Power manager

Information

  • Patent Grant
  • 10250134
  • Patent Number
    10,250,134
  • Date Filed
    Tuesday, April 1, 2014
    10 years ago
  • Date Issued
    Tuesday, April 2, 2019
    5 years ago
Abstract
An improved power manager includes a power bus (410) and multiple device ports (1-5), with at least one device port configured as a universal port (3 and 4) to be selectively connected to the power bus over an input power channel that includes an input power converter (510) or over a output or universal power channel (412, 416) that includes an output power converter (440, 442). The universal power channel (412) allows the input port (4) to be selected as an output power channel instead of an input power channel (i.e. operated as a universal port) for outputting power to device port (4) over power converter (440). The improved power manager (500) includes operating modes for altering an operating voltage of the power bus (505), to minimize overall power conversion losses due to DC to DC power conversions used to connect non-bus voltage compatible power devices to the power bus.
Description
2 BACKGROUND OF THE INVENTION

2.1. Field of the Invention


The exemplary, illustrative, technology herein relates to power manager systems suitable for operably connecting one or more power sources and one or more power loads to a power bus and distributing power from the power sources to the power loads over the power bus. The improved power manager includes at least one universal port that can be operated as an input port to receive input power from a power source and that can also be operated as an output port to deliver output power to a power load. Additionally the improved power manager includes system and operating method improvements provided to reduce power loss stemming from DC to DC power conversions.


2.2. The Related Art


Referring to FIGS. 1 and 2, a conventional power manager (100, 200) includes a Direct Current (DC) power bus (105) and six power ports (110, 130) operably connectable with the power bus. Up to six external power devices (115, 120) can be connected, one to each of the six device ports (110), and all six external power devices can be operably connected to the power bus (105) simultaneously. In one particularly relevant embodiment disclosed in U.S. Pat. No. 8,633,619 to Robinson et al. entitled Power managers and method for operating power managers, issued on Jan. 21, 2014; a power manager is disclosed that includes six device ports. The power manager system disclosed by Robinson et al. is shown schematically in FIGS. 1 and 2. In FIG. 1, a power manager (100) includes six device ports with two input device ports (130) and four output device ports (110). When all the device ports are connected to external power devices each device port (110, 130) is connected to an input power or energy source (115) or to a power load (120).


Each device port is operably connectable to a power bus (105) by operating one or more controllable switches. In an initial state each controllable switch is open (shorted) to disconnect the device port from the power bus. An electronic controller (125, 205) operates the controllable switches according to an energy management schema program or firmware running on the electronic controller. The electronic controller also communicates with each external device (115, 210) or with a smart cable associated with the external device to determine its operating voltage range and other power characteristics. The electronic controller continuously monitors external devices connected to the device ports and continuously evaluates if each connected external power device is a power source or a power load and further determines whether the external power device can be connected to the power bus (105) or not. In the event that the electronic controller determines that the connected external device is not compatible with connecting to the power bus the device is not connected. In the event that the electronic controller determines that an external device already connected to the power bus is no longer compatible with connecting to the power bus the device is disconnected by actuating a controllable switch.


The power manager (100, 200) is configured as a Direct Current (DC) device suitable for use with DC power sources and DC power loads. The conventional power bus (105) operates at a substantially fixed DC voltage. While the fixed bus DC voltage may fluctuate as power loads and power sources are connected to or disconnected from the power bus (105) the power bus voltage is substantially maintained within a small voltage range, e.g. 10-14 volts or the like, referred to herein as a “bus-compatible voltage.”


When an external power device (115, 120) is determined to be operable at a bus-compatible voltage the external power device (115, 120) is preferably directly connected to the power bus without any power conversion. Thus power sources and power loads that can operate at the bus-compatible voltage can be directly connected to the power bus (105) over any one of the device ports (110) or (130) without the need for a voltage conversion. This is demonstrated in FIG. 2 which shows a schematic representation of a pair of input device ports (130a) and (130b) each connectable to the power bus (105) over two different connection paths and a pair of output device port (110a) and (110b) each connectable to the power bus (105) over two different connection paths. As shown, each input device port (130a, 130b) includes a first power channel (1080) that extends between the device port (130a) and the power bus (105) and another first power channel (1085) that extends between the device port (130b) and the power bus (105). As also shown each first power channel (1080, 1085) includes a first controllable switch (1040) disposed between port (130a) and the power bus and first controllable switch (1030) disposed between port (130b) and the power bus. Similarly each output port (110a, 110b) also includes a first power channel (1090, 1095) and a first controllable switch (1055) disposed between the output port (110a) and the power bus (105). Thus all six device ports include a first power channel for directly connecting an external device connected to the device port to the power bus when the first controllable switch is closed.


In operation the first controllable switch is opened preventing the external device from connecting with the power bus (105). The electronic controller (125) communicates with each external power source (115a, 115b) and with each external power load (120a, 120b) to determine operating voltages of each externally connected power device. If any of the connected external devices are operable at the bus compatible voltage the electronic controller (125) can actuate (close) the relevant first controllable switching elements (1030, 1040, 1055, 1060) to directly connect all of the external devices that can operate at the bus voltage to the power bus if other conditions of the energy management schema justify the connection. Moreover in the case where a power source or a power load is operable at the bus compatible voltage power sources (115a, 115b) and the power loads (110a, 110b) are interchangeable between the input device ports (130a, 130b) and the output ports (110a, 110b). More generally every device port (110) can be used as in input device port or an output device port when the connected external device is operable at the bus-compatible voltage.


Alternately when a connected external device is not operable at the bus-compatible voltage it can be connected to the power bus over a DC to DC power converter when the power converter is configurable to perform a suitable voltage conversion. This is demonstrated in FIG. 2 wherein the two input device ports (130a, 130b) share a single input power converter (1065) and the two output device ports (110a, 110b) share a single output power converter (1070). Each power converter (1065) and (1070) is unidirectional such that the power converter (1065) can only make a power conversion on an input power signal received from a power source (115a, 115b) and the power converter (1070) can only make a power conversion on an output power signal received from the power bus (105).


The input ports (115a, 115b) share the input power converter (1065) over a second power channel (1075). The channel (1075) is accessed by the device port (130a) by opening the switches (1040) and (1035) while closing the switch (1025) such that a power signal received through the input device port (130a) flows over the second power channel (1075) and through the power converter (1065) to the power bus (105). The channel (1075) can also be access by the device port (130b) by opening the switches (1030) and (1025) and closing the switch (1035) such that a power signal received through the input device port (130b) flows over the second power channel (1075) and through the power converter (1065) to the power bus (105). Thus one of the two input power sources (115a) and (115b) can be connected to the power bus over the input power converter via the second power channel (1075), both of the two input power sources (115a) and (115b) can be connected to the power bus over the two first power channels (1080) and (1085) or one of the two input power sources (115a) and (115b) can be connected to the power bus over the input power converter via the second power channel (1075) while the other of the two input power sources (115a) and (115b) is connected to the power bus over the relative first channel (1080) or (1085).


Similarly the output ports (110a, 110b) share the output power converter (1070) over a second power channel (1097). The channel (1097) is accessed by the device port (110a) by opening the switches (1045) and (1055) while closing the switch (1050) such that a power signal flowing from the power bus (105) to the output port (110a) flows through the output power converter (1070) and over the second power channel (1095) to the power load (120a). The channel (1075) can also be accessed by the device port (110b) by opening the switches (1050) and (1060) and closing the switch (1045) such that a power signal flowing from the power bus (105) to the output port (110b) flows through the output power converter (1070) and over the second power channel (1095) to the power load (120b).


Thus one of the two power loads (120a) and (120b) can be connected to the power bus over the output power converter via the second power channel (1097), both of the two power loads (120a) and (120b) can be connected to the power bus over the two first power channels (1090) and (1095) or one of the two power loads (120a) and (120b) can be connected to the power bus over the output power converter via the second power channel (1095) while the other of the two power loads (120a) and (120b) is connected to the power bus over the relative first channel (1090) or (1095). While not shown in FIG. 2 the remaining pair of output device ports (totaling six ports) is configured like the output device ports (110a) and (110b). Thus all six device ports of the device (100) include a first power channel for directly connecting an external device connected to the device port to the power bus when the first controllable switch disposed along the first power channel is closed. Meanwhile at the two input device ports (130a) and (130b) share an input power converter and each pair of output device ports shares an output power converter.


2.2.1 Empty Input Device Ports not Utilized


Accordingly one problem with the device disclosed by Robinson et al. is that for a given pair of device ports only one of the device ports has access to a power converter. In the case of the input device ports (130a, 130b) the input power converter (1065) can operate with one power conversion setting, e.g. to step up or step down the input voltage to match the bus voltage. Thus if two input sources are available and each has a different non-bus compatible operating voltage, only one of the two input sources is usable and one of the input device ports is available. While the unused input port can be used as an output port for a power load that is bus voltage compatible there is no opportunity to use the empty input port for a non-bus compatible voltage device. The problem also extends to the output side. As a result one of the input ports is not usable. In the case of the output device ports (110a, 110b) and other pairs on the power manager, the output power converters (1065) can operate with one power conversion setting, e.g. to step up or step down the bus voltage to match the connected non-bus voltage compatible power load. Thus if two power loads are in need of power and each has a different non-bus compatible operating voltage, only one of the two power loads can be powered and one of the two output device ports associated with the output power converter is available. While the unused output port can be used as an output port for a power load that is bus voltage compatible there is no opportunity to use the empty output port for a non-bus compatible voltage device.


