The present invention relates to powered cleaning tools. More particularly, the present invention relates to powered cleaning tools with powered agitators and changeable cleaning elements.
The act of mopping is a conventional way to clean hard, generally flat surfaces such as floors, counters, and boat decking. There are generally three types of mopping, conventionally known as wet mopping, damp mopping, and dry mopping. In conventional wet mopping, a handled absorbent mopping tool is dipped into a liquid container. The liquid is generally water based, and may contain an additive such as detergent, solvent, or other compound such as wax. One purpose of the additive is to break down and dissolve dirt or soil. Another purpose of the additive is to attract the dirt or soil to the absorbent material in order to clean the surface. The absorbent material is conventionally a sponge or series of woven strands that are used to convey the liquid onto the cleaning surface. During application of the liquid, the absorbent material is manually scrubbed against the cleaning surface in order to dislodge and absorb the dirt or soil. The absorbent material is then conventionally rung in the liquid container, such as a bucket or other receptacle, to dislodge the dirty water. This process is conventionally repeated until the surface is clean.
One form of damp mopping is to apply a nearly dry mop to a wet surface in order to absorb liquid therefrom. This form of damp mopping conventionally follows wet mopping in order to fully absorb liquid from the cleaning surface. Another form of damp mopping is to scrub a dirty surface with a damp, i.e. semi-moist, absorbent material. This form of damp mopping is used in an effort to avoid the mess associated with wet mopping. In yet another form of damp mopping, a small amount of liquid is externally applied to a surface, such as from a hand held spray bottle, with the surface being cleaned by an absorbent mop. Dry mopping is another form of mopping where a dry mop is used to absorb or attract dirt without the use of liquid. In this case, the mop head may be treated with a chemical in order to statically attract dirt, soil and dust from the cleaning surface. While wet mopping and some forms of damp mopping generally require the use of a bucket or other liquid receptacle, dry mopping and other forms of damp mopping do not.
During repeated application of the mopping process, the absorbent material is generally subject to wear and eventually becomes unusable. In addition, the absorbent material may itself become permanently soiled or stained, and thereby present an unsanitary condition to the user. The repeated manual scrubbing of the surface being cleaned subjects the operator to fatigue and thereby limits the total surface area that may be cleaned in a single cleaning application. While some types of industrial cleaning machines provide options for wet and damp mopping, these types of machines suffer from a lack of portability and are generally ineffective around closely placed articles, such as in a household environment.
Wet mopping, damp mopping, and dry mopping readily lend themselves to application by a traditional mop having a compressible, wringable, mop head. In one form, the traditional mop head is comprised of a plurality of natural or synthetic woven strands that are generally tied together and joined with a handle. The wringable mop head is traditionally placed into a bucket or sink having an attached wringer for discharge of liquid from the mop head. A lever on the wringer is manually manipulated to compress the mop head with a paddle or a pair of paddles. Each paddle is traditionally provided with a plurality of holes to enhance egress of liquid from the mop head. In another form, the traditional mop head includes an integrated wringer. The integrated wringable mop head traditionally includes a spongiform material that is buttressed by a compression mechanism, such as a pair of rollers. By way of mechanical action, the rollers are manipulated about alternate sides of the spongiform material to discharge liquid from the mop head. The traditional wringable mop heads are generally prone to mess during discharge of the liquid therefrom.
Accordingly, there is a need for a portable cleaning tool with a non-wringable mop head for wet, damp, and dry mopping. There is a further need for a portable cleaning tool that provides a powered scrubbing operation while addressing the wear associated with the absorbent or dirt attracting mop head material.
A convenient new powered cleaning instrument has been developed for cleaning generally flat surfaces such as floors, countertops, and the like. In one preferred form, the present invention provides a cleaning tool including a non-wringable mop head pivotally connected to a handle assembly. The handle assembly includes an extension member connected to a power head, with the power head inducing agitation in an attached scrub head. The power head has a housing enclosing motor and battery to induce rotatable agitation in the scrub head. A nozzle assembly is connected to the handle assembly and is in fluid communication with a liquid reservoir. The liquid disposed within the liquid reservoir is ejected from the nozzle assembly in response to trigger control by an operator. The liquid reservoir is removably retained within a caddy or cradle that is attached to or formed continuously with the extension member. A fluid line connects the nozzle assembly to the liquid reservoir, and is fully or partially disposed within the extension member. Alternately, the fluid line is disposed on an outer surface of the handle assembly. The mop head pivots with respect to the handle assembly to position the scrub head in position for a scrubbing operation. The mop head further pivots with respect to the handle assembly to maintain operator control of the cleaning tool during a mopping operation. A pivot handle is connected to the mop head and is manipulated to pivot the mop head, thereby exposing the scrub head.
