Claims
- 1. A computer system comprising:
a plurality of computers operating as servers each having at least one processor and an activity monitor identifying a level of activity indicator for said at least one processor; each of said computers being operable in: (i) a first mode having a first maximum performance level and a first power consumption rate, and (ii) a third mode having a third maximum performance level lower than said first maximum performance level and a third power consumption rate lower than said first power consumption rate; each of said computers further being operable in (iii) a second mode having a second maximum performance level intermediate between said first maximum performance level and said third maximum performance level and a second power consumption rate intermediate between said first power consumption rate and said third power consumption rate; and a power manager computer: (i) configured within or coupled to each of said computers and receiving said level of activity information from each of said plurality of computers; (ii) analyzing said plurality of received level of activity information; (iii) determining an operating mode for each of said computers selected from said first mode, said second mode, and third mode based on said analyzed activity information and predetermined policies; and (iv) generating commands to each of said plurality of computers directing each of said plurality of computers to operate in said determined operating mode.
- 2. The computer system in claim 1, wherein said activity monitor comprises an activity monitor that monitors an activity selected from the set of activities consisting of: a program application layer activity, a network layer activity, a physical layer activity, and combinations thereof.
- 3. The computer system in claim 2, wherein at the physical level the number of processor idle threads executed within a predetermined period of time are measured to determine processor loading and the processor performance is adjusted to by altering the operating mode to substantially match the level of processor loading.
- 4. The computer system in claim 1, wherein said activity monitor comprises a network layer activity monitoring TCP/IP protocol data packets; and processor performance is incrementally lowered by said power manager using said mode control until data packets start dropping indicating that the processor performance is at the limit of adequacy and then increasing the processor performance by a specified increment to act as a safety margin to provide reliable communication of the packets.
- 5. The computer system in claim 2, wherein said application layer activity monitor comprises monitoring use of a port address within said computers, said monitoring including counting or measuring a number of times a specific port address is being requested within a predetermined period of time, and in response to that counting or measurement, placing a sufficient amount of computer performance to meet the performance requirement for each application requesting the port address.
- 6. The computer system in claim 2, wherein said application layer activity monitor comprises monitoring use of a port address within said computers.
- 7. The computer system in claim 2, wherein said network layer activity monitor comprises monitoring use of a TCP/IP protocol within said computers.
- 8. The computer system in claim 2, wherein said physical layer activity monitor comprises monitoring the execution of idle threads within said computers.
- 9. The computer system in claim 2, wherein said physical layer activity monitor comprises monitoring counting activities having particular activity values within said computers.
- 10. The computer system in claim 1, wherein:
said first mode operation is characterized by operating said processor at a first processor clock frequency and a first processor core voltage, said second mode operation is characterized by operating said processor at a second processor clock frequency and a second processor core voltage, and said third mode operation is characterized by operating said processor at a third processor clock frequency and a third processor core voltage; said second mode of operation being further characterized in that said second processor clock frequency and said second processor core voltage in combination consuming less power than said first processor clock frequency and said first processor core voltage in combination, and said third processor clock frequency and said third processor core voltage in combination consuming less power than said second processor clock frequency and said second processor core voltage in combination.
- 11. The computer system in claim 10, wherein performance of a group of said computers configured as physical network devices forming a single logical device are power managed by reducing the performance and power consumption of each constituent physical device in predetermined equal increments or predetermined unequal increments.
- 12. The computer system in claim 10, wherein network device loading and quality of service (QoS) are measured for a plurality of physical network devices organized as a single logical network device.
- 13. The computer system in claim 10, wherein said third processor clock frequency is less than said second processor clock frequency which is less than said first processor clock frequency.
- 14. The computer system in claim 13, wherein said second processor core voltage is less than said first processor core voltage.
- 15. The computer system in claim 14, wherein said third processor core voltage is less than said second processor core voltage.
- 16. The computer system in claim 10, wherein said third processor clock frequency is less than said second processor clock frequency which is less than said first processor clock frequency; and said second processor core voltage is less than said first processor core voltage.
- 17. The computer system in claim 16, wherein:
each said computer including a local power manager determining an operating mode for itself selected from said first mode and said second mode based on processor internal activity information.
- 18. The computer system in claim 17, wherein said processor internal activity information comprising idle thread execution information.