Thus one problem that arises with conventional power managers that do not include a power converter for each device ports is that not all the available device ports can be utilized to power loads that require a power conversion. In one example, the bus is powered by a single power source connected to one of the input device ports (130a, 130b) and there are more than four power loads that need power. In this example four power loads may be able to be powered at the four output ports (110) but one of the input ports (130) is empty. While the empty input port can be utilized to power a load with a bus compatible operating voltage there is a need to utilize the empty input port to power a load that needs a power conversion. More generally there is a need to utilize empty input and output device ports to power loads that require a power conversion.


2.2.2 Power Loss Resulting from Each Power Conversion


A further problem in the art relates to suffering power losses associated with each power conversion. As is well known, each power conversion (e.g. a buck/boost converter) has an associated power loss in proportion to the input and output voltage and the input and output current amplitude. The power loss for such a conversion for a defined set of input and output currents can be approximated by:

PLoss=Ls(|Vin−Vout|)  Equation 1

where the power loss PLoss is the power lost due to the voltage conversion for given input and output current amplitudes, Ls is a loss factor associated with the particular power converter or type of power converter, Vin is the input voltage, and Vout is the output voltage. Thus the power loss is directly proportional to the step up or step down voltage.


2.2.3 Fixed Bus Voltage can Lead to Power Loss


When a power manager (e.g. 200) is operated with a fixed bus voltage, unnecessarily large step up and step down voltage conversions are sometimes performed, leading to unnecessary power loss. Moreover, as described above, operating a power manager with a fixed bus voltage can lead to empty device ports that are not usable to power loads. Since all the device ports of the device shown in FIG. 2 include a power channel to directly connect a power device to the power bus without a power conversion, allowing the bus voltage to match the voltage of at least some of the power devices connected to the power bus can help to avoid power conversions. Alternately reducing the step up or step down voltage at each converter can also reduce power conversion losses.


In a conventional operating mode, a fixed bus voltage ranges from 12-16 volts, but the user has a 30 volt power supply and a plurality of 30 volt power loads that need to be connected to the power manager. In this case, each 30 volt device requires a power conversion to connect to the power bus. When each device is power converted, power losses occur at each device port. Given that in many cases, power managers are used in remote locations to simultaneously power a plurality of power loads using limited input power resources, a power loss at every device port is not desirable. Thus, there is a need in the art for a power manager that can adapt its bus voltage according to the configuration of power devices connected to it to reduce power loss and maximize device port utilization.


3 SUMMARY OF THE INVENTION

In view of the problems associated with conventional methods and apparatus set forth above, it is an object of the present invention to improve device port utilization by making more device ports available to power additional non-bus voltage compatible power loads.


It is a further object of the invention to reduce power loss associated with power conversions by performing fewer power conversions.


It is a further object of the invention to reduce power loss when power conversions are performed by reducing the quantity |Vin−Vout| listed in Equation 1.


It is a still further object of the present invention to provide a power manager that operates at a plurality of different bus voltage operating points.


It is a still further object of the present invention to determine a bus voltage operating point that reduces power loss according to the operating voltages of connected power devices.





4 BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention will best be understood from a detailed description of the invention and example embodiments thereof selected for the purposes of illustration and shown in the accompanying drawings in which:



FIG. 1 illustrates a schematic diagram representing a conventional power manager having six device ports connected to a power bus with 2 device ports configured as input ports and four device ports configured as output ports.



FIG. 2 illustrates a schematic diagram representing a portion of a conventional power manager with two input ports sharing an input power converter and two output ports sharing and output power converter.



FIG. 3 illustrates a schematic diagram representing a first non-limiting exemplary embodiment of a power manager having an improved power channel layout according to the present invention.



FIG. 4 illustrates a schematic diagram representing a second non-limiting exemplary embodiment of a power manager having an improved power channel layout and control system according to the present invention.



FIG. 5 illustrates a schematic diagram representing a third non-limiting exemplary embodiment of an improved power manager having a variable voltage power bus according to one aspect of the present invention.





5 DESCRIPTION OF SOME EMBODIMENTS OF THE INVENTION

5.1 Overview


5.1.1 Expanded Access to Power Converted Output


In exemplary, non-limiting, embodiments of the invention an improved power manager operating with a fixed bus voltage includes additional power channels and related control elements for routing power from an output power converter to a plurality of device ports, including to device ports associated with an input power converter. The additional power channels allow a user of the power manager to connect power loads to input device ports even when the power load connected to the input device port operates with a non-bus compatible voltage. In one example embodiment shown in FIG. 3, a single input device (115b) is used to power three power loads (110a, 110b, 110c) over a single output converter (3070), as illustrated by bold arrows, indicating flow of power from power source (115b) to power loads (110a, 110b, 110c). This in an improvement over conventional power manager (200) which is limited to powering only two power loads (110a, 110b) over a single power converter (1070).


In a further example shown in FIG. 4, a single input source connected to power manager (400) at device port (3) is used to power three power loads, power loads at ports (1, 2, and 6), over a single output power converter (440) by providing an additional power channel (414) and associated controllable switch (484). This is an improvement over conventional power managers which are limited to powering only two power loads over a single power converter. In further embodiments, additional power channels are provided to power more than three device ports through a single output power converter (440). Meanwhile each of the device ports of the improved systems (300) and (400) each includes a first power channel and first controllable switch provided to connect any bus compatible voltage power device connected to any device port to the power bus without passing over a power converter.


5.1.2 Bus Voltage Varied to Reduce Power Conversion Losses


In exemplary, non-limiting, embodiment of the invention an improved power manager (500), shown in FIG. 5, manages the device bus voltage according to the collective operating voltages of external power devices connected to the power bus. The power manager further includes an electronic controller and a communications interface module wherein the communications interface module connects the electronic controller to the each device port, to sensors measuring power conditions on the power bus and to other components of the power manager. The controller receives information regarding the external devices connected to the power manager and controls components of the power manager to set the bus voltage, to set power conversion parameters of the power converters, and to connect and disconnect device ports to and from the power bus according to an energy management schema. The controller is further configured to collect operating voltage parameters of each external power device connected to a device port and to calculate a bus voltage that minimizes power losses due to power conversions required by power converters to connect power devices to the power bus. The need for a power manager that reduces power losses due to power conversions is met by providing a power manager with a variable bus voltage wherein the bus voltage is set to a value that minimizes power losses due to conversion of input and output power to accommodate attached power sources and power loads.


These and other aspects and advantages will become apparent when the Description below is read in conjunction with the accompanying Drawings.


5.2 Item Number List (if Applicable)


The following item numbers are used throughout, unless specifically indicated otherwise.















#
DESCRIPTION
#
DESCRIPTION


















100
Power Manager
400
Power Manager


105
Power Bus
405
Electronic Controller


120
Device Port (Output Port)
403
Communication Interface


115
External Device Power Source
3
Device Port (Input Port/Universal Port)


110
External Device Power Load
4
Device Port (Input Port/Universal Port)


125
Electronic Controller
5
Device Port (Output Port)


130
Device Port (Input Port)
6
Device Port (Output Port)




1
Device Port (Output Port)


200
Power Manager
2
Device Port (Output Port)


205
Electronic Controller
410
Power Bus


210
Communication Interface
402
Direct Power Channel (Port 3)


1065
Input Power Converter
404
Direct Power Channel (Port 4)


1070
Output Power Converter
406
Direct Power Channel (Port 2)


1025
Switching Element
408
Direct Power Channel (Port 1)


1030
Switching Element
535
Direct Power Channel (Port 6)


1035
Switching Element
525
Direct Power Channel (Port 5)


1040
Switching Element
470
FET


1045
Switching Element
475
FET


1050
Switching Element
450
FET


1055
Switching Element
455
FET


1060
Switching Element
460
FET


1080
Non-Converted Power Channel
465
FET


1085
Non-Converted Power Channel
510
Input Power Converter


1090
Non-Converted Power Channel
532
Input Converter Power Channel


1095
Non-Converted Power Channel
503
FET


1075
First Conductive Channel
505
FET


1097
Second Conductive Channel
440
Output Power Converter




435
Output Converter Power Channel


300
Improved Power Manager
485
FET


305
Power Bus
480
FET


330
Universal Port
442
Output Power Converter


3080
Direct Power Channel
530
Output Converter Power Channel


3085
Direct Power Channel
495
FET


3090
Direct Power Channel
490
FET


3095
Direct Power Channel
412
Additional Power Channel (Port 4)


3065
Input Power Converter
482
FET


3075
Input Converter Power Channel
416
Additional Power Channel (Port 3)


3070
Output Power Converter
486
FET


3097
Output Converter Power Channel


310
Additional Power Channel
500
Power Manager


315
Controllable Switch
505
Power Bus


320
Controllable Switch
550
Electronic Controller


325
Controllable Switch
555
Communication Interface




560
Bus Sensor Module




510
Input Power Converter




515
Input Power Converter




520
Output Power Converter




525
Output Power Converter




503
Input Device Port




504
Output Device Port




530
Power Source




540
Power Load




5080
Non-Converter Power Channel




5085
Non-Converter Power Channel




5090
Non-Converter Power Channel




5095
Non-Converter Power Channel










5.3 Brief Description of the Invention


Referring to FIG. 3 an improved power manager (300) according to the present invention comprises a power bus (305) and a plurality of device ports (330, 120) connectable to the power bus over a plurality of independent power channels. Each power channel includes one or more control devices such as controllable switches (e.g., 1030, 1035, 1060, 325) and controllable DC to DC power converters (3065, 3070) in communication with an electronic controller (350). The electronic control may comprise a microprocessor or the like, and a separate or integrated data storage module (352) in communication with the electronic controller (350). In addition a communications interface (354) such as SMbus or the like extends to each device port to communicate with external power devices connected with the device ports. In addition the communications interface (354) further includes elements that interconnect operable and passive electronic devices within the power manager to the electronic controller (350) as required to operate switches, to operate the power converters (3065) and (3070), and to collect data from sensors and other electronic components.


