The present invention generally relates to power miter and abrasive cut off saws.
Miter saws have been the subject of continued research and development efforts in the power tool arena for decades, and many improvements have been made that has resulted in increased ease of use and productivity. Artisans who install trim carpentry have used power miter saws for some time and it is well known that wide stock such as crown molding and the like often requires a miter saw with either a bigger saw blade or a configuration that enables the blade to be moved along a horizontal path away and toward the fence of the miter saw. Such blade moving configurations are generally marketed as sliding compound miter saws, principally because most if not all commercially available saws of this type have a sliding guide assembly comprised of elongated rods that slide in respective bushings to move the saw blade and motor assembly relative to the fence of the saw.
Such sliding guide assemblies are an expensive component of such miter saws. The current state of the art for such sliding miter saws includes a linear guide that typically consists of two of such bushings and rod combinations. These relatively expensive linear bearings consist of recirculating ball bearings that operate together with turned, ground, polished and hardened steel rods that are approximately 40 cm long and 30 mm in diameter. To have minimum play and deflection of the saw blade and motor assembly, precise fits are required between the rods and the linear recirculating ball bearings over the entire linear travel of the rods. The rod must be made of a high hardness steel to prevent indentation by the hard steel balls. Such construction is relatively expensive.
Additionally, an undesirable feature of such bushing and rod linear guides is that space must be provided behind the saw for the rods to extend when the saw blade is positioned near the fence. Because of this space requirement, such a sliding saw cannot be put next to a wall which results in a larger footprint being occupied by such a saw. Additionally, these bushings and rod linear guide mechanisms are susceptible to damage from dirt and grit, particularly if the saw is a sliding abrasive cut off saw where an abrasive wheel is used to cut steel and other materials. The abrasive wheel grinds its way through the steel and produces a considerable volume of abrasive particles that generally come out of the back of the saw. These abrasive particles can penetrate into the ball bushings and damage the bearing. While it is possible to cover the rods with a bellows or similar cover, the hostile environment generally leads to degradation of the fabric and penetration of the ball bushing by the abrasive particles.
There is a continuing need for improvement in the design and development of miter and cut-off saws that have linear guide assemblies.
Preferred embodiments of the present invention comprise a power miter saw comprising a saw base having a fence for positioning a work piece, a table rotatably connected to the saw base; a miter arm assembly for angularly positioning the table relative to the saw base, a saw blade and motor assembly operatively connected to the table, a linear guide mechanism attached to the table and being configured to support the saw blade and motor assembly and enable movement of the assembly along a predetermined linear path in either forward or rearward directions, the mechanism having a horizontal shaft about which the assembly is pivotable to move a saw blade vertically into and out of cutting position, the mechanism also having a multiple link hinge pivotally interconnecting the motor assembly and the table with generally horizontal shafts that are parallel to one another.
An additional preferred embodiment of the invention comprises a power miter saw having a saw base having a fence for positioning a work piece, a table rotatably connected to the saw base, a miter arm assembly for angularly positioning the table relative to the saw base, a saw blade and motor assembly operatively connected to the table, a linear guide mechanism attached to the table and being configured to support the saw blade and motor assembly and enable movement of the assembly along a predetermined linear path in either a forward or a rearward direction, the mechanism having a pivot block with a first pivot axis generally perpendicular to the plane of the saw blade about which the saw blade and motor assembly is pivotable to move a saw blade vertically into and out of cutting position, the mechanism having a multiple link hinge pivotally interconnecting the pivot block and the table with pivot axes that are parallel to one another and with the first pivot axis, the mechanism having a gear set operatively connected to the multiple link hinge which maintains the pivot block at a generally constant elevation during movement in the forward and rearward directions.
Five embodiments of the present invention are shown and described herein, with the each of the embodiments having a multiple hinge linkage that is designated herein as a horizontal hinge linkage that interconnects the saw blade and motor assembly to the table of the miter saw. It should be understood that while it is referred to herein as a generally horizontal hinge linkage, the several shafts of the linkage may not always be exactly horizontal, and may have a pivot axis that can vary up to about 30 degrees in either direction from exact horizontal. However, it is preferred that the axes be in a substantially horizontal orientation when the saw is set at a zero degree bevel position. Regardless of the bevel angle or the orientation of the surface on which the saw is supported, the shafts are preferably substantially parallel to the arbor shaft in which the blade is mounted and therefore substantially perpendicular to the plane of the saw blade.