In another preferred form the present invention provides a cleaning tool comprising a handle assembly, a nozzle assembly, and a non-wringable mop head. The handle assembly includes an extension member connected to a motorized power head to induce agitation in an attached scrub head. The nozzle assembly is connected to the handle assembly and is in fluid communication with a liquid reservoir. Liquid disposed within the liquid reservoir is ejected from the nozzle assembly in response to trigger control by an operator. The non-wringable mop head pivotally connects to the handle assembly and pivotally retracts with respect to the power head to thereby dispose the scrub head in a scrubbing, i.e. cleaning, position. A pivot handle is connected to the mop head and is manipulated to retract the mop head with respect to the power head. The mop head is optionally configured with a mopping platform to securably retain a mopping cloth with a plurality of mopping cloth attachment sections. The mop head is optionally configured with a mopping platform to removably engage a mop cartridge. The mop cartridge has an absorbent or soil attracting mopping cloth attached to a cartridge support, and is optionally disposable. A pair of ejection members is slidably disposed within the mopping platform such that each of the ejection members may be manipulated to eject the mopping cartridge from the mopping platform. The mopping platform may be configured to removably retain a mopping cloth or a mopping cartridge.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiments and best mode of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention. Further, the following description and accompanying drawings provide multiple features and embodiments that are usable together, but may be shown separately to avoid prolixity and facilitate ease of understanding.
Additional advantages and features of the present invention will become apparent from the subsequent description and the appended claims, taken in conjunction with the accompanying drawings, wherein:
With reference now to the figures, cleaning tool 100 is illustrated in a mopping position in
Handle assembly 102 includes extension member 108 terminating at a proximal end in handle grip 110 and terminating at a distal end in power head 112. Extension member 108 is statically attached to power head 112 by way of collar member 114. According to a preferred embodiment, extension member 108 is formed from a plurality of connectable sections to facilitate packaging, storage, and portability. Alternatively, extension member 108 is a single section elongated boom. According to the illustrated embodiment, collar member 114 is a U-shaped member disposed about power head 112, and is attached thereto by way of attachment pins 116. Collar member 114 includes a pair of guide flanges 118 for engaging and slidably retaining pivot handle 120. The operation of pivot handle 120 is discussed in greater detail below.
Power head 112 provides support to scrub head 122. According to an embodiment, scrub head 122 is statically attached to power head 112. According to a preferred embodiment, power head 112 includes a powered motor assembly (not shown) to selectably engage and induce agitation in scrub head 122 by way of activation switch 123 in handle grip 110. Alternately, activation switch 123 may be provided on power head 112 or may be a sensor that responds to conversion from the mopping position of
Power head 112 further includes a nozzle assembly 124 that is in fluid communication with liquid reservoir 126 by way of an internal fluid line (not shown). When the operator activates spray switch 128 in handle grip 110, liquid is released from liquid reservoir 126 and out through spray nozzle assembly 124. According to a preferred embodiment, liquid reservoir 126 is a removable bottle that is held in cradle 130 attached to extension member 108. According to an alternate embodiment, liquid reservoir 126 is a cartridge that may be filled from an external liquid source (not shown).
Mop head 104 includes a mopping platform 132 that is configured to engage an absorbent or soil attracting mopping material, discussed in greater detail below. Mopping platform 132 is supported by a pair of platform extensions 134 connected to a top surface thereof. The platform extensions 134 are rotatably connected to power head 112 by way of pivot joints 106. The platform extensions 134 are further connected to distal ends of pivot handle 120 by way of pivot joints 136.
Handle assembly 202 includes extension member 208 terminating at a proximal end in handle grip 210 and terminating at a distal end in power head 212. Extension member 208 is statically attached to power head 212 by way of collar member 214. The collar member 214 may be formed integrally with extension member 208 or may be attached thereto. According to the illustrated embodiment, collar member 214 is a U-shaped member disposed about power head 212, and is attached thereto by way of attachment pins 216.