Device ports (120a, 120b, 330a, 330b) are configured to interface with external power devices which may comprise power sources, power loads, or rechargeable batteries (energy sources). Rechargeable batteries may operate as an energy source when discharging to the power bus or as a power load when recharging or drawing power from the power bus. Throughout the specification when a power load is referenced it is understood that the term power load may encompass a rechargeable battery or other rechargeable energy storage device that is recharging or otherwise drawing power from the power bus (305). Similarly, the term power source is understood to encompass rechargeable batteries or other rechargeable power devices that are discharging power to the power bus (305). It is further noted that in a preferred embodiment each device port comprises a physical connector or plug suitable for connecting to an external power device over a wire or cable that is terminated by a connector or plug suitable for mating with the device port such that external devices are easily connected to or disconnected from device ports. It is further noted the preferred power manager (300) is a portable or more specifically man portable device and that the preferred power manager is a DC to DC device exchanging power only with other DC devices or devices that are converted to a suitable DC power signal. Additionally it is noted that the preferred device port includes a wire network channel such that the power managers can at least receive digital data from each external device connected to a device port over a wire network interface using a network protocol such as SMbus, RS232, USB and the like.


In one example embodiment, the power bus operates with a substantially fixed bus voltage although the embodiment of FIG. 3 is not limited to a fixed bus voltage device. The power manager includes control elements and programs stored on the data storage module (352) and operable on the electronic controller (350) for communicating with external power devices connected to device ports over the communication interface (354) to ascertain the device power characteristics, including a type and operating voltage range of each connected external power device. If the external power device is bus-voltage compatible (i.e. has an operating voltage that overlaps with the power bus voltage) the external device can be directly connected to the power bus over a direct power channel (e.g. 3080, 3085, 3090, 3095) by closing appropriate control switches (e.g. 1030, 1040, 1055, 1060) and opening appropriate controllable switches (e.g. 1025, 1035, 320, 325, 315a and 315b). Additionally, the electronic controller (350) operates energy management schema programs that select which external power devices to connect to the power bus (305) or to disconnect from the power bus (305) according to the overall operating configuration and operating mode of the power manager (300).


If the external power device does not have a bus-voltage compatible operating voltage the external device can be connected to the power bus over a power converter channel (e.g. 3075, 3097) that includes an input power converter (3065) for converting the input voltage of a power source to a bus compatible voltage converting or an output power converter (3070) for converting bus voltage to a suitable output voltage for powering a connected a power load. On the input side the input power converter (3065) can be configured to convert an input power signal by either stepping the input voltage up or stepping the input voltage down as required to match the bus voltage. In the present example, switch (1035) is closed and switches (1025) and (1030) are opened in order to direct input power from the power source (115b) to the power bus over the input power converter channel (3070) which passes through the input power converter (3065). In another operating mode wherein the power source (115b) has a bus compatible voltage the port (330b) is connected directly to the power bus (305) without power conversion by opening the switches (1035) and (315b) while closing the switch (1030).


The input and output power converters (3065) and (3070) are each controlled by the electronic controller (350) and are each operable to step the input voltage up or down as well as to modulate power amplitude. Additional each device is unidirectional with the input voltage of the input power converter (3065) coming from the input ports (330a, 330b) and the input voltage of the output power converter (3070) coming from the power bus (305). Generally the power converters operate to modulate power amplitude passing over the power converter between a substantially zero and a maximum available power amplitude. Moreover the power converters substantially prevent power from passing from the output side to the input side.


Two power sources (115a) and (115b) each having the same non-bus compatible voltage can be, connected one to each of the device ports (330a) and (330b), and power converted simultaneously by directing the input power from each of the device ports (330a) and (330b) over the power converter channel (3075) to the power converter (3065) as long as both external power sources require the same power conversion. In this example configuration, two power sources are connected to the power bus (305) over the power channel (3075) by opening and closing appropriate control switches and by configuring the power converter (3065) for the desired power conversion. In particular this is possible when switches (315b), (315a), (1030) and (1040) are open and switches (1035) and (1025) are closed. It is further noted that the power converter channel (3070) extends from the power bus (305) through the input power converter (3065) and branches onto tow paths to connect with each device port (330a) and (330b).


On the output side of the power bus the output power converter (3070) can be configured to power convert a power signal output from the power bus (305) to power an external power load connected to either one or both of the device ports (120a or 120b) over an output power converter channel (3097). In particular the output power converter channel (3097) extends from the power bus to the output power converter (3070) and then in two branches to each of the output device ports (120b) and (120a). In addition the power channel (3097) includes two controllable switches (325) and (320) which can be opened to disconnect a corresponding device port from the power bus or closed to connect a corresponding device port to the power bus over the output power converter. Accordingly, each of the external power loads (110a) and (110b) connected to the device port (120a and 120b) can be connected to the power bus over the output power converter (3070) when both loads (110a and 110b) have the same non-bus compatible operating voltage. In either case the devices (110a and 110b) are connected to the power bus (305) over the output power converter channel (3097) by opening and closing appropriate control switches and by configuring the output power converter (3070) for the desired power conversion.


As is the case on the input side, either or both of the output device ports (120a) and (120b) can be connected directly to the power bus (305) without power conversion. In the case of output device port (120a) any power device that operates with a bus compatible voltage can be connected to the power bus over the power channel (3095) by opening switches (325) and (315b) and closing switch (1060). In the case of output device port (120b) any power device that operates with a bus compatible voltage can be connected to the power bus over the power channel (3090) by opening switches (320) and (315a) and closing switch (1055).


In a further aspect of the present invention two additional power channels (310a and 310b) are disposed, one each, from the output of the power converter (3070) to two universal device ports (330a and 330b) respectively. Each power channel (310a and 310b) includes a controllable switch (315a, 315b) in communication with the electronic controller (350) for opening and closing each switch to connect or disconnect the appropriate power channel (310a or 310b) to deliver power to a power load connected to one of the universal device ports (330a or 330b) or both. In particular the present invention and specifically the power channels (310a) and (310b) allow the input ports (330a) and (330b) to operate as universal port capable of being used as an input port for input power sources that require power conversion by an input power converter or as an output port for power loads that require power conversion by an output power converter.


In one operating example a power source (115b) is connected to the power bus (305) over the input power converter (3065) through power channel (3075). Alternately the power source (115b) can be directly connected to the power bus (305) over the power channel (3085) if the power source has bus compatible operating voltage. On the output side, the power load (110a) is connected to the power bus (305) over the power converter (3070) by power channel (3097). Alternately or additionally the power load (110b) is also connected to the power bus (305) over the power converter (3070) by the power channel (3097). In addition the power channel (3097) extends to power channel (310a) when switch (315a) is closed such that a power load (110c) connected to the device port (330a) is also connected to the power bus over the output power converter (3070). In alternative operating modes, one or both of the power devices (110a, 110b) can be directly connected to the power bus (305) without a power conversion over the power channels (3090 and 3095) respectively and in that case one or both of the power devices (110a and 110b) may comprise a power load or a power source or a rechargeable battery. In a further alternate operating mode the input power source (115b) can be exchanged with a power load and connected to the power bus over the output power converter (3070) using the power channel (310b) when switch (315b) is closed.


In another exemplary operating mode, either one or both of device port (330a) and device port (330b) can be connected to bus (305) over power channels (310a) and/or (310b), respectively, while one, both, or neither of device ports (120a, 120b) are simultaneously connected to the power bus over output power converter (3070). In an exemplary operating mode one or both of device ports (120a, 120b), includes a connected power source having a bus compatible voltage and the respective device port is connected to the bus (305) over a non-converted power channel (3095, 3090). In such an operating configuration one or both of device ports (330a, 330b) may be connected to bus (305) through output power converter (3070) over channels (310a, 310b). Thus using a single power source having a bus compatible voltage connected to e.g. port (120b) and directly connected to the power bus (305) over the channel (3095) up to three power loads having the same non-bus compatible operating voltage can be powered from the output power converter (3070).


The power channel (3097) extends from the output end of a power converter (3070) to each of the device ports (120a and 120b) and includes controllable switches (320 and 325) for connecting or disconnecting the devices (110a and 110b) as required. The additional power channels (310a and 310b) extend the power channel (3097) to the device ports (330a and 330b) and include additional controllable switches (315a and 315b) for connecting or disconnecting the device ports (330a) and (330b) to the output converter (3070) as required.


