BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic block diagram of a power management system of a laptop computer in accordance with the present invention;
FIG. 2 is a schematic block diagram of a power management system of a laptop computer in accordance with a preferred embodiment of the present invention;
FIG. 3 is a schematic block diagram of a power management system of a laptop computer in accordance with another preferred embodiment of the present invention; and
FIG. 4 is a flow chart of a power management method for use in a laptop computer in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The above and other objects, features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments taken with the accompanying drawings, and same numerals are used to indicate same elements for the illustration of the invention.
Referring to FIG. 1 for a schematic block diagram of a power management system of a laptop computer in accordance with the present invention, the power management system 1 comprises an external power apparatus 10, a control unit 11 and a switch 12. The control unit 11 and the switch 12 can be disposed in the laptop computer 13 and connected to a subsystem 131 in the laptop computer 13. In this embodiment, the external power apparatus 10 can be installed to the laptop computer 13 through an interface such as a USB interface, a PCMCIA interface or a card interface for providing a pluggable function to the external power apparatus 10 and supplying a DC voltage 101 to the laptop computer 13. In addition, the switch 12 can turn on/off the DC voltage 101 and can be connected in parallel with at least one DC voltage point 1311 in the subsystem 131 based on a control signal 111 sent from the control unit 11. It is noteworthy to point out that the DC voltage 101 falls within a range from 5 volts to 1.8 volts and the common voltage supplied to a DC voltage point 1311 is equal to 5 volts, 3.3 volts, 2.5 volts or 1.8 volts. Moreover, the external power apparatus 10 includes a fuel battery or a solar energy battery, and the design of battery mainly takes the convenience and quick charging effect of the battery into consideration. Furthermore, the control unit 11 can use a firmware within a South Bridge chip in the laptop computer 13 or an independent firmware of an embedded controller in the laptop computer 13 to control and send out the required control signal 111 to the switch 12 or other DC power switches in the subsystem 131. The switch 12 can be shared by a current limit chip or a current limit switch in the laptop computer 13 to save the hardware cost of the switch 12.
Referring to FIG. 2 for a schematic block diagram of a power management system of a laptop computer in accordance with a preferred embodiment of the present invention, the power management system 2 comprises an external power apparatus 20 having a USB port, a control chip 21 and a switch chip 22. The control chip 21 and the switch chip 22 are installed in the laptop computer 23. In FIG. 2, a USB port 201 of the external power apparatus 20 can be connected to a USB port 231 of the laptop computer 23 for providing a pluggable function to the external power apparatus 20 and supplying a DC voltage 202 to connect in parallel with a plurality of DC voltage points 232, 233, 234, 235 in the laptop computer 23. Furthermore, a battery 236 in the laptop computer 23 can also provide the required electric power to other DC voltage points 237, 238, 239 as shown in FIG. 2. In this embodiment, the external power apparatus 20 is connected by USB interfaces for supplying a 5-volt DC voltage 202. Therefore, the external power apparatus 20 can be connected in parallel with the DC voltage points 232, 233, 234, 235 in the laptop computer 23 by supplying a 5-volt DC voltage. Such arrangement can supply a 5-volt DC voltage to the DC voltage points 232, 233, 234, 235 respectively to share the electric power consumption of the battery 236. To avoid the external power apparatus 20 from continuing to supply power and causing a leakage current at the laptop computer 23 or a damage to electronic components when the laptop computer 23 is turned off, the switch chip 22 switches the DC voltage 202 to the DC voltage points 232, 233, 234, 235 based on the control signal 211 sent from the control chip 21. In this embodiment, the control chip 21 determines whether or not the control signal 211 is sent out based on a power switch button 240 of the laptop computer 23 or a control switch 2411 of the South Bridge chip 241 in the laptop computer 23. Furthermore, the control chip 21 can send out another control signal 212 based on a power switch button 240 of the laptop computer 23 or a control signal 2411 of the South Bridge chip 241 in the laptop computer 23 to directly control the battery 236 whether or not to supply electric power to other DC voltage points 237, 238, 239. It is noteworthy to point out that the DC voltage 202 can be modulated within a range from 5 volts to 1.8 volts according to the design requirements, and the common voltage supplied to the DC voltage points 232, 233, 234, 235 can be modulated to 5 volts, 3.3 volts, 2.5 volts or 1.8 volts. Further, the external power apparatus 20 can include a fuel battery or a solar energy battery, and the control chip 21 can use a firmware in the South Bridge chip 241 of the laptop computer 23 or an independent firmware of an embedded controller in the laptop computer 23 to send out the required control signal 211, 212 to the switch chip 22 or other DC power switches in the subsystem. It is noteworthy to point out that the switch chip 22 can share a current limit chip or a current limit switch in the laptop computer 23.