Power head 212 provides support to scrub head 222. According to an embodiment, scrub head 222 is statically attached to power head 212. According to a preferred embodiment, power head 212 includes a powered motor assembly (not shown) to selectably engage and induce agitation in scrub head 222 by way of activation switch 223 in handle grip 210. Alternately, activation switch 223 may be provided on power head 212 or may be a sensor that responds to conversion from the mopping position of
Power head 212 further includes an external nozzle assembly 224 that is in fluid communication with liquid reservoir 226 by way of fluid line 227. As illustrated, fluid line 227 is partially received within extension member 208 and maintains fluid connection between nozzle assembly 224 and fluid reservoir 226. According to an alternate embodiment, fluid line 227 is completely disposed within extension member 208 and nozzle assembly 224 is integrally molded with the housing of the power head 212. When the operator activates spray switch 228 in handle grip 210, liquid is released from liquid reservoir 226 and out through external nozzle assembly 224. According to a preferred embodiment, liquid reservoir 226 is a removable bottle that is held in cradle 230 attached to extension member 208. According to another embodiment, cradle 230 is integrally molded with extension member 208 and fluid line 227 is disposed within cradle 230 and extension member 208 for connection to nozzle assembly 224. According to an alternate embodiment, liquid reservoir 226 is a cartridge that may be optionally disposed within extension member 208 itself and filled from an external liquid source (not shown). According to yet another alternate embodiment, liquid reservoir 226 is an elongated bottle that is partially or fully received within the structure of extension member 208, thereby eliminating the need for cradle 230.
Power head 212 is connected to mop head 204 by way of lateral pivot joint 206. In particular, power head 212 is connected to collar member 246, which in turn connects to lateral pivot joint 206. As illustrated, collar member 246 is a U-shaped member that is disposed around power head 212 and pivotally connected to power head 212 by way of pivot joints 242. Pivot handle 220 is preferably U-shaped and is connected at distal ends to receiving sections 244. The receiving sections 244 are disposed about opposite sides of collar member 246, and are pivotally connected about pivot joints 248. According to an alternate embodiment, pivot handle 220 is a single extended arm that is distally connected to mop head 204 and proximally connected to a movable collar about extension member 208.
Mop head 204 includes a mopping platform 232 that is configured to engage an absorbent or soil attracting mopping material that is suitable for wet mopping, damp mopping, and/or dry mopping, discussed in greater detail below. Mopping platform 232 is connected at a top surface thereof to handle assembly 202 by way of lateral pivot joint 206. More particularly, mopping platform 232 is connected to collar member 246, which is connected to power head 212, which in turn is connected to extension member 208.
Cleaning tool 200 may be used during a spraying operation in the mopping position of
Handle assembly 302 includes extension member 308 terminating at a proximal end in handle grip 310. As illustrated, extension member 308 connects to power head 312 about pivot joint 306, and power head 312 in turn connects to mopping platform 332. Power head 312 connects to pivot joint 306 by way of collar member 314. According to the illustrated embodiment, collar member 314 is a U-shaped member disposed about power head 312 and is attached thereto by way of attachment pins 316. According to an alternate embodiment, collar member 314 is integrally formed with the housing for power head 312. As illustrated, pivot handle 320 is attached to mop head 304 by way of collar member 345. According to an alternate embodiment, collar member 345 is integrally formed with the housing for power head 312. As illustrated, collar member 345 itself it attached to power head 312 by way of attachment pins 347. Pivot handle 320 is pivotally attached to collar member 345 by way of pivot joint 349. Pivot handle 320 induces rotation of mop head 304 about pivot joint 306 to change between a mopping position and a scrubbing position. According to an alternate embodiment, pivot handle 320 is slidably attached to extension member 308 by way of a tubular collar member disposed about the periphery of extension member 308. According to an alternate embodiment, the tubular collar is a C-shaped tubular collar that does not fully extend around extension member 308.
Power head 312 provides support to scrub head 322. According to an embodiment, scrub head 322 is statically attached to power head 312. According to a preferred embodiment, power head 312 includes a powered motor assembly, set forth in greater detail below, to selectably engage and induce agitation in scrub head 322 by way of activation switch 323 in power head 312. According to a preferred embodiment, power head 312 rotatably engages scrub head 322 during a cleaning operation. According to an alternate embodiment, activation switch 323 may be provided in a remote location, such as on handle grip 310. According to yet another alternate embodiment, activation switch 323 is replaced by a sensor that responds to positioning of power head 312 in a scrubbing position by providing power thereto.
Mop head 304 includes a mopping platform 332 that is configured to engage an absorbent or soil attracting mopping material, such as a mopping cloth or a mopping cartridge. According to an embodiment, mop head 304 is structurally configured as set forth above with reference to
Universal joint 370 pivotally connects mopping platform 332 to power head 312 about first pivot axis 372 and a second pivot axis 374. First pivot axis 372 permits lateral movement of handle assembly 302 with respect to mopping platform 332. Likewise, second pivot axis 374 permits frontward and backward movement of handle assembly 302 with respect to mopping platform 332. Universal joint 370 thereby permits pivoting of mopping platform 332 in two dimensions with respect to handle assembly 302. According to an alternate embodiment, universal joint 370 is formed as a ball and socket joint.