Thus the improved power manager (300) includes at least one universal port, (e.g. 330a or 330b), capable of operating as an input port or an output port with selectable input or output power conversion. Specifically, when a power device connected to the universal port (330a) is determined to be a power source, the power source is either directly connected to the power bus over the power channel (3080) when no power conversion is required, or the power source is connected to the power bus over the input power converter (3065) using the power channel (3075), if the input power converter is available, i.e. not already in use or not able to make the desired power conversion. Conversely, when a power device connected to the universal port (330a) is determined to be a power load, the power load is either directly connected to the power bus over the power channel (3080) when no power conversion is required, or the power load is connected to the power bus over the output converter (3070) if it is available, i.e. not already in use or not able to make the desired power conversion. In particular the electronic controller (350) checks the status of the output power converter (3070) to determine if it can be configured to connect a power load connected to the universal device port (330a) to the power device. If the power converter is available (i.e. either not in use or not in use at a non-compatible power conversion setting), the power converter is configured with appropriate power conversion parameters to power he load connected to the universal port (330a) and the switch (315a) is closed to connect the power load (110c) to the power bus over the power converter (3070). Meanwhile other switches that are opened or remain opened include (1040), (315b) and possibly (320) and (325) depending on the external devices are connected to device ports (120a) and (120b).


In operation, all the control switches in the power manager (300) are initially opened to prevent current flow over any of the power channels. The electronic controller (350) then polls all of the device ports and determines if an external power device is connected and the power device type and power characteristics of each connected power device. Once the device types and characteristics are determined the energy management schema selects a system configuration which includes generating a list of external devices to connect to the power bus, determining the power conversion settings of each power converter, determining which power channel each device will be connected to the power bus over and determining which switches to open and close. Thereafter the electronic controller (350) periodically polls all of the device ports to update configuration information and the energy management schema operates to adjust the connected power device configuration according to program parameters. Additionally the electronic controller (350) initiates the polling process whenever a change in device configuration is detected, e.g. if an external device is connected or disconnected.


Typical example power and energy sources (115) include energy storage devices such as batteries; a grid power source (e.g. a wall outlet converted to DC power); mechanically driven power generators (such as fossil fuel engines, wind, water, or other mechanically driven power generators); and/or current generators such as photovoltaic and electrochemical devices. Example power loads (110) include any device powered by electricity, but usually include portable electronic devices that operate on a rechargeable DC battery or that operate on DC power received from the power manager. In some instances, an input power source may use an additional power conversion to become compatible with the power manager. For example, if an AC power grid is available (120 volts alternating at 60 Hz or 240 volts at 50 Hz), an additional external power converter is used to invert the AC current and step the AC voltage down from the grid voltage to a DC voltage that is either directly compatible with the power bus voltage range or that can be converted to the power bus voltage range using the DC to DC input power converter (3065). However, it is within the scope of the present invention to include a power converter within the power manager (300) that is configured to convert various AC power grid signals to a power signal that is compatible with power bus voltage range.


5.3.1 Power Manager with Six Ports


Referring now to FIG. 4, a power manager (400) comprises six device ports (1-6) operably connectable to a DC power bus (410). The power bus is operating at 15 volts DC with some moderate voltage variability around 15 volts (e.g. +/−3 volts) and is suitable for direct connection with external power devices having an operating voltage in the range of 15+/−3 volts. Each of the six device ports can be directly connected to the power bus (410) over a direct power channel (402, 404, 406, 408, 535, and 525) respectively by closing controllable switches or field-effect-transistor (FET), (470, 475, 450, 455, 460, and 465) disposed on each of the direct power channels between corresponding the device ports and the power bus. Each direct power channel extend from the device port to the power bus without power conversion and is used if the external device is operable at a bus compatible voltage e.g. 15+/−3 volts, i.e. when the external device is bus-voltage compatible. In the case where the external device is bus voltage compatible, the external device is operable as a power source or as a power load irrespective of whether the external device is connected to an input port or an output port. Power manager (400) includes an electronic controller (405) and associated communication interface (403), shown by dashed lines, electrically interfaced to each device port (1-6), to each power converter (510, 440, 442), and to each FET, (e.g. 503, 505, 480, 485, 482, 486, 490, 495). The communication interface (403) include a variety of network communication paths suitable for digital data communications, e.g. between the electronic controller (405) and external devices connected to device ports as well as other conductive paths or the like suitable for exchanging analog signals and or digital control signals e.g. with FET's voltage converters, sensors and other components of the power manager.


The power manager (400) includes two input ports (3, 4) associated with a single unidirectional input power converter (510). The input power converter (510) has an input power conversion range (step up or step down) of 4 to 34 volts. Either of the input ports (3, 4) is usable to connect an external power device to the power bus (410) over the power converter channel (532) that includes the power converter (510). Thus a non-bus voltage compatible power source connected to either one of the input ports (3) and (4) can be connected to the power bus (410) over the power converter (510) by closing either FET (503 or 505) when the power converter is operating at an appropriate step up or step down voltage. However the power converter (510) can only be used by one of the device ports (3) and (4) unless each device port is connected to a power source that requires the same power conversion setting to connect to the power bus. For example if substantially identical 24 volt power sources are connected to each of the device ports (3) and (4), each power source can be connected to the power bus with a 9 volt step down conversion and both devices can be simultaneously connected to the power bus over the power converter (510) by closing both FETs (503, 505) At the same time, each of the FET's (486, 470, 482, 475) is opened to disconnect the channels (416, 402, 404, 412) from the input device ports (3, 4).


The power manager (400) includes four output ports (1, 2) and (5, 6) each operably connectable to the power bus (410) and to external power devices suitable for connecting to the power bus. Output ports (1) and (2) are associated with a single unidirectional output power converter (440) disposed along an output power converter channel (435) which extends from the power bus to the output power converter (440) and branches to each of the ports (1, 2) over control switches (485) and (480). Output ports (5) and (6) are associated with a single unidirectional output power converter (442) disposed along an output power converter channel (530) which extends from the power bus to the out power converter (442) and branches to each of the ports (5, 6) over control switches (495) and (490). Each of the output power converters (440, 442) has an output power conversion range (step up or step down) of 10 to 24 volts. Either of the output ports (1, 2) is usable to connect an external power load to the power bus (410) over the output converter power channel (435) that includes the output power converter (440). It is noted that the converter power channel (435) is shared by the two ports (1, 2) and therefore can only be used for a single power conversion by one of the device ports (1, 2) unless both of the device ports can use the same power conversion. The output converter power channel (435) is accessed by port (1) by closing FET (485) and opening FET's (480), (455), (484) and (482).


Either of the output ports (5, 6) is usable to connect an external power load to the power bus over the output power converter channel (530) that includes the output power converter (442). It is noted that the output power converter channel (530) is shared by the two ports (5, 6) and therefore can only be used for a single power conversion by one of the device ports (5, 6) unless both device ports can use the same power conversion. The output power conversion channel (530) is accessed by port (6) by closing FET (490) and opening FET's (495), (460), (484) and (486).


The power manager (400) further includes a power channel (412) that extends from the output of power converter (440) by branching from converter power channel (435) to the input port (4) by branching to the device power channel (404). The power channel (412) allows a power load connected to input device port device port (4) to be connected to the power bus (410) over the output power converter (440). In addition the power manager (400) also includes a power channel (416) that extends from the output of power converter (442) by branching from converter power channel (530) to the input port (3) by branching to the device power channel (402). The power channel (416) allows a power load connected to input device port device port (3) to be connected to the power bus (410) over the output power converter (442). In addition, the power manager (400) also includes a power channel (414) that extends from the output of power converter (440) by branching from converter power channel (435) to both of the output ports (5) and (6) by branching to the device power channel (530). The power channel (414) allows a power load connected to either of the output device ports (5) or (6) to be connected to the power bus (410) over the output power converter (440). Alternately The power channel (416) can be used to connect a power load connected to either of the device ports (1) and (2) to the power bus over the output power converter (442).


In operation, the electronic controller (405) polls each device port to detect connected external power devices and the power device type and power characteristics of each connected power device. Once the device types and characteristics are determined the energy management schema selects a system configuration which includes generating a list of external devices to connect to the power bus, determining the power conversion settings of each power converter, determining which power channel each external power device will be connected to the power bus over and determining which switches to open and close. Thereafter the electronic controller (350) periodically polls all of the device ports to update configuration information and the energy management schema operates to adjust the connected power device configuration and power distribution according to program parameters. Additionally the electronic controller (405) initiates the polling process whenever a change in device configuration is detected, e.g. if an external device is connected or disconnected.


5.3.2 Power Manager Operating with a Variable Power Bus Voltage:


Referring now to FIG. 5, a power manager (500) is depicted schematically and includes a power bus (505) interfaced with a plurality of input power converters (510, 515) and a plurality of output power converters (520, 525). Each input power converter is associated with an input device port (503) for interfacing with an external power source (530) and each output power converter is associated with an output device port (504) for interfacing with an external power load (540). In alternate embodiments two or more ports may share a single power converter.


