The present disclosure relates to a power operated rotary knife including a notched annular rotary knife blade and a notched annular trim guide, the notched trim guide directing elements to be cut into position for cutting between recessed, sharpened regions or cutting portions of the rotary knife blade against recessed shearing portions of the notched trim guide.
Power operated rotary knives are widely used in meat processing facilities for meat cutting and trimming operations. Power operated rotary knives also have application in a variety of other industries where cutting and/or trimming operations need to be performed quickly and with less effort than would be the case if traditional manual cutting or trimming tools were used, e.g., long knives, scissors, nippers, etc. By way of example, power operated rotary knives may be effectively utilized for such diverse tasks as taxidermy; cutting and trimming of elastomeric or urethane foam for a variety of applications including vehicle seats; and tissue removal or debriding in connection with medical/surgical procedures and/or tissue recovery from a body of a human or animal donor.
Power operated rotary knives typically include a head assembly and an elongated handle assembly releasably affixed to the head assembly. The handle assembly extends along a longitudinal axis and includes a hand piece having a gripping surface to be grasped by an operator or user to manipulate the power operated rotary knife. The handle assembly may include a central core or other attachment structure to releasably attach the handle assembly to the head assembly.
The head assembly includes an annular blade housing and an annular rotary knife blade supported for rotation by the blade housing. The annular rotary blade of conventional power operated rotary knives is typically rotated by a drive assembly which include a flexible shaft drive assembly extending through an opening in the handle assembly. The shaft drive assembly engages and rotates a drive train, such as, for example, a pinion gear supported by the head assembly. The flexible shaft drive assembly includes a stationary outer sheath and a rotatable interior drive shaft which is driven by an electric motor. Gear teeth of the pinion gear engage mating gear teeth formed on an upper surface of the rotary knife blade. Alternately, a pneumatic motor disposed in a throughbore of the handle assembly may be used to drive the pinion gear supported by the head assembly which, in turn, rotates the rotary knife blade.
Upon rotation of the pinion gear by the drive shaft of the flexible shaft drive assembly, the annular rotary blade rotates within the blade housing at a high RPM, on the order of 500-1500 RPM, depending on the structure and characteristics of the drive assembly including the motor, the shaft drive assembly, and a diameter and the number of gear teeth formed on the rotary knife blade. Conventional power operated rotary knives are disclosed in U.S. Pat. No. 6,354,949 to Baris et al., U.S. Pat. No. 6,751,872 to Whited et al., U.S. Pat. No. 6,769,184 to Whited, and U.S. Pat. No. 6,978,548 to Whited et al., all of which are assigned to the assignee of the present invention and all of which are incorporated herein in their respective entireties by reference.
In one aspect, the present disclosure relates to a power operated rotary knife comprising: an annular rotary knife blade supported for rotation about a central axis of rotation in a direction of rotation and rotating with respect to a trim guide, the knife blade including an annular body including an inner wall and an outer wall and an upper end and a lower end, the annular body of the rotary knife blade including a bearing surface for rotational support of the rotary knife blade and a driven gear for rotationally driving the rotary knife blade, the rotary knife blade further including a blade section extending from the lower end of the annular body, the blade section including a blade frustoconical wall extending between an upper end of the blade section and a lower end of the blade section, the lower end of the blade section spaced radially inwardly from and axially below the upper end, a plurality of circumferentially spaced apart notches extending from the lower end of the blade section into the blade frustoconical wall, each of the plurality of notches including an opening at the lower end and a central open portion defined by a peripheral wall, the peripheral wall including a cutting portion, the cutting portion of each of the plurality of circumferentially spaced apart notches defining a cutting edge of the rotary knife blade; and a trim guide including a base and a guide section extending radially inwardly and axially downwardly from the base, the guide section extending axially below and being adjacent to the blade section of the rotary knife blade and including a guide frustoconical wall extending between an upper end of the guide section and a lower end of the guide section, the lower end of the guide section spaced radially inwardly from the upper end, a plurality of circumferentially spaced apart notches extending from the lower end into the guide frustoconical wall, each of the plurality of notches including as opening at the lower end and a central open portion defined by a peripheral wall, the peripheral wall including a shearing portion, the shearing portion in overlapping axial alignment with the cutting portions of the plurality of notches of the blade section of the rotary knife blade as the rotary blade rotates about the central axis of rotation.