Mop head 404 provides support to scrub head 422 and mopping platform 432 by way of support structure 403. The support structure 403 is preferably a molded plastic housing. According to an embodiment, scrub head 422 is statically attached to power head 412. According to a preferred embodiment, power head 412 includes a powered motor assembly (not shown) to selectably engage and induce agitation in scrub head 422 by way of activation switch 423. Alternately, activation switch 423 may be provided on handle assembly 402 or may be a sensor that responds to conversion from the illustrated mopping position into the scrubbing position (shown in dashed lines). Power head 412 preferably includes a motor assembly powered by batteries, such as rechargeable batteries (not shown). Alternately, the powered motor assembly is powered through an electrical connection to conventional household power.
In order to engage scrub head 522, mop head 504 is pivoted about pivot joints 506 by way of pivot handle 520. According to a preferred embodiment, power head 512 includes a powered motor assembly (not shown) to selectably engage and induce agitation in scrub head 522 by way of activation switch 523. Alternately, activation switch 523 may be provided on handle assembly 502 or may be a sensor that responds to conversion from the illustrated mopping position into the scrubbing position (shown in dashed lines). Power head 512 preferably includes a motor assembly powered by batteries, such as rechargeable batteries (not shown). Alternately, the powered motor assembly is powered through an electrical connection to conventional household power.
In order to engage scrub head 622, power head 612 is slidably moved past mopping platform 632 into a scrubbing position. According to a preferred embodiment, power head 612 includes a powered motor assembly (not shown) to selectably engage and induce agitation in scrub head 622 by way of activation switch 623. Alternately, activation switch 623 may be provided on handle assembly 602 or may be a sensor that responds to conversion from the illustrated mopping position into the scrubbing position (shown in dashed lines). Power head 612 preferably includes a motor assembly powered by batteries, such as alkaline or rechargeable batteries (not shown). Alternately, the powered motor assembly is powered through an electrical connection to conventional household power.
Mop head 800 comprises mopping platform 823, wherein platform 823 defines a lower surface 804. The lower surface 804 has a plurality of cartridge engagement sections 808a-d for engaging a plurality of corresponding engagement sections 810a-d in mop support 803 of cartridge 802. Preferably, the cartridge engagement sections 808a-d are indentions disposed in lower surface 804 for receiving a plurality of corresponding protrusions 810a-d extending from a proximal side 812 of mop support 803. Indentions 808a-d are preferably cylindrical indentions, and more preferably have a circular cross section. Likewise, protrusions 810a-d are preferably cylindrical protrusions, and more preferably have a circular cross section. According to a preferred embodiment, mop cartridge 802 is held to mop head 800 by way of friction contact between engagement sections 808a-d and engagement sections 810a-d. According to another embodiment, indentions 808a-d and protrusions 810a-d cooperate with a bonding element, such as a combination of hook and loop type fasteners or tacky adhesive such as silicone gel to hold mop cartridge 802 to mop head 800. According to an alternate embodiment, protrusions are provided on lower mop head surface 804 with a corresponding plurality of indentions on proximal cartridge side 812. Yet another embodiment provides a plurality of protrusions and indentions on lower mop head surface 804 with a corresponding plurality of indentions and protrusions on proximal cartridge side 812. According to yet another embodiment, indentions 808a-d and protrusions 810a-d are replaced by a combination of hook and loop type fasteners or tacky adhesive such as silicone gel to hold mop cartridge 802 to mop head 800.
As illustrated, mop head 800 preferably comprises a plurality of engagement sections, such as diagonal elongate indentions 814a, 814b, and lateral indentions 816a, 816b. Proximal cartridge side 812 likewise includes a plurality of corresponding engagement sections, namely diagonal elongate protrusions 820a, 820b and lateral protrusions 822a, 822b, for respectively mating with diagonal elongate indentions 814a, 814b and lateral indentions 816a, 816b, through friction engagement.
Lower mop head surface 804 further defines an elongate channel 818 which extends along surface 804 and terminates in the lateral sides of mop head 800. Channel 818 slidably receives ejection members 824a, 824b. The operation of ejection members 824a, 824b is discussed in greater detail below with respect to
Scrub head 912 releasably engages with attachment head 908 to permit use of different types of scrubbing members and to facilitate replacement thereof. According to the illustrated embodiment, scrub head 912 includes a support structure 914 having an engagement recess 916 to engage attachment head 908. A flexibly deformable section 918 is attached to support structure 914 for facilitating cleaning or scrubbing. According to an embodiment, section 918 is an absorbent sponge-like material or a flexibly deformable foam material. An optional scouring section 920 is permanently bonded to deformable section 918 for increasing effectiveness of the cleaning or scrubbing operation. Optional scouring section 920 is preferably a mesh of plastic fibers permanently bonded to section 918. During periodic use, scrub head 912 may be disengaged from attachment head 908 for cleaning, such as by soaking in bleach. Scrub head 912 may also be replaced after periodic use in response to wear.