Each input device port (504) is connected to the power bus (505) over an input converter power channel (570) which includes a controllable switch (565) in communication with an electronic controller (550). The input converter channel (570) extends from the input device port (503a) to the input power converter (515) over the controllable switch (565) and continues from the output of the power converter (515) to the power bus (505). Since the input converter is unidirectional power conversion is only performed to change input voltage. Specifically the voltage of an input power signal received from an external power source (530a) connected to the input device port (503a) can be stepped up or stepped down to match the operating voltage of the power bus. The switch (565) is operable by the electronic controller (550) to connect the external power source (530a) to the power bus over the input power converter (515) by closing the switch (565) and to disconnect the input device port (503a) by opening the switch (565). Other converter input power channels have the same configuration.


Each output device port (504) is connected to the power bus (505) over an output converter power channel (578) which includes a controllable switch (576) in communication with the electronic controller (550). The output converter channel (578) extends from the output device port (504a) to the output power converter (520) over the controllable switch (576) and continues from the output of the power converter (520) to the power bus (505). Since the output converter is unidirectional power conversion is only performed to change output voltage. Specifically the voltage of a power bus signal received from the power bus (505) can be stepped up or stepped down to match the operating voltage of ab external power load (540a) connected to the device port (504a). The switch (576) is operable by the electronic controller (550) to connect the external power source (540a) to the power bus over the output power converter (520) by closing the switch (576) and to disconnect the output device port (540a) by opening the switch (576). Other converter output power channels have the same configuration.


Power manager (500) includes a non-converting power channel (5080, 5085, 5090, and 5095) associated with each device port (503a, 503b, 504a, 504b). The non-converting power channels are used to connect device ports and any external power sources (530a, 530b) and external power loads (540a, 540b) connected to device ports to the power bus. Each converted and non-converted power channel includes at least one controllable switching element (565, 566, 567, 568, 569, 572, 574, 578) that enables each power channel to be connected to or disconnected from the power bus. In additional embodiments, two or more input ports (503) or output ports (504) may share a single power converter as shown in FIGS. 3 and 4 above. In further embodiments, one or more input ports (503) may be configured as a universal port, i.e., selectively connectable to the power bus over an input power converter or an output power converter, for example with a configuration similar to that shown for ports (330) in FIG. 3.


An electronic controller (550) includes an associated data storage module and communication elements (555) suitable for exchanging command and control signals and data signals with internal devises such as the controllable switches (565, 566, 567, 568, 569, 572, 574, 578), the power converters (510, 515, 520, 525) the bus sensor module (560) and other internal modules as may be present. In addiction the communication elements include a communication interface that extends between the electronic controller (550) and each device port (503, 504). Moreover each device port is configured as a connector or terminator that includes both power and communication channels suitable for connecting with external power sources (530a, 530b), the power loads (540a, 540b). Preferably the communication elements (555) includes at least one network channel for data communication using a network protocol such as SMbus, USB, or the like for communicating with external devices. Otherwise the communication elements may comprise conductive paths, wires or the like, for exchanging analog signals between electronic components of the power manager, e.g. switches, sensors and power converters and the electronic controller (550).


According to the present invention, the electronic controller (550) includes various modules operating thereon, including a data storage module, for operating an energy management schema suitable for changing operating parameters of power manager elements e.g. to determine which external device(s) to connect to the power bus over which power channels and how power should be distributed as well as to alter an operating voltage of the power bus (505) in a manner that reduces power conversion loss. In one example embodiment, the electronic controller includes programs operating thereon for operating the power bus (505) at one of a plurality of different operating voltages, as well as for reconfiguring power converters and device port connections to the power bus in response in a change in power bus voltage.


In one example embodiment, the electronic controller (550) includes a look up table or the like stored in the memory module that lists a plurality of discreet bus voltage operating points, including a default bus voltage operating voltage. The preselected list of bus voltage operating points is chosen to match the operating range of the various power converters (510, 515, 520, and 525). Thus, if all of the power converters are capable of making power conversions over a voltage range of 5 to 50 volts, the list of potential power bus voltages may include operating points within the 5 to 50 volt range that tend to match standard source/load voltages such as 6, 12, 24, 30, and 42 volts. Alternately, the power manager (500) is configurable to operate at any bus voltage that practically allows power devices to connect to the power bus with or without a power conversion.


To select a power bus operating voltage, the electronic controller (550) polls each device port to gather power characteristics of all of the connected power devices and makes a determination as to which devices connected to the device ports require a power conversion to connect to the power bus based on the present power bus operating voltage. If no conversions are required, the power devices are connected to the power bus without power conversion over non-converted power channels (5080, 5085, 5090, and 5095). If power conversions are required and the present power bus operating voltage is suitable for the present power manager configuration, the electronic controller (550) configures the appropriate power converter(s) to make the required power conversion and then connects the power external power devices that need a power conversion to the to the power bus over a power converter (510, 515, 520, 525).


In a further evaluation step the electronic controller processes one or more bus voltage evaluations to determine if there is a more suitable bus voltage for the present power manager configuration and if so, the electronic controller (550) resets the power bus operating voltage to a new operating voltage selected from the list of voltage operating points and reconfigures power converters and reconnects the external power devices to the power bus over the same or different connection paths. The electronic controller (550) periodically polls each device port to refresh system information including the power characteristics of external power devices connected to device ports and repeats the power bus operating voltage evaluation described above as the configuration of the power manager changes due to added or removed power device connections and/or changes in power characteristics of connected devices.


6 EXAMPLES

6.1 Example 1: Operating Mode


The electronic controller (550) has previously set the power bus operating voltage to a desired power bus voltage or to a default bus voltage such as at initial power up. The electronic controller stores a plurality of power bus operating voltage values that it can operate with and also stores power manager performance criteria in a memory associated with the power manager. The electronic controller polls each device port and determines the power characteristics of all of the connected power devices (530, 540) and compares the power characteristics (e.g. operating voltage range) of all of the connected power devices with the present power bus operating voltage value. The electronic controller then uses one or more rules or algorithms stored in the memory module to determine if the present power bus operating voltage value should be maintained or changed to meet one or more of the desired operating criteria. If the present power bus operating voltage value is acceptable and the device configuration has not changed from the last time the electronic controller polled the device ports, no changes in operating parameters of the power manager are carried out. If the present power bus operating voltage value is acceptable and the device configuration has changed from the last time the electronic controller polled the device ports, the electronic controller makes the appropriate operating parameter adjustments such as to connect a power device to the bus with or without a conversion by actuating appropriate switches (not shown) and setting power converter operating points as required to connect power devices to the power bus. However, if the electronic controller determines that a change to the power bus operating voltage will better meet one or more power manager operating criteria defined in the energy management schema, it resets the power bus operating voltage value to one of the voltage values stored in memory and, if needed, makes the appropriate changes to power manager device settings and connections. Such changes include readjusting power converter settings to accommodate the new power bus voltage value, connecting power devices that require power conversion to the bus through one or more power converters, and connecting power devices with power requirements that match the new power bus voltage directly to the power bus without a power conversion.


6.2 Example 2 Algorithm for Minimizing Power Conversion Losses


In one particularly beneficial embodiment, the electronic controller (550) uses the below listed algorithm to minimize power loss due to power conversions when a single power source is connected to the power manager. This algorithm uses the fundamental relationship that power lost in a converter is proportional to the difference between the power converter input and output voltages multiplied by a loss factor. The loss factor is generally power converter dependent and may vary from one power converter type or model to another. Additionally loss factor may depend on input to output current amplitude ratio which can be determined from the input and output voltage and the total power being converted. Accordingly for a given system, loss factor values may comprise a preset value depending on power converter type plus a current ratio estimate based on voltage ratio and total power being converted. Otherwise loss factors for various conditions can be stored in a look up table or estimated in various other ways. Alternately the algorithm can be simplified to only consider the voltage difference across the power converters.


An illustrative, non-limiting example of use of the algorithm follows. In this example, the system includes one input and one output power converter. The algorithm can be expanded to use any number of input and output power converters.

  • 1) Detect the operating voltage and current of the power source and each of the power loads.
  • 2) Does the power source operating voltage range allow connection with the power bus at the present power bus operating voltage?
    • a) Yes—Connect the power source to the power bus without conversion, go to step 3.
    • b) No—Calculate a power bus voltage value that minimizes total power loss through all converters in the system.
  • i. Let Ls=input conversion loss per Volt difference converted for a given input voltage and current in the input converter.
  • ii. Let Lo=output conversion loss per Volt difference converted for a given output voltage and current on the output converter.
  • iii. Let Iin=The Input current to an input power converter.
  • iv. Let Tout=the output current from an output power converter.
  • v. Let Vin=the voltage at an input power converter.
  • vi. Let Vout=the voltage at an output power converter.
  • vii. Select Ls and Lo from a stored table of values based on Vin, Vout, Iin, and Tout requirements.
  • viii. Select Vbus by minimizing:

    Ls*|Vin−Vbus|+Lo*|Vout−Vbus|  Equation 2
  • ix. Select a Vbus value stored in memory that most closely matches the Vbus value calculated in Equation 2.
  • x. Set the input power converter to connect the input source to the power bus with the power bus voltage value equal to the selected Vbus value, go to step 3.
  • 3) Set output power converter(s) to power any output device(s) from the power bus at the present power bus voltage value.


