by the increment value δP from its current value Pk,j*, or by the previous power in the sub-band j* if the latter amount is smaller. That is, step 90 sets Pk,j*=Pk,j*+min (δP, Pk,j
If it is determined in step 88 that the cell is happy enough, i.e. Hk≧1, the power is reduced, in order to save energy and increase efficiency. Specifically, the power is reduced by a decrement value δP from its current value Pk,j*, although of course it cannot be reduced below zero. Thus, step 92 sets Pk,j*=max (Pk,j*−δP, 0).
Thus, the process tests in steps 78 and 88 whether the true happiness is less than unity, and steps 82 and 92 are able to set lower power values than would otherwise be set, if the true happiness is greater than or equal to than unity.
As mentioned above, the scaling factor λk controls the “conservativeness” of the utility, in such way that a higher value improves the overall utility of the system at the expense of a higher transmit power. Thus, this parameter provides a degree of freedom to tune the utility level of the system via the trade-off between utility and power consumption.
For example, the scaling factor can be adjusted based on the current transmit power. If the current transmit power reaches its maximum value, the system performance is not likely to be increasing. On the other hand, by decreasing λk, a small reduction in the overall utility might occur, but there might be a potentially significant reduction in power. Thus, one alternative to the above algorithms is to reduce λk by a step Δλk if the average power
When the scaling factor λk is high, more power is used to improve the overall utility within the cell, thereby increasing the level of downlink interference for the neighbours. Thus, another alternative to the above algorithms is to adapt λk in a cell, based on the level of downlink interference observed at the cell. The interference value can be obtained based on the Evolved UMTS Terrestrial Radio Access (E-UTRA) Carrier Received Signal Strength Indicator (RSSI) using the downlink listen mode (DLM) or mobile measurements. These measurements can be based on the time-average RSSI values, or based on the percentile of the RSSI values. The recommendation to lower the λk value is then transmitted to the neighbours, for example via a private message in the X2 interface.
As discussed above, the quantity Dj(k,m) describes the level of effects of utility due to the power change from neighbour m at sub-band j. Subsequently, the aggregate impact of the change of utility over all neighbours for sub-band j is given by
The method of computing Dj(k) proposed in Stolyar thus involves the calculation of the rate of change of the utility function with respect to the power. This quantity is then aggregated, as shown by equation (2), and the result is distributed to the neighbours. However, there is no standard interface which allows such a quantity to be passed between base stations (in particular such quantity is not supported by the standard X2 interface), and so the communication of this result requires a proprietary interface between base stations. Therefore, as it might be inconvenient or impossible to provide a proprietary interface, and it is more efficient to use the standard X2 interface if one is available, in order to provide an algorithm that can be used by base stations connected only by the X2 interface, an alternative formulation of the Dj(k) value is used.
According to TS36.423, X2 application protocol (X2AP), V8.3.0, 3GPP, 2008. 0, a Relative Narrowband Tx Power (RNTP) information element (IE) is included in the Load Information X2 message. For each resource block, the RNTP IE informs the neighbouring cells whether the sending cell power at such resource block is above (1), or below (0) a certain threshold (RNTP threshold). In order to be able to use the X2-interface, we need to formulate Dj(k,m) in terms of what are available in X2. The reformulated values for Dj(k,m) can then be exchanged between base stations.
As one example of such a reformulation, let:
where Gi(m) is the path gain between the mobile i (served by cell k) and neighbour m, and ρj,m is the RNTP for sub-band j.
So, mobile devices can make measurements from the neighbouring cells, in order to obtain this information, and can report back to the serving base station. The serving base station can then make the calculations based on equation (8).
The path gain Gi(m) can be obtained at the mobile device by measuring the Reference Signal Reference Power (RSRP) (described in TS 36.214, Physical layer; Measurements, V9.2.0, 3GPP, 2010) and the corresponding transmit power from neighbour m via the neighbour's broadcast channel.
More precisely, let the path gain sampled at time t be:
where RSRPm(t) is the RSRP from cell m sampled at time t, and Pmref is the reference signal power from the neighbour's broadcast channel.
As an alternative, gi(m)(t) can be defined as gi(m)(t)=RSRPm(t), as the ratio of the RSRP values would also provide the relative impact of the neighbour base station m with respect to the serving base station.