According to an embodiment, scrub head 912 is statically attached to attachment head 908, and cleaning is provided through manual agitation of scrub head 912. According to a preferable embodiment, power head 900 includes a powered motor assembly, discussed in greater detail below, to selectably engage and induce agitation in scrub head 912 by way of an activation switch or sensor. According to a preferred embodiment, power head 912 rotatably engages scrub head 912 to induce the agitation during a cleaning operation. According to a preferred embodiment, the powered motor assembly is powered by batteries, such as alkaline or rechargeable batteries, illustrated below in
Handle assembly 1002 includes extension member 1008 terminating at a proximal end in handle grip 1010 and terminating at a distal end in power head 1012. Extension member 1008 is preferably statically attached to power head 1012 by way of an integrated housing 1014. Alternately, power head 1012 has a housing that is statically connected to extension member 1008 by way of fastening members, such as rivets or screws, or a bonding agent, such as adhesive or glue. In accordance with the alternate embodiments set forth in greater detail above, power head 1012 may be optionally pivotally attached to extension member 1008. According to a preferred embodiment, extension member 1008 is formed from a plurality of connectable sections to facilitate packaging, storage, and portability. Alternatively, extension member 1008 is a single section elongated boom.
Cleaning tool 1000 further comprises a pivot control handle 1020 connected to mop head 1004 by conversion bar 1021. Preferably, control handle 1020 is a tubular collar that slidably engages an outer periphery of extension member 1008. Alternately, control handle 1020 is a semi-tubular collar that engages the outer periphery of extension member 1008 or a molded handle that slides adjacent to extension member 1008. According to the illustrated embodiment, handle assembly 1002 laterally pivots with respect to mop head 1004 about pivot joints 1036 and 1037. The act of pivoting enhances portability of cleaning tool 1000 and permits mop head 1004 to reach underneath household structures, such as tables and chairs, while maintaining operator control.
Power head 1012 provides support to scrub head 1022. According to an embodiment, scrub head 1022 is statically attached to power head 1012. According to a preferred embodiment, power head 1012 includes a powered motor assembly (set forth in greater detail below) to selectably engage and induce agitation in scrub head 1022 by way of an activation switch disposed within one of the pivot joints 1006. The activation switch is preferably a sensor that responds to conversion of cleaning tool 1000 from the mopping position into the scrubbing position. Alternatively, the activation switch may be a manually operated electrical switch disposed in handle grip 1010, power head 1012, or integrated housing 1014. Power head 1012 preferably includes a motor assembly powered by batteries, set forth in greater detail below. Alternately, the powered motor assembly is powered through an electrical connection to conventional household power.
Power head 1012 further includes a nozzle assembly 1024 that is in fluid communication with liquid reservoir 1026 by way of an internal fluid line, described in greater detail below. The fluid line is received within extension member 1008 and maintains fluid connection between nozzle assembly 1024 and fluid reservoir 1026. According to an alternate embodiment, the fluid line is partially disposed within integrated housing 1014. When the operator activates spray switch 1028 in handle grip 1010, liquid is released from liquid reservoir 1026 and out through spray nozzle assembly 1024. Preferably, spray switch 1028 is connected to a pump mechanism to pump liquid from liquid reservoir 1026. According to a preferred embodiment, liquid reservoir 1026 is a removable bottle that is held in cradle 1030 that is integrally formed with integrated housing 1014. As set forth above, extension member 1008 is also integrally formed as part of integrated housing 1014. According to an alternate embodiment, cradle 1030 is a separate member that is attached to extension member 1008 by way of fastening members or a bonding agent.
Power head 1012 is connected to mop head 1004 by way of pivot joints 1006. In particular, power head 1012 is connected to collar member 1046 about pivot joint 1006. Collar member 1046 is a U-shaped member that is disposed around power head 1012 and pivotally connected to power head 1012 by way of pivot joints 1006.
Pivot control handle 1020 is connected to collar member 1046 by way of conversion bar 1021. A release button 1023, described in greater detail below, is disposed on control handle 1020. When cleaning tool 1000 is disposed in the mopping position of
Mop head 1004 includes a mopping platform 1032 that is configured to engage an absorbent or soil attracting mopping material that is suitable for wet mopping, damp mopping, and/or dry mopping. Mopping platform 1032 is connected at a top surface thereof to handle assembly 1002 by way of pivot joint 1036 and pivot joint 1037, described in greater detail below.