In another aspect, the present disclosure relates to a combination of an annular rotary knife blade and a trim guide for a power operated rotary knife, the combination comprising: the annular rotary knife blade supported for rotation about a central axis of rotation in a direction of rotation and rotating with respect to the trim guide, the knife blade including an annular body including an inner wall and an outer wall and an upper end and a lower end, the annular body of the rotary knife blade including a bearing surface for rotational support of the rotary knife blade and a driven gear for rotationally driving the rotary knife blade, the rotary knife blade further including a blade section extending from the lower end of the annular body, the blade section including a blade frustoconical wall extending between an upper end of the blade section and a lower end of the blade section, the lower end of the blade section spaced radially inwardly from and axially below the upper end, a plurality of circumferentially spaced apart notches extending from the lower end of the blade section into the blade frustoconical wall, each of the plurality of notches including an opening at the lower end and a central open portion defined by a peripheral wall, the peripheral wall including an arcuate cutting portion, the arcuate cutting portion of each of the plurality of circumferentially spaced apart notches defining a cutting edge of the rotary knife blade; and the trim guide including a base and a guide section extending radially inwardly and axially downwardly from the base, the guide section extending axially below and being adjacent to the blade section of the rotary knife blade and including a guide frustoconical wall extending between an upper end of the guide section and a lower end of the guide section, the lower end of the guide section spaced radially inwardly from the upper end, a plurality of circumferentially spaced apart notches extending from the lower end into the guide frustoconical wall, each of the plurality of notches including as opening at the lower end and a central open portion defined by a peripheral wall, the peripheral wall including a shearing portion, the shearing portion in overlapping axial alignment with the cutting portions of the plurality of notches of the blade section of the rotary knife blade as the rotary blade rotates about the central axis of rotation.
The foregoing and other features and advantages of the present disclosure will become apparent to one skilled in the art to which the present disclosure relates upon consideration of the following description of the disclosure with reference to the accompanying drawings, wherein like reference numerals, unless otherwise described refer to like parts throughout the drawings and in which:
The present disclosure relates to a power operated rotary knife, in one exemplary embodiment, shown generally at 100, in
The notched annular knife blade 500 and coacting notched trim guide 700 are useful for a number of tasks, including trimming/pruning of plants and, specifically, trimming/pruning foliage, branches, stems, stalks, runners, etc. of plants, including nursery stock and production plants in an efficient and effective manner, by utilizing the advantage of a power driven, rapidly rotating rotary knife blade for cutting purposes. Among the plant suitable for trimming and pruning by the power operated knife 100 of the present disclosure include strawberry plants or bushes, which require periodic pruning and trimming of the plants, including trimming of runners (stems sent out by a plant to establish new plants, crowns, etc.) to maximize fruit production.
Pruning of strawberry plants by hand using conventional hand tools such as pruning shears, snips, scissors, etc. or having employees use their hands for pruning is both labor intensive and time consuming. Additionally, constant hand manipulations required for operating pruning shears and the like are both tiring for the employee and result in repetitive stress to the employee's hand. While attempts at using power operated or power driven tools to replace hand pruning operations, such as, for example, the use of power driven string trimmers to prune strawberry plants, have met with limited success because strawberry plants are delicate and the plant and its root structure may be easily damaged by the action of a rapidly rotating plastic line of a string trimmer. Additionally, many commercial growers utilize plastic mats or sheets between strawberry plant rows to inhibit weed growth and protect strawberry plant roots. The whipping action of a rotating plastic line upon inadvertent contact with plastic mat or sheet can displace or damage the mat or sheet thereby undesirably exposing the plant roots and/or damaging the plant roots.