Note that the RSRP measurements obtained at the mobile or at the base station (using a Downlink Monitor (DLM) in the vicinity of the base station) can fluctuate due to channel fading, shadowing, etc. It is typically more representative to take an average over many samples in order to recover the long-term average of the path gain. Thus, Gi(m)(t) can be obtained as an exponential average: Gi(m)(t)=(1−α)Gi(m)(t−1)+αgi(m)(t) or more simply as a block average:
Alternatively, Gi(m)(t) can be an x-percentile of the samples {gi(m)(t), t=t−1, t−2, . . . , t−N}.
The quantity ρj,m can be a reasonable aggregate of the RNTP values for each resource block within a sub-band. A simple solution is
where Q is the number of resource blocks per sub-band, and ρj,m(q) is the RNTP for resource block q in sub-band j from neighbour m. Another way to aggregate the per-resource block values into a sub-band is to take the maximum value among ρj,m(q), ∀q, for example.
It is important to note that the formulation of Dj(k,m) in equation (8) above assumes that the mobiles have the capability of measuring the broadcast channel, and obtain the transmit power of the neighbour, as well as the direct measurement of RSRP of the same neighbour. A simplified way to compute Dj(k,m) is given by
where G(m) is the path gain between the DLM which resides at the vicinity of the base station for cell k and the corresponding transmitter at the base station in cell m, and Gk is some positive constant.
In the formulation in equation (11), a larger value of Dj(k,m) is a value that is closer to zero. If the path gain of the neighbour at j is large, and the neighbour is transmitting at higher power as indicated by ρj,m, then the ratio takes on a large value, and the negative sign in front of that would make this quantity more negative, and further away from zero. The more negative this quantity is, the more detrimental this sub-band j would be for transmission. Thus, the sensitivity and therefore the risk are higher if the serving base station were to transmit at sub-band j
If no mobile reporting information is available, allowing the path gain between the served mobile and the neighbours to be calculated, the serving base station can still rely on its Downlink Monitor (DLM), where it detects signals transmitted by neighbouring base stations on system downlink frequencies, to do the estimation of the path gain (between its DLM and the neighbour). In other words, the DLM acts like a user for the purpose of path gain estimation. Of course, this would not be as representative as obtaining information from the mobile users, as the mobile users are in different locations within the cell.
Finally, if no DLM information is available, then the base station would have to rely on the information that the X2 interface provides, namely the ρj,m value, and so Dj(k,m) could be defined as:
Thus, the X2-compliant version of the algorithm reformulates Dj(k) in such a way that it makes use of data that can be made available in the X2 interface between two eNBs. As examples, Dj(k) can be redefined as shown in equations (8), (11), or (12) above.
As a result of the redefinition, some modifications of the original algorithm are made in order to make the algorithm more stable and robust.
Thus, in
In step 122, a sub-band index j* is picked, the intention being to select the sub-band for which a power increase would have the greatest, or most beneficial, effect on the cell performance. As shown by equations (7) and (11), in the best sub-band Dj(k) would have a value of zero, and it is possible that there would be multiple sub-bands which would satisfy this criterion. In order to avoid the possibility that the power is increased in only one sub-band, the sub-band in which power might be increased later is chosen randomly from a set of sub-bands having Dj(k)=0. In this way, potentially more sub-bands can take on non-zero power, and the sub-band utilization increases.
In step 124, it is tested whether Dj
In step 124, it may also be tested whether the cell is happy. This is determined by testing whether the true happiness Hk is greater than the product of a Quality of Service (QoS) requirement ηk and a hysteresis factor ξk, i.e. it is tested whether Hk>ηkξk. The value of the QoS requirement may, for example, be set to a value of 1.
If it is found in step 124 that Dj
After completing step 126, or if it is found in step 124 that there is no sub-band for which a power increase would have a non-beneficial effect and/or that the true happiness Hk is not greater than the product of a Quality of Service (QoS) requirement ηk and a hysteresis factor ξk, the process passes to step 128.