Referring to FIG. 3 for a schematic block diagram of a power management system of a laptop computer in accordance with another preferred embodiment of the present invention, the power management system 3 comprises an external power apparatus 30, a control unit 31 and a plurality of switches 321, 322, 323. The control unit 31 and the switches 321, 322, 323 are installed in the laptop computer. In FIG. 3, the external power apparatus 30 can be connected by a power interface 331 such as a USB interface, a PCMCIA interface or a card interface of a laptop computer 33 for providing a pluggable function to the external power apparatus 30 and supplying a DC voltage 301, 302 through the switches 321, 322, 323, and can be connected in parallel with a DC voltage point 332, 333, 334 in the laptop computer. It is noteworthy to point out that the DC voltage 302 at the DC voltage points 333, 334 can come from the external power apparatus 30 or a battery of the laptop computer 33. To prevent the external power apparatus 30 from continuing to supply power and providing a leakage current to the laptop computer 33 when the laptop computer 33 is turned off, which may easily cause damages to electronic components, the switches 321, 322, 323 selectively turn on/off a DC voltage 301, 302 and are connected in parallel with a DC voltage point 332, 333, 334 based on the control signal 311, 312 sent from the control unit 31. The control unit 31 of this embodiment can determine whether or not the control signal 311, 312 is sent out based on a power switch button 335 of the laptop computer 33 or a control switch 3361 of a South Bridge chip 336 in a laptop computer 33. The DC voltage 301, 302 can be modulated within a range from 5 volts to 1.8 volts according to the requirement at the DC voltage point 332, 333, 334, and the voltage commonly supplied to the DC voltage point 332, 333, 332 can be modulated to 5 volts, 3.3 volts, 2.5 volts or 1.8 volts. Further, the external power apparatus 30 includes a fuel battery or a solar energy battery, and the control unit 31 can use a firmware in the South Bridge chip 336 in the laptop computer 33 or an independent firmware of an embedded controller in the laptop computer 33 to control and send out the required control switch 311, 312 to the switch 321, 322, 323. The switch 321, 322, 323 can be a current limit chip or a current limit switch in the laptop computer 33.
Referring to FIG. 4 for a flow chart of a power management method for use in a laptop computer in accordance with the present invention, the power management method comprises the steps of:
Step 40: installing a fuel battery or a solar energy battery in an external power apparatus for externally supplying a DC voltage that falls within a range from 5 volts to 1.8 volts. The common voltage of the DC voltage is equal to 5 volts, 3.3 volts, 2.5 volts or 1.8 volts;
Step 41: plugging an external power apparatus into a corresponding interface slot such as a USB port, a PCMCIA interface slot or a card interface slot of the laptop computer by an interface such as a USB interface, a PCMCIA interface or a card interface;
Step 42: using a control unit, an embedded controller, a control chip or a South Bridge chip to supply a DC voltage of an external power apparatus through the interface and connect the external power apparatus in parallel with the DC voltage point, if a stable voltage is detected or confirmed at a position of at least one DC voltage point of the laptop computer;
Step 43: or using a control unit, an embedded controller, a control chip or a South Bridge chip to turn off the DC voltage to be supplied to the DC voltage point, if the power of the laptop computer is detected to be turned off.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.