Further illustrative, non-limiting, examples include the of use of the algorithm for minimizing power conversion losses expanded to one or more input power conversions and/or one or more output power conversion. When a single input power conversion and multiple output power conversions are required, selecting Vbus includes minimizing the equation:










(

Ls
*



Vin
-
Vbus




)

+




y
=
1

n



(


Lo
y

*




Vout
y

-

Vbus
y





)






Equation





3









    • Where: n=number of output power conversions; and where Lo may not be the same for each output power converter





Where multiple input power conversions and multiple output power conversions are required, selecting Vbus includes minimizing the equation:













x
=
1

m



(


Ls
x

*




Vin
x

-

Vbus
x





)


+




y
=
1

n



(


Lo
y

*




Vout
y

-

Vbus
y





)






Equation





4









    • Where: m=number of input power conversions; and n=number of output power conversions; where Ls may not be the same for each input power converter; and where Lo may not be the same for each output power converter.


      6.3 Example 3: Practical Example for Minimizing Conversion Power Loss





As can be seen from examining Equations 1 and 2, the power loss is minimized by minimizing the difference between the input and output power conversion. As an example, referring to FIG. 5, the power manager (500) has a default bus voltage value of 15 volts. A 30 volt power source (530a) is connected to one of the input ports (503a) and 30 volt power loads (540a and 540b) are connected to each of the two output ports (504a and 504b). The output loss, Lo, is the same for each output power conversion. The algorithm described above determines that the input loss is 15Ls based on the difference Vin-Vbus and that the output loss Lo is 30Lo based on 2×Vout−Vbus (i.e. one loss for each output device). Thus, the simple answer is to make Vbus equal to 30 volts, which allows all three devices to be connected to the power bus without a power conversion. However, the algorithm then checks the lookup table for 30 volts but finds that 28 volts is the closest match and the bus voltage is set to 28 Volts. In the next step, the input power converter (515) is set to convert the 30 volt input source (530a) to 28 volts for connection to the power bus (505). In step 3, each of the output converters (520) and (525) are set to convert the 28 volt power bus voltage to 30 volts to power the 30 volt power loads (540a and 540b). In this case where the bus voltage is set to 28 volts the power loss is 2Ls on the input side and 4Lo on the output side. This the power loss is decreased from 15 Ls+30Lo to 2Ls+4Lo.


It will also be recognized by those skilled in the art that, while the invention has been described above in terms of preferred embodiments, it is not limited thereto. Whereas exemplary embodiments include specific characteristics such as, for example, numbers of device ports, certain bus voltages and voltage ranges, power converter ranges, DC-to-DC power conversion, those skilled in the art will recognize that its usefulness is not limited thereto. Various features and aspects of the above described invention may be used individually or jointly. Further, although the invention has been described in the context of its implementation in a particular environment, and for particular applications (e.g. implemented within a power manager), those skilled in the art will recognize that its usefulness is not limited thereto and that the present invention can be beneficially utilized in any number of environments and implementations where it is desirable to selectively connect power devices to a common power bus and to manage power distributing and minimize power losses due to power conversions or other factors related to power parameters of power devices. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the invention as disclosed herein.

Claims
  • 1. A power manager comprising: a DC power bus;a plurality device ports each configured to interface with an external power device comprising any one of a DC power source, a DC power load and a rechargeable DC battery;a unidirectional DC to DC input power converter having an input side and an output side;an input power channel disposed between the DC power bus and a first of a plurality of device ports wherein the input power channel includes a first input portion that connects the input power converter input side to the first of the plurality of device ports and a first input switch disposed along the first input portion, and a second input portion that connects the input power converter output side to the DC power bus, wherein operation of the first input switch selectively connects the input power converter input side to, or selectively disconnects the input power converter input side from, the first of the plurality of device ports;a unidirectional DC to DC output power converter having an input side and an output side;an output power channel disposed between the DC power bus and a second of the plurality of device ports wherein the output power channel includes a first output portion that connects the output power converter output side to the second of the plurality of device ports and first output switch disposed along the first output portion and a second portion that connects the output power converter input side to the DC power bus wherein operation of the first output switch selectively connects the output power converter output side to, or selectively disconnects the output power converter output side from the second of the plurality of device ports;a first universal power channel that includes a first controllable switch disposed between the output side of the output power converter and the first of the plurality of device ports;wherein the power manager operates at least one of the input power converter, the first input switch, the output power converter the first output switch and the first controllable switch to selectively connect a first external power device connected to the first of the plurality of device ports to the input side of the input power converter for connection to the DC power bus as a power source, with an input power conversion, or to selectively connect the first external power device connected to the first of the plurality of device ports to the output side of the output power converter for connection to the DC power bus as a power load, with an output power conversion.
  • 2. The power manager of claim 1: wherein the operation of the first output switch by the power manager selectively disconnects the the second of the plurality of device ports from the output side of the output power converter or selectively connects a second external power device connected to the second of the plurality of device ports to the output side of the output power converter for connection to the DC power bus as a power load, with the output power conversion.
  • 3. The power manager of claim 2 further comprising: an electronic controller comprising a digital data processor and a digital data memory module, and an energy management schema program operated by the electronic controller;wherein the electrical electronic controller operates one or more controllable switches and unidirectional DC to DC power converters corresponding with the power manager.
  • 4. The power manager of claim 3 further comprising: a communication interface corresponding with the electronic controller; anda plurality communication channels extending from the communication interface to each of the plurality of device ports, wherein the communication interface, the plurality of communication channels and the plurality of the plurality of device ports are operable to communicate digital data received from each external power device connected to one of the plurality of device ports to the electronic controller.
  • 5. The power manager of claim 4 wherein the energy management schema is configured to monitor each external power device connected to any one of the plurality of device ports and to determine if or how each external power device can be connected to the DC power bus.
  • 6. The power manager of claim 1: further comprising a third of the plurality of device ports connected to the input side of the input power converter and a second input switch disposed between the third of the plurality of device ports and the input side of the input power converter;wherein the power manager further operates the second input switch to selectively connect a third external power device connected to the third of the plurality of device ports to the DC power bus as a power source, with an input power conversion, while the first external power device connected to the first of the plurality of device ports is connected to the DC power bus over the universal power channel as a power load, with output power conversion.
  • 7. The power manager of claim 6: further comprising a fourth of the plurality of device ports connected to output side of the output power converter and a second output switch disposed between the fourth of the plurality of device ports and the output side of the output power converter;wherein the power manager further operates the second output switch to selectively connect a fourth external power device connected to the fourth of the plurality of device ports to the DC power bus as a power load, with an output power conversion.
  • 8. The power manager of claim 7 further comprising: a second universal power channel that includes a second first controllable switch disposed between the output side of the output power converter and the third of the plurality of device ports;wherein the power manager operates at least one of the input power converter, the second input switch, the second output switch and the output power converter to connect a second external power device connected to the second of the plurality of device ports to the output side of the output power converter as a power load with an output power conversion.
  • 9. The power manager of claim 5 wherein the energy management schema is operable to poll each of the plurality of device ports to determine power characteristics of each external power device connected to anyone of the plurality of device ports.
  • 10. The power manager of claim 3 further comprising a bus sensor module in communication with the DC power bus and with the electronic controller for reporting a power bus operating voltage to the electronic controller.
  • 11. A power manager comprising: a DC power bus;a unidirectional DC to DC input power converter having an input side and an output side, the output side of the unidirectional input power converter being connected to the power bus;a first device port connected to the input power converter input side;a unidirectional DC to DC output power converter having an input side and an output side, the input side of the unidirectional output power converter being connected to the power bus;a second device port connected to the output side of the unidirectional output power converter; anda universal power channel that includes an operable switch disposed between the output side of the output power converter and the first device port,wherein the power manager operates the input power converter, the output power converter and the operable switch to selectively connect a first external power device connected to the first device port to the input side of the input power converter for connection to the power bus with an input power conversion or to selectively connect the first external power device to the output side of the output power converter for connection to the power bus with an output power conversion.
  • 12. A power manager as recited in claim 11, further comprising: a third device port connected to the unidirectional input power converter input side;a fourth device port connected to the output side of the unidirectional output power converter; anda second universal power channel including a second operable switch disposed between the output side of the unidirectional output power converter and the third device port.
  • 13. The power manager of claim 1 wherein the input power conversion includes a voltage change.
  • 14. The power manager of claim 2 wherein the output power conversion includes a voltage change.
1 CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 61/807,028, filed Apr. 1, 2013, which is incorporated herein by reference.