In step 128, it is determined whether the total transmit power for the cell Pk is less than the maximum allowed total power {tilde over (P)}k, and simultaneously whether it is beneficial for the power to be increased in the sub-band selected in step 122, i.e. whether Dj
If both of these conditions are met, the process passes to step 130, in which it is tested whether the cell is happy. This is determined by testing whether the true happiness is less than the QoS requirement ηk, i.e. whether Hk<ηk. Where the QoS requirement is set at a value of 1, this is determined by testing whether the true happiness is less than unity, i.e. whether Hk<1. If this condition is met, then it is determined that the cell is not happy enough, and the process passes to step 132, in which the power is increased in the sub-band selected in step 122. Specifically, the power is increased by an increment value δP from its current value Pk,j*, or by the maximum increment that can be applied without increasing the total power of the cell beyond the maximum allowed total power {tilde over (P)}k, if the latter increment is smaller. That is, step 132 sets Pk,j*=Pk,j*+min (δP, {tilde over (P)}k−Pk).
If it is determined in step 130 that the cell is happy enough, i.e. that Hk≧ηk (or, where the QoS requirement is set at a value of 1, that Hk≧1), the process passes to step 133, in which it is determined whether the true happiness Hk is greater than the product of the QoS requirement ηk and the hysteresis factor ξk, i.e. it is determined whether Hk>ηkξk. Where the QoS requirement is set at a value of 1, it is actually determined whether the true happiness Hk is greater than the hysteresis factor ξk, i.e. it is determined whether Hk>ξk.
If it is determined in step 133 that the true happiness is more than sufficient, i.e. that Hk>ηkξk (or, where the QoS requirement is set at a value of 1, that Hk>ξk), the power is reduced, in order to save energy and increase efficiency. Specifically, the power is reduced by a decrement value δP from its current value Pk,j*, although of course it cannot be reduced below zero. Thus, step 134 sets Pk,j*=max (Pk,j*−δP, 0).
If it was determined in step 128 that the maximum total power for the cell is already being used, or that it is not beneficial for the best sub-band to increase power, the process passes to step 136, in which it is determined whether the total transmit power for the cell Pk is equal to the maximum allowed total power {tilde over (P)}k, and simultaneously whether it is beneficial for the power to be increased in the sub-band selected in step 122, i.e. whether Dj*(k)=0. If these conditions are not met, the algorithm stops and waits until the next execution begins. However, if these conditions are met, it suggests that it is still worthwhile to do further power adjustments.
As the total transmit power for the cell is already at the maximum allowed total power, the adjustments require a sub-band in which the power can be decreased. Thus, it is tested in step 138 whether Dj
In step 140, a new sub-band is selected randomly from the set of sub-bands having Dj(k)=0, and the process then passes to step 142.
Alternatively, if it found in step 138 that the sub-band with the lowest value of Dj
In step 142, the power is decreased in the sub-band found in step 138 to have the lowest negative value of Dj
It is then determined whether it is advantageous to increase the power in one of the sub-bands, by reallocating the power that was removed from one of the sub-bands in step 142. Specifically, in step 144, it is tested whether the cell is happy. This is determined by testing whether the true happiness is less than unity, i.e. whether Hk<1. If this condition is met, then it is determined that the cell is not happy enough, and the process passes to step 146, in which the power is increased in the sub-band selected in step 122, namely the sub-band in which the increase in power has the greatest beneficial effect. Specifically, the power is increased by the amount by which the power in the sub-band j* was decreased in step 142. Thus, the power is increased by the increment value δP from its current value Pk,j*, or by the previous power in the sub-band j* if the latter amount is smaller. That is, step 146 sets Pk,j*=Pk,j*+min (δP, Pk,j
If it is determined in step 144 that the cell is happy enough, i.e. that Hk≧ηk (or, where the QoS requirement is set at a value of 1, that Hk≧1), the process passes to step 147, in which it is determined whether the true happiness Hk is greater than the product of the QoS requirement ηk and the hysteresis factor ξk, i.e. it is determined whether Hk>ηkξk. Where the QoS requirement is set at a value of 1, it is actually determined whether the true happiness Hk is greater than the hysteresis factor ξk, i.e. it is determined whether Hk>ξk.
If it is determined in step 147 that the true happiness is more than sufficient, i.e. that Hk>ηkξk (or, where the QoS requirement is set at a value of 1, that Hk>ξk),the power is reduced, in order to save energy and increase efficiency. Specifically, the power is reduced by a decrement value δP from its current value Pk,j*, although of course it cannot be reduced below zero. Thus, step 148 sets Pk,j*=max (Pk,j*−δP, 0).
