The present invention relates to a technical field of atomizing equipment, particularly relates to an electronic atomizing device and a power mechanism used in the electronic atomizing device.
Smoking products (such as cigarettes and cigars, etc.) is used to burn tobacco to generate tobacco smoke. People try to replace these tobacco-burning products by manufacturing products that release tobacco compounds without burning.
Examples of such products are heating devices that release tobacco compounds by heating material rather than burning materials. For example, the material may be tobacco or other non-tobacco products. These non-tobacco products may or may not contain nicotine. As another example, aerosol-providing products are provided in the market, such as so-called electronic atomization devices. These devices usually contain a liquid. The liquid is heated to be atomized and thereby inhalable vapors or aerosols are generated. The liquid may contain nicotine and/or fragrances and/or aerosol generating substances (For example, glycerin).
An electronic atomizing device in accordance with a preferred embodiment of the present invention is provided to be arranged for heating and atomizing an aerosol substrate to generate aerosols. The electronic atomizing device includes a battery cell, a heating element for heating the aerosol substrate to generate aerosols, a charging socket used for power charging the battery cell, and an airflow sensor used for measuring airflows flowing through the electronic atomizing device and being formed by inhaling of users. The airflow sensor includes a first port and a second port. The first port of the airflow sensor includes two electrical connections. A first electrical connection of the two electrical connections is electrically connected with a positive electrode of the charging socket, and a second electrical connection of the two electrical connections is electrically connected with the heating element via a switch transistor. The second port of the airflow sensor is electrically connected with a positive electrode of the battery cell. The switch transistor is disposed to be switched on when the positive electrode of the charging socket is at a low voltage level in order for electrically connecting the first port of the airflow sensor with the heating element, and disposed to be switched off connection between the first port of the airflow sensor and the heating element when the positive electrode of the charging socket is at a high voltage level.
In a preferred embodiment of the present invention, the electronic atomizing device further includes a diode. The first port of the airflow sensor is electrically connected with the positive electrode of the charging socket through the diode. The diode is disposed to allow electric currents flowing from the positive electrode of the charging socket toward the first port of the airflow sensor.
In a preferred embodiment of the present invention, the airflow sensor is disposed to electrically connect the first port and the second port in order to make the charging socket power charging the battery cell when the positive electrode of the charging socket is at the high voltage level.
In a preferred embodiment of the present invention, the airflow sensor is disposed to electrically connect the first port and the second port in order to make the battery cell outputting power to the heating element when the positive electrode of the charging socket is at the low voltage level, and the measured airflows are larger than a preset threshold value.
In a preferred embodiment of the present invention, a controlled end of the switch transistor has two electrical connections. A first electrical connection of the two electrical connections is electrically connected with the positive electrode of the charging socket. A second electrical connection of the two electrical connections is grounded through a first resistor. The switch transistor is switched on when the positive electrode of the charging socket is at the low voltage level, and is switched off when the positive electrode of the charging socket is at the high voltage level.
In a preferred embodiment of the present invention, a resistance value of the first resistor is larger than an equivalent resistance value of a power charging circuit loop formed by the charging socket and the battery cell.
In a preferred embodiment of the present invention, the resistance value of the first resistor is 10 times larger than the equivalent resistance value of the power charging circuit loop.
In a preferred embodiment of the present invention, the resistance value of the first resistor is larger than 5 KΩ.
In a preferred embodiment of the present invention, the airflow sensor further includes a third port electrically connected with a negative electrode of the battery cell in order to allow the battery cell supplying power to the airflow sensor.
A power mechanism used for an electronic atomizing device in accordance with further another preferred embodiment of the present invention is provided to supply power to an atomizer of the electronic atomizing device. The atomizer includes a heating element. The power mechanism includes a battery cell, a charging socket used for power charging the battery cell, and an airflow sensor used for measuring airflows flowing through the electronic atomizing device and being formed by inhaling of users. The airflow sensor includes a first port and a second port. The first port of the airflow sensor includes two electrical connections. A first electrical connection of the two electrical connections is electrically connected with a positive electrode of the charging socket, and a second electrical connection of the two electrical connections is electrically connected with the heating element of the atomizer via a switch transistor. The second port of the airflow sensor is electrically connected with a positive electrode of the battery cell. The switch transistor is disposed to be switched on when the positive electrode of the charging socket is at a low voltage level in order for electrically connecting the battery cell with the heating element of the atomizer, and disposed to be switched off connection between the battery cell and the heating element when the positive electrode of the charging socket is at a high voltage level.
The power mechanism having the above components through the above circuit structure is able to be equipped with the airflow sensor with the above integrated functions not only for airflow sensing and measuring, but also for management of power charging and outputting of the battery cell. A circuit of the power mechanism can be saved from using any main control chip MCU and any single charging IC in order to simplify a circuit structure of the power mechanism.
One or more embodiments in accordance with the present invention are illustratively exemplified for explanation through figures shown in the corresponding attached drawings. These exemplified descriptions do not constitute any limitation on the embodiments. The elements with the same reference numerals in the attached drawings are denoted as similar elements. Unless otherwise stated, the figures in the attached drawings do not constitute any scale limitation.
In order to facilitate best understanding of the present invention, the present invention will be illustrated in more detail below in conjunction with the attached drawings and preferred embodiments.