US Referenced Citations (198)
Number Name Date Kind
4044268 Hammel et al. Aug 1977 A
4589075 Buennagel May 1986 A
4910100 Nakanishi et al. Mar 1990 A
4931947 Werth et al. Jun 1990 A
5153496 LaForge Oct 1992 A
5258244 Hall et al. Nov 1993 A
5321349 Chang Jun 1994 A
5570002 Castleman Oct 1996 A
5650240 Rogers Jul 1997 A
5675754 King et al. Oct 1997 A
5754445 Jouper et al. May 1998 A
5831198 Turley et al. Nov 1998 A
5898291 Hall Apr 1999 A
5903764 Shyr et al. May 1999 A
5914585 Grabon Jun 1999 A
5945806 Faulk Aug 1999 A
5977656 John Nov 1999 A
5986437 Lee Nov 1999 A
6014013 Suppanz et al. Jan 2000 A
6025696 Lenhart et al. Feb 2000 A
6046514 Rouillard et al. Apr 2000 A
6087035 Rogers et al. Jul 2000 A
6137280 Ackermann et al. Oct 2000 A
6198642 Kociecki Mar 2001 B1
6221522 Zafred et al. Apr 2001 B1
6246215 Popescu-Stanesti Jun 2001 B1
6265846 Flechsig et al. Jul 2001 B1
6271646 Evers et al. Aug 2001 B1
6366061 Carley et al. Apr 2002 B1
6366333 Yamamoto et al. Apr 2002 B1
6370050 Peng et al. Apr 2002 B1
6376938 Williams Apr 2002 B1
6396391 Binder May 2002 B1
6459175 Potega Oct 2002 B1
6476581 Lew Nov 2002 B2
6485852 Miller et al. Nov 2002 B1
6492050 Sammes Dec 2002 B1
6530026 Bard Mar 2003 B1
6541879 Wright Apr 2003 B1
6608463 Kelly et al. Aug 2003 B1
6627339 Haltiner, Jr. Sep 2003 B2
6628011 Droppo et al. Sep 2003 B2
6633823 Bartone et al. Oct 2003 B2
6690585 Betts-Lacroix Feb 2004 B2
6694270 Hart Feb 2004 B2
6703722 Christensen Mar 2004 B2
6707284 Lanni Mar 2004 B2
6828695 Hansen Dec 2004 B1
6831848 Lanni Dec 2004 B2
6925361 Sinnock Aug 2005 B1
6985799 Zalesski et al. Jan 2006 B2
7001682 Haltiner, Jr. Feb 2006 B2
7002265 Potega Feb 2006 B2
7036028 Zalesski Apr 2006 B2
7071660 Xu et al. Jul 2006 B2
7076592 Ykema Jul 2006 B1
7105946 Akiyama et al. Sep 2006 B2
7166937 Wilson et al. Jan 2007 B2
7188003 Ransom et al. Mar 2007 B2
7203849 Dove Apr 2007 B2
7212407 Beihoff et al. May 2007 B2
7226681 Florence et al. Jun 2007 B2
7235321 Sarkar et al. Jun 2007 B2
7243243 Gedeon Jul 2007 B2
7256516 Buchanan et al. Aug 2007 B2
7274175 Manolescu Sep 2007 B2
7385373 Doruk et al. Jun 2008 B2
7388349 Elder et al. Jun 2008 B2
7408794 Su Aug 2008 B2
7436687 Patel Oct 2008 B2
7444445 Kubo et al. Oct 2008 B2
7506179 Templeton Mar 2009 B2
7531915 Wang et al. May 2009 B2
7541693 Huang et al. Jun 2009 B2
7618260 Daniel et al. Nov 2009 B2
7646107 Smith Jan 2010 B2
7674543 Chiang et al. Mar 2010 B2
7675758 Artusi et al. Mar 2010 B2
7683575 Berdichevsky et al. Mar 2010 B2
7701082 Lazarovich et al. Apr 2010 B2
7778940 Mazzarella Aug 2010 B2
7808122 Menas et al. Oct 2010 B2
7814348 Krajcovic et al. Oct 2010 B2
7834479 Capp et al. Nov 2010 B2
7838142 Scheucher Nov 2010 B2
7844370 Pollack et al. Nov 2010 B2
7847532 Potter et al. Dec 2010 B2
7849341 Sugiyama Dec 2010 B2
7855528 Lee Dec 2010 B2
7928720 Wang Apr 2011 B2
D640192 Robinson et al. Jun 2011 S
8073554 Vezza et al. Dec 2011 B2
8086281 Rabu et al. Dec 2011 B2
8103892 Krajcovic Jan 2012 B2
8106537 Casey et al. Jan 2012 B2
8138631 Allen et al. Mar 2012 B2
8140194 Iino et al. Mar 2012 B2
8164217 Miller Apr 2012 B1
8178999 Burger et al. May 2012 B2
8193661 Jagota et al. Jun 2012 B2
8255090 Frader-Thompson et al. Aug 2012 B2
8279642 Chapman et al. Oct 2012 B2
8294307 Tsai Oct 2012 B2
8304122 Poshusta et al. Nov 2012 B2
8312299 Tremel et al. Nov 2012 B2
8315745 Creed Nov 2012 B2
8333619 Kondo et al. Dec 2012 B2
8352758 Atkins et al. Jan 2013 B2
8375229 Saeki Feb 2013 B2
8401709 Cherian et al. Mar 2013 B2
8447435 Miller et al. May 2013 B1
8455794 Vogel Jun 2013 B2
8466662 Nania et al. Jun 2013 B2
8476581 Babayoff et al. Jul 2013 B2
8494479 Budampati et al. Jul 2013 B2
8508166 Marcinkiewicz et al. Aug 2013 B2
8548607 Belz et al. Oct 2013 B1
8599588 Adest et al. Dec 2013 B2
8611107 Chapman et al. Dec 2013 B2
8614023 Poshusta et al. Dec 2013 B2
8633619 Robinson et al. Jan 2014 B2
8638011 Robinson et al. Jan 2014 B2
8643326 Campanella et al. Feb 2014 B2
8648492 Craig et al. Feb 2014 B2
8649914 Miller et al. Feb 2014 B2
8682496 Schweitzer, III et al. Mar 2014 B2
D706711 Robinson et al. Jun 2014 S
8775846 Robinson et al. Jul 2014 B2
8781640 Miller Jul 2014 B1
8796888 Rice et al. Aug 2014 B2
8829713 Ishigaki et al. Sep 2014 B2
8849471 Daniel et al. Sep 2014 B2
8853891 Soar Oct 2014 B2
8854389 Wong et al. Oct 2014 B2
8890474 Kim et al. Nov 2014 B2
8901774 Yan et al. Dec 2014 B2
8913406 Guthrie et al. Dec 2014 B2
8970176 Ballatine et al. Mar 2015 B2
9041349 Bemmel et al. May 2015 B2
9043617 Miki May 2015 B2
9093862 Dennis et al. Jul 2015 B2
9142957 Malmberg et al. Sep 2015 B2
9158294 Carralero et al. Oct 2015 B2
9190673 Venkataraman et al. Nov 2015 B2
9203302 Kelly Dec 2015 B2
9207735 Khaitan et al. Dec 2015 B2
9337943 Mosebrook et al. May 2016 B2
9343758 Poshusta et al. May 2016 B2
9450274 Vo et al. Sep 2016 B2
9452475 Armstrong et al. Sep 2016 B2
9502894 Holmberg et al. Nov 2016 B2
9634491 Robinson et al. Apr 2017 B2
9698596 Sauer et al. Jul 2017 B2
9722435 Park Aug 2017 B2
20020135492 Reagan et al. Sep 2002 A1
20030006905 Shieh et al. Jan 2003 A1
20030054215 Doshi et al. Mar 2003 A1
20030085621 Potega May 2003 A1
20030234729 Shen Dec 2003 A1
20040061380 Hann et al. Apr 2004 A1
20040125618 De Rooij et al. Jul 2004 A1
20050037241 Schneider Feb 2005 A1
20050102043 Menas et al. May 2005 A1
20050275372 Crowell Dec 2005 A1
20060127725 Sarkar et al. Jun 2006 A9
20070007823 Huang et al. Jan 2007 A1
20070078230 Lai Apr 2007 A1
20070141424 Armstrong et al. Jun 2007 A1
20070184339 Scheucher Aug 2007 A1
20070222301 Fadell et al. Sep 2007 A1
20070257654 Krajcovic Nov 2007 A1
20080024007 Budampati et al. Jan 2008 A1
20080130321 Artusi et al. Jun 2008 A1
20080269953 Steels et al. Oct 2008 A1
20080305839 Karaoguz et al. Dec 2008 A1
20090079263 Crumm et al. Mar 2009 A1
20090243390 Oto Oct 2009 A1
20100001689 Hultman et al. Jan 2010 A1
20100076615 Daniel et al. Mar 2010 A1
20100134077 Krajcovic Jun 2010 A1
20100280676 Pabon et al. Nov 2010 A1
20110026282 Chapman et al. Feb 2011 A1
20110031958 Wang Feb 2011 A1
20110184585 Matsuda et al. Jul 2011 A1
20110198933 Ishigaki et al. Aug 2011 A1
20110234000 Yan et al. Sep 2011 A1
20110261601 Chapman et al. Oct 2011 A1
20110278957 Eckhoff et al. Nov 2011 A1
20120092903 Nania et al. Apr 2012 A1
20120098334 Holmberg et al. Apr 2012 A1
20120205976 Shih et al. Aug 2012 A1
20120319504 Malmberg et al. Dec 2012 A1
20120326516 Gurunathan Dec 2012 A1
20130038306 Kelly et al. Feb 2013 A1
20130163302 Li Jun 2013 A1
20130293013 Templeton Nov 2013 A1
20140091623 Shippy et al. Apr 2014 A1
20140292081 Long et al. Oct 2014 A1
Foreign Referenced Citations (16)
Number Date Country
2230743 Nov 2013 EP
2006126023 Nov 2006 WO
2007012785 Feb 2007 WO
2007048837 May 2007 WO
2007076440 Jul 2007 WO
2008072014 Jun 2008 WO
2008072015 Jun 2008 WO
2008072014 Jun 2008 WO
2008090378 Jul 2008 WO
2011023678 Mar 2011 WO
2011046645 Apr 2011 WO
2011113280 Sep 2011 WO
2012122315 Sep 2012 WO
2012122315 Sep 2012 WO
2013083296 Jun 2013 WO
2014165469 Oct 2014 WO
Non-Patent Literature Citations (59)
Entry
Examination Report for Australian Application No. 2014248342 dated Sep. 7, 2017.
International Search Report dated Sep. 8, 2014 in corresponding PCT application PCT/US14/32455.
Karlsson et al, DC Bus Voltage Control for a Distributed Power System, IEEE Transactions on Power Electronics, Nov. 2003, pp. 1405-1412, v: 18, n: 6.