The horizontal hinge linkage is utilized rather than an elongated rod and bushing configuration and provides increased stiffness to undesired movement of the saw blade arising from structural deflections during cutting operations. Two of the three embodiments also have a vertical hinge linkage for maintaining the elevation of the saw pivot head (to which the saw blade and motor assembly is attached) constant during movement of the saw blade and motor assembly away and toward the fence during a cutting operation. A third preferred embodiment utilizes the horizontal hinge linkage together with a single rod and bushing arrangement whereby the rod and bushing arrangement also maintains a constant elevation of the saw pivot head as the saw blade and motor assembly is moved toward and away from the fence during a cutting operation. It should be understood that the saw blade and motor assembly 22 is pivotable about a saw pivot that is part of the saw pivot head, which is attached to the horizontal hinge linkage. The saw blade and motor assembly can be pivoted up out of contact with a work piece or moved down into contact with a work piece during a cutting operation as is conventional for miter saws.
Fourth and fifth preferred embodiments utilize a horizontal hinge linkage together with gear sets attached to the hinges, which because of their strategic attachment, maintain the saw blade and motor assembly at a substantially constant elevation during reciprocating movement in a normal cutting position.
Such hinge linkages have a cost advantage compared to conventional bushing and rod guides because they have a simpler construction, which may comprise as few as two generally planar shaped linkages that are connected together by shafts that may preferably incorporate rotary bushings or low cost ball bearings and which are also linked to the support frame of the rotatable table as well as to the saw pivot head. Tight tolerance fits between hinge components are relatively easier to achieve using low cost ball bearings that are preloaded in the axial direction so that nearly all axial and radial play is removed. In contrast, conventional bushings and sliding rod systems require expensive manufacturing processes to ensure that the outside surface of the rod is precise over its entire length. Another advantage of the use of hinge linkages is that their stiffness characteristics are determined primarily from the width of the hinge linkages as measured along the pivot, i.e., shaft axis. Thus, increased system stiffness can be achieved by making the hinge larger and this is generally less expensive than using larger rods and bushings.
As previously mentioned, the horizontal hinge linkage pivots around axes that are parallel to the cutting plane of the blade and therefore provides increased stiffness along the axis of rotation of the saw blade and because of this desirable characteristic, the length of the hinge shafts is greater than other shaft lengths such as those used in the vertical hinge linkage. The structural stiffness is very important to the quality of cuts made by the saw. Without the requisite structural stiffness, it is common for the saw blade to deflect out of the desired cutting plane on an intermittent basis which can result in one or more cut discontinuities or jagged cut portions, rather than a continuous smooth cut at the desired angle.
Another advantage of the hinge linkage is that it has greatly reduced sensitivity to dirt and grit because the bearing surfaces of a hinge linkage are not exposed but are contained within a ball bearing or short rotary bushing. Such ball bearing or rotary bushings can be relatively easily sealed compared to a rod and bushing system where the entire rod is a critical bearing surface and therefore has to be sealed with a large accordion or bellow shaped fabric or other type of cover which is often easily damaged.
Turning now to the first preferred embodiment shown in
The linear guide mechanism 22 of the first preferred embodiment shown in
A horizontal hinge linkage is comprised of links 52 and 54 which have adjacent ends connected together by a shaft 56. The saw pivot head 34 has a pair of spaced flanges 58 as well as a single flange 60 located below the flanges 58. The link 54 has its opposite end connected to the flanges 58 by a shaft 62. Similarly, the opposite end of the link 52 is connected to the vertical flanges 48 and 50 by a shaft 64. As previously mentioned and while not specifically illustrated, the shafts 32, 62, 56, 64, 78 and 82 are preferably of the type which utilize rotary bushings or low cost ball bearings so that they are freely rotatable and will have an extended useful life.
As is best shown in
As best shown in
The vertical hinge linkage is located below the horizontal hinge linkage and it comprises links 74 and 76 which have adjacent ends connected together by a vertical shaft 78. The links 74 and 76 are not as wide as the horizontal hinge links 52 and 54 for the reason that their functionality is to maintain the elevation of the saw pivot head 34 constant during movement of the blade and motor assembly 20 toward and away from the fence 14. Elevational deflections are not as critical for a miter saw cut quality for the reason that the work piece is generally being completely cut through.
The narrower links 74 and 76 are vertically displaced from one another which requires the elongated vertical shaft 78 to extend to interconnect them. The link 74 is located between the horizontal flanges 44 and 46 and is pivotally connected to these flanges by a shaft 80. Similarly, the link 76 has spaced flange portions that are connected to the flange 60 by a shaft 82. As is shown in
It should also be apparent from
A second preferred embodiment is shown in
The second preferred embodiment is indicated generally at 100 in
A third preferred embodiment of the invention is the saw 110 that is shown in
A fourth preferred embodiment is shown in
The vertical stand 214 has its lower end attached to or integrally formed with a cylindrical support frame 218 that is mounted to an enlarged extension 42 that is a part of the table 16. A shaft (not shown) enables the cylindrical portion 218 and vertical stand 214 to rotate relative to the table so that the blade and motor assembly 20 can perform bevel cuts in either direction. The shaft 208 that pivotally interconnects the front hinge 204 to the rear hinge 206 is also concentric with the axis of a gear 220 mounted on its left side and a gear 222 on the right side. The left gear 220 is non-rotatably attached to the rear hinge 206 whereas the right gear 222 is non-rotatably attached to the front hinge 204. The gear 222 is non-rotatably attached to shaft 208 which is non-rotatably attached to the front hinge 204.