Cleaning tool 1000 may be used during a spraying operation in the mopping position of
As illustrated, matable sections 1010a, 1010b each include fastening members 1052a, 1052b for respectively engaging side holes 1054a, 1054b in extension member 1008. Preferably, fastening members 1052a, 1052b are molded protrusions extending inwardly from matable sections 1010a, 1010b. Alternatively, fastening members 1052a, 1052b are rivets or screws configured to engage with side holes 1054a, 1054b. A pair of molded lugs 1044a, 1044b are correspondingly attached as part of handle grip matable sections 1010a, 1010b. Lugs 1044a, 1044b are configured as to receive a corresponding fastening member, such as a rivet or screw therethrough for connecting matable sections 1010a, 1010b. Additional molded lugs 1045 are illustrated in matable section 1010b of
Release button 1023 is pivotally attached within annular bead 1056 of pivot handle 1020 by way of a pair of pivot arms 1058a, 1058b. Each of the pivot arms 1058a, 1058b are respectively received within receiving indentions 1060a, 1060b.
Power head 1012 is illustrated in partial sectional form to illustrate placement of power drive unit 1074 and attachment head 1076. Power drive unit 1074 includes a plurality of gears (not shown) connected to motor 1075. Motor 1075 is preferably an electric motor in electrical communication with removable power supply 1078 and is partially received within power drive unit 1074. The gears within power drive unit 1074 are preferably planetary gears having a gear reduction ratio of 81:1. The power supply 1078 is a removable cartridge, preferably including a plastic shell with electrical contacts, that is configured and arranged to receive at least one battery 1080 or plural batteries. Power supply 1078 is configured for manual removal from integrated housing 1014 such that the batteries may be readily replaced. According to an embodiment, battery 1080 is an alkaline battery. According to an alternate embodiment, battery 1080 is a rechargeable battery that may be removed for charging. According to yet another embodiment, battery 1080 is recharged while being maintained within integrated housing 1014 of handle assembly 1002 by way of a battery charger (not shown). According to an embodiment, electrical communication between power drive unit 1074 and battery pack 1078 is provided by way of an electric switch or sensor, described in greater detail below with regard to
Liquid reservoir 1026 is held within cradle 1030 by way of insertion into reservoir receiving section 1090. The receiving section 1090 is preferably molded from plastic and includes reservoir nipple 1092 and transmission nipple 1094. The reservoir nipple 1092 is configured to removably engage cap section 1094 of liquid reservoir 1026, described in greater detail below. Transmission nipple 1094 is configured for permanent attachment to first tubular section 1096 within cradle 1030. First tubular section 1096 attaches to pump mechanism 1084, while a second tubular section 1098 connects pump mechanism 1084 to spray nozzle 1082. A tension member 1100 is formed as part of pump mechanism 1084. Tension member 1100 returns piston 1085 to a resting position with respect to cylinder 1087 of pump mechanism 1084. Tension member 1100 also urges push rod 1047 proximally toward handle grip 1010, and thereby urges spray switch 1028 into the normal position. Tension member 1100 is preferably a coiled spring. As spray switch 1028 is pushed by the operator, push rod 1047 is urged downwardly against the force of tension member 1100 to thereby control pump mechanism 1084 to draw liquid from liquid reservoir 1026 and out from spray nozzle 1082.
Pivot joint member 1120 is configured to rotate about and removably engage with collar socket 1124. When mopping platform 1032 is removed from connection with collar member 1046, cleaning tool 1000 may be used as a handled scrubbing tool. Further, by removing mopping platform 1032 from collar member 1046, another mopping platform may be connected to collar member 1046. For example, a scrubbing style mopping platform or another mopping platform having a new mopping cloth may be quickly inserted so that the operator may continue with a mopping operation.
Pivot joint member 1120 has a stator section 1126 that protrudes rearwardly for engaging collar socket 1124. Retaining member 1130 is disposed within a tunnel within stator section 1126 and is urged frontwardly by way of return spring 1138. Retaining member 1130 includes a pair of flexible angled pawls 1132 that protrude outwardly from pawl indentions 1134 in stator section 1126 to engage an interior groove 1136 within collar socket 1124. Button 1128 is configured to be attached to the front side of retaining member 1130 for disengaging pawls 1132 from engagement with interior groove 1136 of collar socket 1124. Return spring 1138 urges retaining member 1130 frontwardly such that flexible pawls 1132 are urged outwardly from indentions 1134 to engage collar socket 1124. When button 1128 is pushed inwardly, the angled pawls 1132 are pushed rearwardly and thereby release from engagement within interior groove 1136. At this time, stator section 1126 may be removed from collar member 1046.