- 19. The computer system in claim 17, wherein a transition from said first mode to said second mode is controlled locally within each said computer; and a transition from either said first mode or said second mode to said third mode are controlled globally by said power manager.
- 20. The computer system in claim 19, wherein a transition from said second mode to said first mode is controlled locally within each said computer; and a transition from said third mode to either said first mode or said second mode is controlled globally by said power manager.
- 21. The computer system in claim 1, wherein said activity indicator comprises a network quality of service indicator, and wherein a quality-of-service (QoS) is first established, and a processor performance is established based on predetermined policies that select a processor clock frequency, and a minimum processor core voltage is selected to match said selected processor clock frequency; and wherein the established processor performance is used to control an operating mode.
- 22. The computer system in claim 1, wherein power is conserved by controlling each computer node to enter one of said second mode or said third mode using one or more of a quality of service based predictive processor performance reduction and a activity based measured performance requirement.
- 23. The computer system in claim 1, wherein at least some of said computers include a mass storage device including a rotatable storage device.
- 24. The computer system in claim 23, wherein when the system includes a plurality of network devices and there is a requirement that one network device be placed in a lower power consumption mode, the network device selected for such lower power consumption is selected according to predetermined policies such that different network devices are placed in lower power consumption mode each time such selection is required.
- 25. The computer system in claim 24, wherein said reduced power operation is determined according to a procedure for controlling power consumption by said system, said system having a plurality of computers operating as said network devices, each computer including at least one processor, and each computer being operable in a first mode having a first maximum performance level and a first power consumption rate, and a third mode having a third maximum performance level lower than said first maximum performance level and a third power consumption rate lower than said first power consumption rate; said procedure comprising:
monitoring activity within said computers and identifying a level of activity for said at least one processor within said computers; analyzing said plurality of level of activity information; determining an operating mode for each of said computers selected from said first mode and third mode based on said analyzed activity information; and generating commands to each of said plurality of computers directing each of said plurality of computers to operate in said determined operating mode.
- 26. The system in claim 25, wherein each of said computers further being operable in a second mode having a second maximum performance level intermediate between said first maximum performance level and said third maximum performance level and a second power consumption rate intermediate between said first power consumption rate and said third power consumption rate;
said determining an operating mode further comprising determining an operating mode for each of said computers selected from said first mode, said second mode, and said third mode based on said analyzed activity information; a transition from said first mode to said second mode is controlled locally within each said computer; and a transition from either said first mode or said second mode to said third mode are controlled globally by said power manager; and a transition from said second mode to said first mode is controlled locally within each said computer; and a transition from said third mode to either said first mode or said second mode is controlled globally by said power manager.
- 27. A computer server system comprising:
a plurality of computers operating as servers each having at least one processor and an activity monitor identifying a level of activity indicator for said at least one processor, said activity monitor comprises an activity monitor that monitors an activity selected from the set of activities consisting of: a program application layer activity, a network layer activity, a physical layer activity, and combinations thereof; each of said computers being operable in: (i) a first mode having a first maximum performance level and a first power consumption rate, and (ii) a third mode having a third maximum performance level lower than said first maximum performance level and a third power consumption rate lower than said first power consumption rate; each of said computers further being operable in (iii) a second mode having a second maximum performance level intermediate between said first maximum performance level and said third maximum performance level and a second power consumption rate intermediate between said first power consumption rate and said third power consumption rate; and a power manager computer: (i) configured within or coupled to each of said computers and receiving said level of activity information from each of said plurality of computers; (ii) analyzing said plurality of received level of activity information; (iii) determining an operating mode for each of said computers selected from said first mode, said second mode, and third mode based on said analyzed activity information and predetermined policies; and (iv) generating commands to each of said plurality of computers directing each of said plurality of computers to operate in said determined operating mode; wherein when said activity monitor comprises a physical layer activity, at the physical level the number of processor idle threads executed within a predetermined period of time are measured to determine processor loading and the processor performance is adjusted to by altering the operating mode to substantially match the level of processor loading; wherein when said activity monitor comprises a network layer activity monitoring TCP/IP protocol data packets; and processor performance is incrementally lowered by said power manager using said mode control until data packets start dropping indicating that the processor performance is at the limit of adequacy and then increasing the processor performance by a specified increment to act as a safety margin to provide reliable communication of the packets; wherein when said activity monitor comprises said application layer, said activity monitor comprises monitoring use of a port address within said computers, said monitoring including counting or measuring a number of times a specific port address is being requested within a predetermined period of time, and in response to that counting or measurement, placing a sufficient amount of computer performance to meet the performance requirement for each application requesting the port address; said first mode operation is characterized by operating said processor at a first processor clock frequency and a first processor core voltage, said second mode operation is characterized by operating said processor at a second processor clock frequency and a second processor core voltage, and said third mode operation is characterized by operating said processor at a third processor clock frequency and a third processor core voltage; said second mode of operation being further characterized in that said second processor clock frequency and said second processor core voltage in combination consuming less power than said first processor clock frequency and said first processor core voltage in combination, and said third processor clock frequency and said third processor core voltage in combination consuming less power than said second processor clock frequency and said second processor core voltage in combination.