The power operated rotary knife 100 of the present disclosure utilizes the advantage of a rapidly rotating rotary knife blade 500 and the stationary trim guide 700 to facilitate effective and efficient trimming or cutting of plant foliage/branches/stems/stalks/runners and the like, etc. (hereinafter interchangeably and generally/collectively referred to as “branch” and/or “branches” and/or “foliage” and/or “foliage material” and/or “material” and/or “materials” throughout this description). Depending on the gearing of a drive mechanism 400 and the rotational speed of a drive motor of the drive mechanism 400 of the power operated rotary knife 100, a diameter of the rotary knife blade 500 and the gearing characteristics of the driven gear 520 of the blade 500 and other factors, the rotation speed of the blade 500 may be on the order of 500-1500 RPM. The rotary knife blade 500 is supported for rotation about a central axis of rotation R by a blade housing 600 and, when looking at the rotary knife blade 500 and the rotary knife 100 from above (the top plan view shown in
The rotary knife blade 500 includes a blade section 550 that extends axially downwardly and radially inwardly from an annular body 510 of the blade 500. The blade section 550 extends between an upper end 552 and a lower end 554 and has a generally frustoconical shape. The lower end 554 of the blade section 550 defines a lower end 518 of the rotary knife blade 500. The blade section 550 includes a plurality of notches or notched regions 560 extending inwardly from a bottom or lower end 508 of the blade 500, that is, the lower end 554 of the blade section 550. Each of the plurality of notches 560 defines a recessed, arcuate cutting region or portion 580 of the rotary knife blade 500. Taken together, the recessed, arcuate cutting portions 580 defined by the plurality of notches 560 define a cutting edge 590 of the blade section 550. The plurality of notches 560 extend inwardly from a bottom end 554 of the blade section 550 of the rotary knife blade 500. The notches 560 include interior cutting regions which are recessed from the bottom end 554 of the blade section 550. For each of the plurality of notches 560, the arcuate cutting portion 580 of the notch 560 is disposed at a trailing end 570 of the notch 560 with respect to the direction of rotation CCW of the blade 500. In one exemplary embodiment of the rotary knife blade 500 of the present disclosure, the plurality of notches 560 are disposed in an evenly circumferentially spaced arrangement in the blade section 550 of the knife 500, as best seen in
The coacting trim guide 700 includes a planar base 710 and a guide section 720 extending axially downwardly and radially inwardly from the base 710. The trim guide 700 is positioned and configured such that the guide section 720 extends below and is adjacent to the blade section 550 of the blade 500, substantially conforming to the generally frustoconical shape of the blade section 550. The guide section 720 includes an upper end 722 and a lower end 724. The lower end 724 of the guide section 720 defines a lower end 704 of the trim guide 700. The guide section 720 includes a plurality of notches or notched regions 730 extending inwardly from a bottom or lower end 724 of the guide section 720, that is, the lower end 704 of the trim guide 700. Each of the plurality of notches 730 defines a recessed, shearing regions or portions 740 of the trim guide 700. For each of the plurality of notches 730, the shearing portion 740 of the notch 730 is disposed at a leading end of the notch 730 with respect to the direction of rotation CCW of the blade 550. The shearing portions 740 of the guide section notches 730 are in overlapping axial alignment with the arcuate cutting portions 580 of the blade section notches 560 as the rotary knife blade rotates about the central axis of rotation R. Stated another way, the stationary shearing portions 740 and the rotating cutting portions 580 create a shearing or scissors-like cutting action because they are in overlapping axial alignment as the rotary knife blade 100 rotates about its central axis of rotation R.