In accordance with the embodiment of
The pivot extensions 1162 and 1164 pivotally engage with ejector knob 1148. As ejector knob 1148 is rotated counter-clockwise, first ejector bar 1154 is moved leftwardly to urge angled ejection member 1163 downwardly through an office (not shown) within first groove 1156. Likewise, second ejector bar 1158 is moved rightwardly to urge angled ejection member 1165 downwardly through an office (not shown) within second groove 1160. As the angled ejection members 1163, 1165 protrude downwardly out of bottom section 1150, the members engage and eject cartridge 1168 from mopping platform 1140. Return spring 1170 is connected between second ejection bar 1158 and spring support 1172. Return spring 1170 urges second ejection bar 1158 leftwardly, which thereby urges ejector knob clockwise and returns angled ejection member 1163, 1165 to a position within bottom section 1150. Bottom section 1150 includes a plurality of sidewall retaining sections 1151 that are configured to engage corresponding cartridge retaining sections 1169 in cartridge 1168. Additional corresponding protrusions and indentions are described in greater detail with regard to mop head 800 described above and illustrated in
According to an embodiment, cartridge 1168 is a molded plastic member supporting a permanently bonded mopping cloth. According to an alternate embodiment, cartridge 1168 is a molded plastic member without a bonded mopping cloth such that the mopping cloth is held to mopping platform 1140 by way of finger members 1147. In this embodiment, cartridge 1168 functions as a removable platen for supporting the mopping cloth. The platen may be replaced if worn to thereby extend the useful life of the associated cleaning tool.
Likewise, when ejector knob 1192b is depressed, a mechanical linkage (not shown) urges another pair of ejection members upwardly through attachment sections 1197c, 1197d to thereby eject mopping cloth 1196 from platform 1190. According to an alternate embodiment, ejector knobs 1192a, 1192b are biased rotatable knobs connected to corresponding ejection members by way of a biased mechanical linkage (not shown). The ejector knobs 1192a, 1192b rotate to thereby urge the corresponding ejection members through corresponding attachment sections. A spring mechanism urges the ejector knobs 1192a, 1192b to the return position. According to a preferred embodiment, a single rotatable knob, such as rotatable knob 1192a is connected to all ejection members by way of a mechanical linkage (not shown). Thus, when the single rotatable knob is rotated, all ejection members protrude through all attachment sections 1197a-d to thereby eject the mopping cloth therefrom. Preferably, a spring mechanism urges the ejection members to return within the top surface 1194 and urges the return of the single rotatable knob to the return position.
A cap spring 1252 contacts extension arms 1276 of plunger 1250 and a flat surface of retaining member 1256 to urge plunger 1250 into the closed position. Retaining member 1256 includes an annular groove for retaining O-ring 1254 therein. When retaining member 1256 is press fit against an interior sidewall of cap housing 1245, O-ring 1254 maintains a seal with the interior sidewall. Locking member 1258 is press fit within an interior groove in the interior sidewall of cap housing 1245 to secure retaining member 1256 into position. Retaining member 1256 includes a tubular extension 1257 that mates with tubing section 1260 to provide an air passage above retaining member 1256. Tubing section 1260 is preferably semi-rigid and extends toward the end of bottle section 1242 to maintain positive air pressure during egress of liquid from bottle section 1242. Tubing section 1260 mates at a distal end with tubular extension 1261 of tube holder 1262. Air directing valve 1264 is retained within tube holder 1262 and is a one-way valve to direct air flow outwardly through the open bottom section 1263 and out through holes 1266 in the side wall of tube holder 1262. Air directing valve 1264 prevents egress of liquid from bottle section 1242 from entering tubing section 1260. Air directing valve 1264 further serves to prevent blockage of tubing section 1260 should dirt or contaminants enter bottle section 1242.