- 28. A system as in claim 27, wherein performance of a group of said computers configured as physical network devices forming a single logical device are power managed by reducing the performance and power consumption of each constituent physical device in predetermined equal increments or predetermined unequal increments.
- 29. A system as in claim 27, wherein network device loading and quality of service (QoS) are measured for a plurality of physical network devices organized as a single logical network device.
- 30. A system as in claim 27, wherein:
said third processor clock frequency is less than said second processor clock frequency which is less than said first processor clock frequency; said second processor core voltage is less than said first processor core voltage; said third processor core voltage is less than said second processor core voltage; each said computer including a local power manager determining an operating mode for itself selected from said first mode and said second mode based on processor internal activity information including idle thread execution information; a transition from said first mode to said second mode is controlled locally within each said computer; and a transition from either said first mode or said second mode to said third mode are controlled globally by said power manager; and a transition from said second mode to said first mode is controlled locally within each said computer; and a transition from said third mode to either said first mode or said second mode is controlled globally by said power manager.
- 31. In a server farm comprising a multiplicity of computer systems operating as content servers, a method of operating said servers, each server computer including at least one processor, and each computer being operable in a first mode having a first maximum performance level and a first power consumption rate, and a third mode having a third maximum performance level lower than said first maximum performance level and a third power consumption rate lower than said first power consumption rate; said method comprising:
monitoring activity within each said computer server and identifying a level of activity for said at least one processor within said server computer; analyzing said plurality of level of activity information; determining an operating mode for each of said computers selected from said first mode and third mode based on said analyzed activity information; and generating commands to each of said multiplicity of server computers directing each of said plurality of computers to operate in said determined operating mode.
RELATED APPLICATIONS
[0001] This application is a continuing application under 35 U.S.C. §§ 119(e) and 120, wherein applicant and inventor claim the benefit of priority to U.S. Provisional Application Ser. No. 60/283,375 entitled System, Method And Architecture For Dynamic Server Power Management And Dynamic Workload Management for Multi-Server Environment filed Apr. 11, 2001; U.S. Provisional Application Ser. No. 60/236,043 entitled System, Apparatus, and Method for Power-Conserving Multi-Node Server Architecture filed Sep. 27, 2000; and U.S. Provisional Application Ser. No. 60/236,062 entitled System, Apparatus, and Method for Power Conserving and Disc-Drive Life Prolonging RAID Configuration filed Sep. 27, 2000; each of which application is hereby incorporated by reference.
[0002] The following U.S. utility patent applications are also related applications: U.S. utility patent application Ser. No. ______ (Attorney Docket No. A-70531/RMA) entitled System, Method, and Architecture for Dynamic Server Power Management and Dynamic Workload Management for Multi-server Environment filed May 2, 2001; U.S. utility patent application Ser. No. ______ (Attorney Docket No. A-70532/RMA) entitled System and Method for Activity or Event Based Dynamic Energy Conserving Server Reconfiguration filed May 2, 2001; U.S. utility patent application Ser. No. ______ (Attorney Docket No. A-70533/RMA) entitled System, Method, Architecture, and Computer Program Product for Dynamic Power Management in a Computer System filed May 2, 2001; U.S. utility patent application Ser. No. ______ (Attorney Docket No. A-70534/RMA) entitled Apparatus, Architecture, and Method for Integrated Modular Server System Providing Dynamically Power-managed and Work-load Managed Network Devices filed May 2, 2001; U.S. utility patent application Ser. No. ______ (Attorney Docket No. A-70535/RMA) entitled System, Architecture, and Method for Logical Server and Other Network Devices in a Dynamically Configurable Multi-server Network Environment filed May 2, 2001; U.S. utility patent application Ser. No. ______ (Attorney Docket No. A-70536/RMA) entitled Apparatus and Method for Modular Dynamically Power-Managed Power Supply and Cooling System for Computer Systems, Server Applications, and Other Electronic Devices filed May 2, 2001; and, U.S. utility patent application Ser. No. ______ (Attorney Docket No. A-70537/RMA) entitled Power on Demand and Workload Management System and Method; each of which applications is hereby incorporated by reference.