An electronic atomizing device in accordance with a preferred embodiment of the present invention is provided. Referring to
In a preferred embodiment of the present invention, as shown in
According to a preferred embodiment of the present invention as shown in
A sealing piece 260 is disposed in the power mechanism 200. The sealing piece 260 is used to partition off at least a portion of an inner space of the power mechanism 200 to form the receiving cavity 270. In a preferred embodiment of the present invention as shown in
In a preferred embodiment of the present invention as shown in
Further in a preferred embodiment of the present invention as shown in
Further in a preferred embodiment of the present invention as shown in
In a preferred embodiment of the present invention as shown in
In other verified embodiments of the present invention, the liquid conducting element 30/30a can be a plane or a curve face for supporting the heating element 40/40a. The heating element 40/40a is formed on the plane or the curve face of the liquid conducting element 30/30a through manufacturing methods including surface mounting, printing, depositing, etc. The heating element 40/40a, in some embodiments of the present invention, can be made from materials including stainless steel, nickel chromium alloy, ferro chromium aluminum alloy and titanium metal, etc.
In the above embodiment of the present invention, the airflow sensor 220 in the power mechanism 200 as shown in
In a preferred embodiment of the present invention as shown in
Referring to
In order to facilitate automatic switch of the switch transistor Q1 between a power charging state and a power output state of the power mechanism 200, a controlled end of the switch transistor Q1 is electrically conducted by being clamped at a low-level voltage by electrically connecting a pull-down resistor R1. For physical electrical connection, the controlled end of the switch transistor Q1 is electrically connected with the positive electrode of the USB-5p type charging socket 240 on the one hand, and is grounded via the resistor R1 at the same time on the other hand.
In the preferred embodiment of the present invention as shown in
Furthermore, a process of electrical conduction and switch of the circuit of the power mechanism 200 as shown in
At this moment, the controlled end of the switch transistor Q1 is also clamped at a low-level voltage via the resistor R1 being grounded. As a result, the switch transistor Q1 is switched on and is in an electrical connection state. In the switched-on state, if inhaling airflows of users are sensed by the airflow sensor 220, the I/O port 1 and the I/O port 3 of the airflow sensor 220 are triggered to be electrically connected. At this moment, the positive electrode of the battery cell 210 output power to the heating element 40/40a through the I/O port 1 of the airflow sensor 220 and the switched-on switch transistor Q1.
Of course, due to existence of the diode D1 which is able to limit reverse electric currents, the above output power will not be reversely supplied to the commonly connective node a to change the switched-on state of the switch transistor Q1.
In a step of S20, when the charging socket 240 is electrically connected with an external power supply equipment through a power charging plug, a voltage exists at the positive electrode of the charging socket 240. Usually a voltage commonly used for a USB-5p socket applicable to electronic atomizing equipment is 5.0 V.
At this moment, due to existence of the resistor R1, a voltage of the commonly connective node a which is electrically connected with the positive electrode of the charging socket 240 will not be pulled down to a ground voltage, 0 V. Instead, the voltage of the commonly connective node a is equal to 5.0 V, the voltage of the positive electrode of the charging socket 240. As a result, the switch transistor Q1 is changed to a switched-off state, and the positive electrode of the charging socket 240 charges power to the positive electrode of the battery cell 210 through the diode D1, and the I/O port 1 and the I/O port 3 of the airflow sensor 220.
Furthermore, in the above embodiment of the present invention, during a power charging process of the power mechanism 200, the positive electrode of the charging socket 240 further forms a circuit loop via being grounded through the resistor R1. If a resistance value of the resistor R1 is smaller than an equivalent resistance of a power charging circuit loop of the positive electrode of the charging socket 240, electric currents will be mostly shunted by the resistor R1 to significantly affect a power charging efficiency of the power mechanism 200. Based on the above situation, in a preferred embodiment of the present invention, a large resistance with a larger resistance value is adopted for the resistor R1. Basically, the resistance value of the resistor R1 is preferable to be 10 times larger than an equivalent resistance value of the power charging circuit loop of the positive electrode of the charging socket 240. Particularly, the resistance value of the resistor R1 is preferable to be larger than 5 KΩ. In a physical product embodiment of the present invention, a standard resistance of 10 KΩ much larger in a resistance value is selected for the resistor R1. As a result, the circuit loop of the positive electrode of the charging socket 240 through the resistor R1 is in an electrically connected state with a little amount of electric currents passing through. Hence, the resistor R1 can mainly function to pull down a voltage of the controlled end of the switch transistor Q1 for being in its electrical connection state when the charging socket 240 is not electrically connected with any external power plug.
The power mechanism 200 having the above components through the above circuits is able to be equipped with the airflow sensor 220 with the above integrated functions not only for airflow sensing and measuring, but also for management of power charging and outputting of the battery cell 210. Hence, the whole circuit of the power mechanism 200 can be saved from using any main control chip MCU and any single charging IC. In other varying embodiments of the present invention, the airflow sensor 220 can further be a microphone sensor with a model number of 7MM-MIC-S087 and a microphone sensor with a model number of DWS-1-5-FKM, etc.
It should be noted that the specification of the present invention and its accompanying drawings provides preferred embodiments of the present invention. However, the present invention can be implemented in many different forms and is not limited to the preferred embodiments described in this specification. Furthermore, for those of ordinary skill in the art, improvements or transformations can be made based on the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202022632864.9 | Nov 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20170215484 | Xiang | Aug 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20220151296 A1 | May 2022 | US |