Thus, the combined effect of steps 140, 142 and 146 is to reduce the power in a good sub-band, and increase it in another good sub-band. This creates an opportunity for the system to redistribute power among sub-bands, and to randomize and diversify the power allocated to the sub-bands in order to avoid falling into local maxima.
One alternative to the algorithm shown in
Another alternative, which provides a slight generalization of the algorithm in
As described above, the scaling factor can be adjusted based on the current transmit power, or based on the observed level of downlink interference.
It can be seen that the gap between the aggregate QoS limit among the supporting mobiles and the cell capacity defines the energy efficiency of the cell. In other words, when the aggregate QoS limit is higher than the cell capacity, full power would be used, and no power saving is possible. However, by bringing the QoS limit down to and slightly below the cell capacity, power saving starts to become possible.
One further proposal to achieve energy saving is to adaptively lower the QoS limit by observing the cell throughput dynamics.
In order to obtain the sensitivity Dj(k,m) as described above, we need to compute the derivative of the cell utility with respect to the transmit power in cell m at sub-band j. Typically, the cell utility is related to the spectral efficiency of the sub-bands. For example, let
where Ωk is the set of user indices in cell k, γi,j(k) is the Signal-to-Interference and Noise Ratio (SINR) of user i in cell k at sub-band j, and ω is the spectral efficiency which is a function of γi,j(k). The term f(.) is a pre-defined function which defines Dj(k,m), and, therefore, is known to the base station. The quantity ∂γi,j(k)/∂Pm,j is relatively straight-forward, as γi,j(k) is a well-known function of Pm,j. The main issue is the quantity ∂ω(γi,j(k))/∂γi,j(k), which depends on the nature of ω, and is not known exactly in practice. Typically, it is often assumed that
where {circumflex over (Γ)} is a fixed value often known as the “capacity-gap” constant, as it determines how far it is from the actual channel capacity. For simplicity, {circumflex over (Γ)}=1 is assumed in the prior art document R. Kwan, C. Leung, “A Survey of Scheduling and Interference Mitigation in LTE”, Volume 2010, Article ID 273486, while {circumflex over (Γ)}=log (5εb)/1.5, (where εb is the bit error rate) is assumed in other prior art documents, such as A. J. Goldsmith, S-G Chua, “Variable-Rate Variable-Power MQAM for Fading Channels”, IEEE trans. on Comm. Vol. 45, no. 10, October 1997; G. Piro, N. Baldo. M. Miozzo, “An LTE module for the ns-3 network simulator”, in Proc. of Wns3 2011 (in conjunction with SimuTOOLS 2011), March 2011, Barcelona (Spain); and H. Seo, B. G. Lee. “A proportional-fair power allocation scheme for fair and efficient multiuser OFDM systems”, in Proc. of IEEE GLOBECOM, December 2004. Dallas (USA).
It is important to note that the analytical relationship described in equation (14) above is only theoretical, as the actual SINR is not known to the base station. According to 3GPP TS 36.213, Physical layer procedures, Release 9, v9.3.0, the mobile measures the downlink channel quality in the form of an SINR, and packages such a quantity in a form of an index known as the Channel Quality Indicator (CQI). It is the CQI that is available to the receiving base station.
Also, equation (14) defines a static relationship which, even if it is a good approximation in a certain environment, may not be as accurate in another. In practice, the spectral efficiency vs channel quality relationship dependency would likely be different due to vendor-specific implementation of the receiver structures. Thus, a more robust way of relating ω to γi,j(k) would be extremely useful.
According to 3GPP TS 36.213, Physical layer procedures, Release 9, v9.3.0, there is a definite relationship between the spectral efficiency and the reported CQI from the mobile. In other words, once the CQI is known, the base station can obtain the spectral efficiency corresponding to each CQI report via a look-up table. While an explicit analytical relationship between spectral efficiency and CQI is not given, we propose to approximate the spectral efficiency fairly reasonably as a power function of the CQI:
ω=aqb (15)
where q is the CQI, a=0.077, and b=1.586.