While the invention has been described in the specification and illustrated in the drawings with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined in the claims. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out this invention, but that the invention will include any embodiments falling within the foregoing description and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
817766 | Hames | Apr 1906 | A |
871246 | Thomas | Nov 1907 | A |
1059427 | Barnwell | Apr 1913 | A |
1065975 | Shaw | Jul 1913 | A |
1383731 | Leigh | Jul 1921 | A |
1391111 | Hill | Sep 1921 | A |
1563829 | Brown | Dec 1925 | A |
2127886 | Plon | Aug 1938 | A |
2896235 | Clements | Jul 1959 | A |
3013288 | Lappin | Dec 1961 | A |
3099855 | Nash | Aug 1963 | A |
3115656 | McKinstry | Dec 1963 | A |
3167798 | Dryden | Feb 1965 | A |
3210792 | Sassano, Sr. | Oct 1965 | A |
3737938 | Saltzstein | Jun 1973 | A |
3792505 | Saltzstein | Feb 1974 | A |
3833962 | Krusche | Sep 1974 | A |
3981106 | Gallo | Sep 1976 | A |
4491998 | Wilson et al. | Jan 1985 | A |
4731897 | Griffin | Mar 1988 | A |
4802782 | Scalf | Feb 1989 | A |
4885876 | Henke | Dec 1989 | A |
5071489 | Silvenis et al. | Dec 1991 | A |
5243729 | Tomm | Sep 1993 | A |
5371917 | Hoagland | Dec 1994 | A |
5461749 | Ahlberg et al. | Oct 1995 | A |
5483720 | Decoopman et al. | Jan 1996 | A |
5488750 | Vosbikian et al. | Feb 1996 | A |
5542352 | Blackman et al. | Aug 1996 | A |
5655248 | Kieson et al. | Aug 1997 | A |
5701630 | Liao | Dec 1997 | A |
5787586 | Apprille, Jr. et al. | Aug 1998 | A |
5836039 | Rimer | Nov 1998 | A |
5924167 | Wright et al. | Jul 1999 | A |
5933913 | Wright et al. | Aug 1999 | A |
5978999 | deBlois et al. | Nov 1999 | A |
5983448 | Wright et al. | Nov 1999 | A |
6000088 | Wright et al. | Dec 1999 | A |
6026530 | Camp, Jr. | Feb 2000 | A |
6065182 | Wright et al. | May 2000 | A |
6101671 | Wright et al. | Aug 2000 | A |
6216307 | Kaleta et al. | Apr 2001 | B1 |
6237232 | Petricca et al. | May 2001 | B1 |
6305042 | Lalli | Oct 2001 | B1 |
6305046 | Kingry et al. | Oct 2001 | B1 |
6421869 | Olsson | Jul 2002 | B1 |
D462150 | Rader et al. | Aug 2002 | S |
6446299 | Kaleta | Sep 2002 | B1 |
6484346 | Kingry et al. | Nov 2002 | B2 |
6540424 | Hall et al. | Apr 2003 | B1 |
6588045 | Fernandez | Jul 2003 | B2 |
6591442 | Kaminstein | Jul 2003 | B2 |
6611986 | Seals | Sep 2003 | B1 |
6651290 | Kingry et al. | Nov 2003 | B2 |
6659670 | Blouse | Dec 2003 | B1 |
D487173 | Clare et al. | Feb 2004 | S |
6842936 | Policicchio et al. | Jan 2005 | B2 |
6871372 | Vosbikian et al. | Mar 2005 | B2 |
6892415 | Libman et al. | May 2005 | B2 |
6964535 | Bell et al. | Nov 2005 | B2 |
7264413 | Vosbikian et al. | Sep 2007 | B2 |
7636979 | Morad | Dec 2009 | B1 |
20020026680 | Kingry et al. | Mar 2002 | A1 |
20020120993 | Busha | Sep 2002 | A1 |
20020120996 | Kaminstein | Sep 2002 | A1 |
20020184726 | Kingry et al. | Dec 2002 | A1 |
20030009839 | Streutker et al. | Jan 2003 | A1 |
20030028988 | Streutker et al. | Feb 2003 | A1 |
20030074756 | Policicchio et al. | Apr 2003 | A1 |
20030205243 | Fernandez | Nov 2003 | A1 |
20040011382 | Kingry et al. | Jan 2004 | A1 |
20040055102 | Treacy et al. | Mar 2004 | A1 |
20040068817 | Policicchio | Apr 2004 | A1 |
20040071490 | Vosbikian et al. | Apr 2004 | A1 |
20040074520 | Truong et al. | Apr 2004 | A1 |
20040187240 | Berti et al. | Sep 2004 | A1 |
20040237228 | King et al. | Dec 2004 | A1 |
20040244133 | Li | Dec 2004 | A1 |
20050011536 | Hofte et al. | Jan 2005 | A1 |
20050039286 | Brinker et al. | Feb 2005 | A1 |
20050060827 | James et al. | Mar 2005 | A1 |
20060277704 | Pineschi | Dec 2006 | A1 |
20070136963 | Vosbikian | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
2004204801 | Jul 2004 | AU |
2010200235 | Feb 2010 | AU |
2493334 | Jul 2004 | CA |
2634126 | Jul 2007 | CA |
1717192 | Jan 2006 | CN |
2414384 | Nov 2005 | GB |
2422298 | Jul 2006 | GB |
2424175 | Sep 2006 | GB |
1088799 | Feb 2007 | HK |
1089066 | Jun 2007 | HK |
2004062456 | Jul 2004 | WO |
2007076305 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070214586 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60772577 | Feb 2006 | US |