[0003] This is also a continuing application claiming the benefit of priority under 35 U .S.C. § 120 to each of the following applications: U.S. patent application Ser. No. 09/558,473 filed Apr. 25, 2000, entitled System and Method Of Computer Operating Mode Clock Control For Power Consumption Reduction; which is a continuation of U.S. patent application Ser. No. 09/121,352 filed Jul. 23, 1998, entitled System and Method of Computer Operating Mode Control for Power Consumption Reduction; which is a division of application Ser. No. 08/767,821 filed Dec. 17, 1996, entitled Computer Activity Monitor Providing Idle Thread and Other Event Sensitive Clock and Power Control abandoned; which is a continuation of application Ser. No. 08/460,191 filed Jun. 2, 1995, entitled Activity Monitor That Allows Activity Sensitive Reduced Power Operation of a Computer System abandoned; which is a continuation of application Ser. No. 08/285,169 filed Aug. 3, 1994, entitled Power Management for Data Processing System, abandoned; which is a continuation of application Ser. No. 08/017,975 filed Feb. 12, 1993 entitled Power Conservation Apparatus Having Multiple Power Reduction Levels Dependent Upon the Activity of a Computer System, U.S. Pat. No. 5,396,635; which is a continuation of application Ser. No. 07/908,533 filed Jun. 29, 1992 entitled Improved Power Management for Data Processing System, abandoned; which is a continuation of application Ser. No. 07/532,314 filed Jun. 1, 1990 entitled, Power Management for Data Processing System, now abandoned; each of which applications are hereby incorporated by reference.
[0004] This application is also related to: U.S. Pat. No. 6,079,025 issued Jun. 20, 2000 entitled system and Method of Computer Operating Mode Control For Power Consumption System; U.S. Pat. No. 5,892,959 issued Apr. 6, 1999 entitled Computer Activity Monitor Providing Idle Thread And Other Event Sensitive Clock and Power Control; U.S. Pat. No. 5,799,198 issued Aug. 25, 1998 entitled Activity Monitor For Computer systems Power Management; U.S. Pat. No. 5,758,175 issued May 26, 1998 entitled Multi-Mode Power Switching For Computer Systems; U.S. Pat. No. 5,710,929 issued Jan. 20, 1998 entitled Multi-State Power Management For Computer System; and U.S. Pat. No. 5,396,635 issued Mar. 7, 1995 for Power Conservation Apparatus Having Multiple Power Reduction Levels Dependent Upon the Activity of a Computer System; each of which patents are herein incorporated by reference.
Provisional Applications (3)
|
Number |
Date |
Country |
|
60283375 |
Apr 2001 |
US |
|
60236043 |
Sep 2000 |
US |
|
60236062 |
Sep 2000 |
US |
Continuations (7)
|
Number |
Date |
Country |
Parent |
09121352 |
Jul 1998 |
US |
Child |
09860214 |
May 2001 |
US |
Parent |
08767821 |
Dec 1996 |
US |
Child |
09860214 |
May 2001 |
US |
Parent |
08460191 |
Jun 1995 |
US |
Child |
09860214 |
May 2001 |
US |
Parent |
08285169 |
Aug 1994 |
US |
Child |
09860214 |
May 2001 |
US |
Parent |
08017975 |
Feb 1993 |
US |
Child |
09860214 |
May 2001 |
US |
Parent |
07908533 |
Jun 1992 |
US |
Child |
09860214 |
May 2001 |
US |
Parent |
07532314 |
Jun 1990 |
US |
Child |
09860214 |
May 2001 |
US |