While the relationship between spectral efficiency and CQI is fixed, the way CQI is measured is not standardized, although it most likely depends on the measured SINR. The way SINR is measured is vendor-specific, and depends on a number of factors, including the implementation of receiver algorithms involved, the accuracy of the estimation, etc. However, in practice, the CQI is designed in such a way that it is fairly linear as a function of the SINR in dB. Each point at a given CQI value in such a linear relationship lies in a similar distance from its neighbour. Despite the possible diversity of vendor-specific implementations, such relationships are not expected to deviate much from each other, as there are only a limited number of reasonable ways of designing a good receiver given a standardized algorithm at the transmitter side. A good example of the relationship between CQI and SINR can be found in the prior art document C. Mehlführer, M. Wrulich, J. C. Ikuno, D. Bosanska, M. Rupp, “Simulating the Long Term Evolution Physical Layer”, Proc. of 17th European Signal Processing Conference (EUSIPCO), 2009.
An empirical approximation of such a relationship is:
q=cγ
dB
+d (16)
where γdB is the SINR expressed in decibels (and, hence γdB=10.log10γ, where γ is the SINR), c=0.5, and d=4.4. Thus, the spectral efficiency as a function of the SINR is then given by
ω=a(c′ log10(γ)+d)b (17)
where c′=10c.
As mentioned earlier, the CQI vs SINR curve is not standardized, and slight implementation differences may exist between vendors. Despite this, it is possible to compensate for such differences by introducing an offset Δd to equation (17) such that
ω=a(c′ log10(γ)+d+Δd)b. (18)
Equation (18) lends itself to a simple form which is continuously differentiable, and the derivative itself is relatively simple.
One way to determine the value of Δd is via the Hybrid ARQ feedback. If the ratio of the number of Negative ACKnowledgement (NACK) messages to the total number of transmissions (including retransmissions) is larger than a certain threshold over a certain period of time, Δd is decremented by one. On the other hand, if this ratio is lower than a certain threshold over a certain time period, Δd is incremented by one.
Thus, if there are a high proportion of NACK messages, this means that the channel quality is lower than previously thought, and so the offset value is decremented, which means that the derived value of CQI is reduced. A lower value of CQI means it is more “conservative”, and less error-prone.
Thus, this provides a way to obtain an empirical, analytically simple relationship between the spectral efficiency and the SINR. This is important as CQI is the only information available to the base station according to the standard. Such a relationship can then be used to obtain the sensitivity function for the above-described power management mechanism. This generic relationship provides a way to adapt itself to some true underlying relationship via a simple adjustment of parameter.
Hybriad ARQ feedback can then be used to adjust the parameter such that the estimated relationship better matches the true underlying relationship. As alternatives to HARQ feedback, it is possible to use the difference between average block error rate and the respective target value, i.e. X=avg BLER−target BLER. If X is above zero (or, even better, a small positive threshold) over a period of time T, the offset is reduced by one unit. On the other hand, if X is below zero (or, a small negative threshold) over a period of time T, the offset is increased by one unit.
Note that the above methods require a dedicated interface between two nodes, so that the nodes can communicate the information required for setting power values as discussed above.
Another relevant aspect of the deployment, in a network of the type shown in
A first possibility, case A, is that sub-bands 230 are allocated to the macro layer and sub-bands 232 are allocated to the femto layer, so there is no frequency overlap between the two layers. Thus, there is no need to perform interference mitigation between the two layers, as the frequency bands involved are not co-channel.
A second possibility, case B, is that sub-bands 234 are allocated to the macro layer and sub-bands 236 are allocated to the femto layer, so that the frequency band of the femto layer is completely overlapped by that of the macro layer. Thus, while the non-overlapped region of the macro layer is not affected, the impact on the overlapped region could potentially be significant. In this case, interference management becomes very useful.
The intermediate possibility, case C, is that sub-bands 238 are allocated to the macro layer and sub-bands 240 are allocated to the femto layer, and there is a partial overlap between the macro and femto layers. The schedulers of the base stations in the respective layers are expected to select sub-bands automatically so as to avoid the inter-cell interference, and the relationship between sub-bands in the two layers can be mapped using their respective Evolved UMTS Terrestrial Radio Access (E-UTRA) Absolute Radio Frequency Channel Numbers (EARFCN) and bandwidths, which can be exchanged via the X2 interface. However, by incorporating the power management whereby lower power is allocated to sub-bands of higher interference and vice versa, higher performance can still be expected.