The gear 220 meshes with an idler gear 224 that in turn meshes with a gear 226 that is non-rotatably attached to the pivot block 210. The gear 226 is non-rotatably attached to the shaft 212 which in turn is non-rotatably attached to the pivot block 210. Similarly, the right side gear 222 meshes with an idler gear 228 which in turn meshes with a gear 230 that is non-rotatably attached to the vertical stand 214. The idler gear 224 rotates about shaft 244 that is attached to the hinge 204 and the idler gear 228 rotates about shaft 246 that is attached to the rear hinge 206. The pivot block 210 is connected to the blade and motor assembly 20 by a shaft 232. While not shown, it is preferably spring loaded so that the blade and motor assembly is biased in its upward normal rest position but can be moved downwardly by an operator manipulating the handle 30.
The saw has a stop mechanism, indicated generally at 234, that comprises an elongated screw member 236 having an enlarged knob 238 at its upper end, with the elongated screw member 236 being threadedly connected to a bracket extension 240 of the blade and motor assembly 20. The bottom end of the elongated screw member 236 contacts a flange 242 that is preferably formed as a part of the pivot block 210 for limiting the downward reach of the blade 28 during operation. Since the stop mechanism 234 can be adjusted by rotating the knob 238, the degree of penetration of the blade in the illustrated slot of the table 16 can be adjusted.
With the geared hinges configured as described, the three gears 220, 224 and 226 on the left side of the linear guide mechanism 20 act in such a manner that the pivot block 210 is kept at a constant angular orientation with respect to the table 16. This gear set creates rotation about the pivot block mounting shaft 232 that negate any rotation of the pivot block that would otherwise occur when the front and rear hinges rotate relative to one another. This acts to maintain the pivot block 210 at a constant angle with respect to the table as the blade and motor assembly 20 are moved to the extended position shown in
The gear ratio of the gear 220 relative to gear 226 is one-half. The size of the idler gear 224 is unimportant inasmuch as it merely transmits the rotation from the smaller gear 220 to the larger gear 226. When the rear hinge 214 rotates with respect to the front hinge 204, the rearward gear 220 undergoes the same amount of rotation as the amount of rotation of the front hinge has with respect to the rear hinge. That rotation is multiplied by one-half through the gear ratio and is transmitted to the idler gear 224 on the front hinge 204 and then to the forward gear 212 that turns the pivot block.
The pivot block is held at a constant elevation with respect to the table 16 during the entire travel of the linear guide mechanism 202 because the pivot block 210 mounting shaft is held at a constant height through the action of the three gears 222, 228 and 230 mounted on the right side of the hinge 206. These gears accomplish this by causing the front hinge 204 to pivot through an angle with respect to the back hinge 206 that is twice the angle that the back hinge pivots with respect to the bevel vertical stand 214. When the hinges of equal length and the phase angle between the gears is such that the two hinges would perfectly overlap if the rear hinge was vertical, the pivot block 210 remains at a constant elevation. Other combinations of hinge lengths and hear ratios are possible.
Because of the design of the linear guide mechanism 202, there is a natural tendency for the blade and motor assembly 20 to gravitate toward the extended position. To counteract this tendency, it is therefore preferred to have at least one spring or other biasing mechanism provided to neutralize this tendency. In this regard, a torsion spring in one of the pivot connections may be provided or a tension spring interconnecting the rear hinge 206 with the pivot block 210 may be used, for example. A fifth embodiment is shown in
It should also be understood that the gears that are non rotating with respect to certain structures, namely gears 212′, 220′, 222′ and 230′ may be formed as a part of the structure that they are attached to. In that regard, the gear teeth which are not shown in either the fourth or fifth embodiments could be formed during casting or the teeth could be cut by the process of hobbing. Also, the interaction of the gears with one another is diagrammatically illustrated in
While various embodiments of the present invention have been shown and described, it should be understood that other modifications, substitutions and alternatives are apparent to one of ordinary skill in the art. Such modifications, substitutions and alternatives can be made without departing from the spirit and scope of the invention, which should be determined from the appended claims.
Various features of the invention are set forth in the following claims.
This is a continuation-in-part of Ser. No. 11/284,931 filed Nov. 22, 2005.
Number | Date | Country | |
---|---|---|---|
Parent | 11284931 | Nov 2005 | US |
Child | 11706886 | Feb 2007 | US |