Australian Patent Examination Report No. 1 for Australian Patent Application No. 2010307261 dated Jul. 23, 2013.
ISR for International Application No. PCT/JP2008/066605 dated Dec. 16, 2008.
International Search Report, International Application No. PCT/US2010/41335 (dated Mar. 24, 2011).
Written Opinion of the International Searching Authority, International Application PCT/US2010/41335 (dated Mar. 24, 2011).
U.S. Final Office Action in U.S. Appl. No. 12/733,585 (dated Jun. 18, 2013).
U.S. Non-Final Office Action in U.S. Appl. No. 12/733,585 (dated Jan. 17, 2013).
U.S. Final Office Action in U.S. Appl. No. 12/816,080 (dated Apr. 30, 2013).
U.S. Non-Final Office Action in U.S. Appl. No. 12/816,080 (dated Oct. 4, 2012).
U.S. Non-Final Office Action in U.S. Appl. No. 13/620,086 (dated Jan. 14, 2013).
Cipriano et al., Joint Service Power Expo, 2009
SFC, Power Manager—The SFC Power Manager—The technology http://web.archive.org/web/20090312005238/http:/www.sfc.com/en/man-portable-technology-power-manager.html.
Reuters, Protonex to Launch Soldier-Worn Portable Power Management Systems, Feb. 2009 http://www.reuters.com/article/idUS159777+17-Feb-2009+BW20090217#cp8McGk2XDy11b8d.97.
Cell, SFC Smart Fuel Cell launches Joint Power Manager, Jun. 2009 https://fuelcellsworks.com/archives/2009/06/04/sfc-smart-fuel-cell-launches-joint-power-manager/.
Corporation, Soldier-worn portable power management system, Apr. 2009 http://www.energyharvestingjournal.com/articles/1375/soldier-worn-portable-power-management-system.
Alibaba.com, 5KW charger controller for wind power supply and solar cell, 2009, 3 pages.
Amazon.com: Morningstar TriStar-45 Solar Charge Controller for solar/wind generator/Wind Turbine-45 amps, 2009, 6 pages.
Bruce et al.,www.rfdesign.com, Defense Electronics, Military takes aim at high battery costs, Apr. 2005, pp. 20-25.
F.H. Khan et al., ww.ietdl.org, IET Power Electronics, Bi-directional power manager management and fault tolerant feature in a -5kW multivlevel dc-dc converter with modular architecture, 2009, pp. 595-604, vol. 2, No. 5, 10 pages.
Fran Hoffart, New charger topology maximizes battery charging speed, 1998, 2 pages.
Green Plug, www.greenplug.us, One plug one planet, 2009, 7 pages.
greentmcnet.com/topics/green/articles/57729-green-plug-partners-with-wipower-advanced-wireless-power.htm, Gren plug partners with wipower for advanced wireless power systems, 2009, 3 pages.
Greg Cipriano et al., Protonex, Joint Service Power Expo, 2009, 38 pages.
http://defense-update.com/products/b/ba5590.htm, BA 5590 Lithium Battery, Jul. 26, 2006, 1 page.
http://fuelcellsworks.com/news/2009/06/04/sfc-smart-fuel-cell-launches-joint-power-manager, SFC smart fuel cell launches joint power manager, Jun. 2009, 4 pages.
Ian C. Evans et al., IEEE electric ship technologies symposium, High power clean dc bus generation using ac-link ac to dc power voltage conversion, dc regulation, and galvanic isolation, 2009, 12 pages.
Inki Hong et al., IEEE Transactions on computer-aided design of integrated circuits and systems, Power Optimization of variable-voltage core-based systems, Dec. 1999, vol. 18, No. 12, 13 pages.
Jaber A. Abu et al., Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Control Scheme for high-efficiency high-performance two-stage power converters, 2009, 7 pages.
Jorge L. Duarte et al., IEEE Transactions on Power Electronics, Three-Port Bidirectional converter for hybrid fuel cell systems, 2007, vol. 22, No. 2, 8 pages.
Julio Garcia, 2009 Barcelona Forum on Ph.D. Reseach in Electronic Engineering, Efficiency improvements in autonomous electric vehicles using dynamic commutation of energy resources, 2009, 2 pages.
Karlsson et al., IEEE Transactions on power electronics, DC bus voltage control for a distributed power system, Nov. 2003, pp. 1405-1412, v: 18, n:6, 8 pages.
Leonid Fursin et al., Development of compact variable-voltage, bi-directional 100kw dc-dc converter, 2007, 9 pages.
M. Becherif et al., Vehicle power and propulsion conference (VPPC), 2010 IEEE, IEEE Power and Propulsion Conference (VPPC), Advantages of variable DC bus voltage for hybrid electrical vehicle, 201, pp. 1-6.
M. Conti et al., SystemC modeling of a dynamic power management architecture, 6 pages.
Mat Dirjish, http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticlesID-19515; Enginner seeks cure for common wall warts, Aug. 2008, 3 pages.
Matthew Alan Merkle, Thesis submitted to the faculty of Virginia Polytechnic Institute and State UniversityVariable bus voltage modeling for series hybrid electric vehicle simulation, Dec. 1997, 33 pages.
Ocean Server Technology, Inc., Intelligent Battery and Power System, May 2008, 4 pages.
Ocean Server Technology, Inc., Smart Li-ion packs, integrated chargers, ultra high efficiency dc-dc converters, integrate battery power or backup, fully engineered (plug and run) and 95 to 25,000+ watt-hour clusters, 2007, 4 pages.
Peter Podesser, www.mil-embedded.com/articles/id/?3966, Portable power management for soldiers; Fuel cell hybrid system is lighter, safer, May 2009.
replay.waybackmachine.org/20090122152343/http://ww.sfc.com/en/about-sfc.html, About SFC Smarl Fuel Cell, 1 page.
replay.waybackmachine.org/20090312005238/http://ww.sfc.com/en/man-portable-technology-power-manager.html, The SFC Power Manager—The Technology, 2009, 2 pages.
Reyneri et al., IAC-09.C3.2.8, A redundant power bus for distributed power management for a modular satellite, 2009, 8 pages.
Richter Wolfgang, Chip for saving power, Aug. 2007, 2 pages.
Robert M. Button, Nasa/TM-2002-211370, Intelligent Systems for Power Management and Distribution, Feb. 2002, 12 pages.
Singh et al., Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, Fuzzy Logic-based Solar Charge Controller for Microbatteries, 2000, pp. 172-1729.
Wilson Rothman, gizmodo.com/295076/new-Honeywell-hdmi-cable-heals-self-but-at-what-cost, New Honeywell HDMI Cables Heals Self, but at What Cost?, Aug. 2007, 3 pages.
ww.sfc.com/index2.php option=com_pressreleasees&Itemid=467&id=1050&lang=en&pop-1&page=0, SFC receives commercial order for portable fuel cells, 2008 1 page.
www.energyharvestingjournal.com/articles/soldier-worn-portable-power-management-system-00001375.asp?sessionid=1, Energy Harvesting Journal: Soldier-worn portable power management system, 2009, 2 pages.
www.mpoweruk.com/bms.htm,Battery Management Systems (BMS), 2009, 12 pages.
www.nkusa.com/prod-monitor-smart-cable.htm, Nihon Kohden: Products-Monitoring, Smart Cable Technology, 1 page.
www.paneltronics.com/ip.asp?op=Multiplex%20Distribution%20Systems, Paneltronics, What is Power Sign?, 2006, 2 pages.
www.reuters.com/article/pressRelease/idUS159777+17-Feb-2009+BW20090217, Reuters, Protonex to Launch Soldier-Worn Portable Power Management Systems, Feb. 2009, 3 pages.
www.sfc.com, About SFC Smart Fuel Cell, 2009, 1 page.
International Search Report and Written Opinion for International Application No. PCT/US2014/032455, dated Sep. 8, 2014, 12 pages.
Australian Examination Report No. 1 for Application No. 2014248342 dated Sep. 7, 2017, 3 pages.
European Search Report for European Patent Application No. 14780196.3 dated Dec. 9, 2016, 5 pages.
Singapore Examination Report for Singapore Patent Application No. 11201508091P dated Feb. 28, 2017, 11 pages.
Related Publications (1)
Number Date Country
20140292081 A1 Oct 2014 US
Provisional Applications (1)
Number Date Country
61807028 Apr 2013 US