Below are set out the possible deployment scenarios allowing communication between the various base stations, in the case of the first method described above and shown in
This is applicable when the HeNBs within a geographic region belong to the same vendor or vendors with a certain special arrangement. This is likely to happen in an “enterprise” environment, in which femtocells collectively share a space, where mobile users are expected to roam freely. In this case, it is possible to define a proprietary message as the “private message” over the X2.
In this scenario, HeNBs can use a standard X2 interface for the purpose of power adaptation. The standard X2-based version does not require the use of private message in the X2 interface. It is not uncommon that the HeNBs in the service area would belong to the same vendor (or different vendors sharing a certain arrangement). However, if two base stations do not belong to the same vendor, the HeNB implementing the algorithm can still benefit from the standard message from its neighbour. Thus, this solution is less sensitive to issues of compatibility among base stations, as long as they share the standard X2 interface.
The neighbouring macro base stations may come from different vendors, but this method would only be applicable in the case of base stations from the same vendor.
This solution does not require a proprietary interface. Therefore, as in the case above where the base stations are in the femto layer only, the X2 interface can be used without requiring the use of a private message.
Base Stations in Femto and Macro Layers, and X2 Interface Available Between them
Due to the expectation that a large number of femto cells reside under a single macro area, it is likely to be more convenient for each HeNB to perform power adaptation than for the macrolayer base station to attempt to set a power that is appropriate for every femtocell. If only the HeNBs are doing the adaptation, there is no need for the power setting algorithm to run at the macro layer base station (at least not to adapt to the power levels in the femto layer). Thus, there is no vendor compatibility issue for the macro layer base stations.
Again, each HeNB can perform power adaptation, and there is no need for the power setting algorithm to run at the macro layer base station.
The method shown in, and described with reference to,
Base Stations in Femto and Macro Layers, and No X2 Interface Available Between them
When no X2 interface is available, it is difficult to estimate the effect of the interference due to a specific neighbouring macro on a frequency-unit by frequency-unit basis. Thus, the effect of inter-cell interference would have to be estimated indirectly.
For example, one way to estimate the inter-cell interference without the use of an X2 interface is to configure and use periodic mobile CQI measurements across the entire bandwidth.
Firstly, the base station collects these CQI measurements from all camped mobiles. These CQI measurements are considered instantaneous on a sub-frame level, and so, to estimate the inter-cell interference over the long term, the base station then performs an averaging of these measurements, which can for example be based on an exponential average or block average, etc.
Since the mobiles are at different geographic locations, their path gains relative to the respective base stations are different. Thus, the average CQI measurements from each mobile are then normalized with respect to its respective mean value.
The serving base station then gathers the normalized average CQI measurements from all mobiles belonging to it, and does an averaging of CQI among all mobiles for each sub-band across the entire bandwidth, resulting in a vector of cell-wise normalized average CQI measurements
For each entry j of {circumflex over (φ)}k that is below a certain threshold {tilde over (φ)}k, the quantity Dj(k) can be set to a negative real value. For example, Dj(k) can be: (a) a fixed negative real value; (b) a value picked from a uniform distribution U(−a, −b), where a and b are some positive real values; (c) the value φk,j−{tilde over (φ)}k; (d) the negative of the largest sum of the path gain ratio between a neighbour relative to all mobiles attached to the serving base station (e.g. similar to equation (8) above); or (e) a version of (d) which involves only the downlink listen mode (DLM), instead of relying on mobile measurements (i.e. similar to equation (11) above).
Once this is done, the algorithm shown in
It should be noted that frequency selectivity may affect the accuracy of the above estimation. That is, the wireless channel can be expected to vary to some extent across the frequency band. Thus, it is expected that the estimation will typically be more accurate in a femtocell environment, as the delay spread is typically smaller. However, the method of estimation is not limited to the femtocell environment.
For the case when X2 is not present between the macro and femto layers, but is present within the femto layer, the set of sub-band indices for which Dj(k) is set should be the union between the set obtained from the X2 interface and that using mobile measurements. The value of Dj(k) can for example be obtained using the path gain measurements as set out in options (d) or (e) above, or variations thereof.
It was discussed above that a “happiness factor” can be defined as the average bit rate achieved by a user divided by the bit rate requirement, {tilde over (R)}k,i. If this bit rate requirement is very high relative to the capacity of the system to handle such a requirement, the system would inevitably attempt to use as much power as possible to fulfil the requirement.
Typically, the required bit rate is controlled by the higher layers of the network. However, one possibility is for the base station to set the bit rate requirements to lower values as follows:
Firstly, take N consecutive samples of the happiness Hk,i. If Hk,i<1 occurs for at least N′ (where N′≦N) consecutive samples, and the system is transmitting at full power, {tilde over (R)}k,i is reduced by a step value Δ{tilde over (R)}k i. This adjustment process takes places very slowly, because the values of N and N′ are relatively large compared to the frequency at which the power setting algorithm is invoked.
This can be repeated until {tilde over (R)}k,i has been reduced to the lowest tolerable value, or until the reduction in the required bit rate means that the utility is decreasing faster than the average power. So, for example, it can be that the process will repeat itself until 1) the rate of change of the average cell utility with respect to the average cell power (the derivative for short) is above a certain threshold or 2) the average cell utility is below a certain utility threshold, or 3) a sub-set of users' utilities are above a certain threshold. As shown in
A minimum tolerable bit rate can be associated with each bit rate requirement set by a mobile. As one example, this lowest tolerable value might be set to a predetermined fraction of the initial bit rate requirement. The predetermined fraction might be set to be a constant value, such as ½ or ¾. Alternatively, the predetermined value might be set based on the traffic type. Thus, the predetermined value might be set to ½ for certain sorts of traffic and to ¾ for certain other sorts of traffic. The lowest tolerable value should always be set such that it protects user i from service shut-down.
As described above, the happiness of a user is defined as the average bit rate divided by the bit rate requirement for the user. Thus, as the bit rate requirement is reduced, the user would appear to be more happy. When the user's happiness improves, there is a less frequent need for the system to increase the power during the power adaptation. This causes the average power to reduce. As the average power reduces, and the bit rate requirement reduces, the average bit rate of the user reduces. Typically, the utility function U is a function of the bit rate. As the average user bit rate decreases, the corresponding utility decreases. However, reducing the bit rate requirement of unhappy users (provided that the bit rate requirement is still above the minimum tolerable bit rate), can reduce the overall average power of the system.
Load computation is an important aspect of LTE, and is relevant in the context of admission control, congestion control, and load balancing. A proper quantification of cell load is needed in order to determine whether a cell can admit new bearers. When the cell is highly loaded, further entry of radio bearers may be prevented in order to maintain the call quality of the existing bearers. Once admitted into the system, the cell load can still fluctuate due to the channel quality variations as a result of channel fading and mobility, etc. Thus, the system would need to cope with such load fluctuation, and some existing bearers may need to be dropped if necessary.
The simplest way to compute the cell load is to compute the average number of resource blocks used relative to the total number of resource blocks of the bandwidth. One drawback of this approach is that it tends to over-estimate the load, especially in the presence of best-effort traffic, and thereby potentially causes inefficient utilization of resources. A more sophisticated way to define cell load for LTE has been proposed in R. Kwan, R. Arnott, et. al. “On Radio Admission Control for LTE Systems”, proc. of IEEE VTC-fall, 2010. To compute the cell load, the required number of resource blocks per bearer is obtained, based on the ratio of the required bit rate and the spectral efficiency per resource block of the user. This quantity is then normalized by the total number of resource blocks in the system bandwidth, and summed over all active bearers in the system.
However, this approach assumes a constant power spectral density across the bandwidth. This assumption is valid when frequency-selective power control is not used. However, in the presence of power control across the bandwidth, i.e. each sub-band can potentially take on a different power level, such an approach would potentially underestimate the load, because power is non-uniformly distributed across the sub-bands, thereby reducing the usability of some sub-bands.
In order to overcome this problem, the load can be defined as:
where {tilde over (R)}k,i and
Note that it is possible for a user to have multiple bearers. In this case, it is more useful to define i as the index of the bearer in the system. Also, in practice, it is possible for a user or a bearer to achieve a very low bit rate, and thereby causing a high load fluctuation. To overcome this, an alternative version of equation (19) is given by
where a positive constant Ci is used to put an upper limit on the bit rate ratio, and reduce potential instability.
There is thus described a method of deploying femtocells that allows power setting to take account of the user requirements.
Number | Date | Country | Kind |
---|---|---|---|
1120462.5 | Nov 2011 | GB | national |
Number | Date | Country | |
---|---|---|---|
Parent | 14360898 | May 2014 | US |
Child | 15374903 | US |