An extending distal portion 725 of the guide section 720 of the trim guide 700 extends axially below and radially inwardly of the lower end 504 of the rotary knife blade 500 to function as a guard to protect the blade 500 from inadvertent contact with the plastic mat or sheeting used between rows of plants or around the base of a plant to inhibit weed growth and/or protect plant roots. Additionally, the extending distal portion 725 of the guide section 720 advantageously functions to direct a branch or branches into an interior region 745 of one of the plurality of notches 730 as the knife 100 is moved by the operator in a direction orthogonal to the axis of rotation R of the rotary knife blade 500 to cut or trim a branch or branches. That is, the operator moves the knife 100 to position a branch or branches to be cut or trimmed within the central cutting opening CO defined by the rotary knife blade, blade housing, and trim guide combination 450. The operator then moves the knife 100 in a direction generally orthogonal to the blade axis of rotation R such that the branches are urged against the lower end 724 of the trim guide 700 and slide along a lower end 724 of the guide section 720 and move into the interior region 745 of one of the plurality of notches 730 of the guide section 720. Typically, the movement of the knife 100 is in the direction of the operator, that is, the operator pull the knife in a rearward or proximal direction RW (
The trim guide 700 also includes a guard section 750 comprising a peripheral rib 751 which extends axially above and radially outwardly from the base 710. As can best be seen in
In one exemplary embodiment of the trim guide 700 of the present disclosure, the plurality of notches 730 are disposed in a front or distal portion 726 of the guide section 720 of the trim guide 700, as can best be seen in
The notches 730 of the trim guide 700 function to direct the plant branches to be cut into recessed shearing portions 740 defined by each of the plurality of notches 730 of the trim guide 700 wherein the recessed arcuate cutting portions 580 of the plurality of notches 560 of the rotary knife blade 500 cut the branches by shearing action as the blade 500 rotates with respect to the stationary trim guide 700. To cut or trim a branch, the power operated rotary knife 100 is positioned with respect to a plant branch to be cut or trimmed such that the branch extends through the cutting opening CO defined by the power operated rotary knife 100, the operator then moves the knife 100 in a direction such that the branch is moved within the cutting opening CO and urged against the front or distal portion 725 of the guide section 720 of the trim guide 700. Depending on the position of the branch within the cutting opening CO, the movement of the rotary knife 100 by the operator will move the branch into one of the plurality of notches 730 of the trim guide section 720. A cutting portion 580 of the rotary knife blade 500 will impact the branch within the interior region 745 of the notch 730, cutting the branch by a shearing action between the shearing portion 740 of the trim guide notch 730 at the leading end 732 of the notch 730 and the cutting portion 580 of the blade section notch 560 at the trailing end 570 of the notch 560.
While the shearing action of the power operated rotary knife 100 has been described above with respect to trimming, pruning, cutting of plants and, specifically, strawberry plants, one of skill in the art will recognize that the power operated rotary knife 100 of the present disclosure can be advantageously used for any trimming/pruning/cutting task where a shearing-type cutting action between a rapidly rotating rotary knife blade 500 having, recessed sharpened, cutting portions 580, against a stationary trim guide 700, having recessing shearing portions 740, that functions to guide elements to be cut or trimmed into position for cutting by the recessed, sharpened cutting portions 580 of the rotary knife blade 500. In one exemplary embodiment of the power operated rotary knife 100 of the present disclosure, an outer diameter of the rotary knife blade 500 is approximately 5.09 in. and the blade configuration is a so-called flat blade configuration meaning the blade has a shallow blade cutting profile, as opposed to, for example, a hook blade configuration or a straight blade configuration. As would be understood by one of skill in the art, the configuration and size of the rotary knife blade 500 may vary depending on the elements/branches to be cut, trimmed or pruned. The present disclosure contemplates the use of alternate blade sizes and configurations and corresponding different diameters/sizes and configurations for the trim guide 700 in the power operated rotary knife 100.
Handle Assembly 200
The power operated rotary knife 100 of the present disclosure includes the head assembly 300 having an elongated handle assembly releasably affixed thereto. As can best be seen in
The handle assembly 200 further includes a drive shaft latching assembly 280. The shaft drive latching assembly 280 releasably secures a flexible shaft drive assembly (not shown) of the drive mechanism 400 to the handle assembly 200 such that motive power may be applied to drive a drive or gear train 402 disposed in the throughbore 312 of the frame 310 and thereby rotate the rotary knife blade 300. In one exemplary embodiment, the gear train 402 comprises a pinion gear 404 which is rotated by the flexible shaft drive assembly and, in turn, rotates the rotary knife blade 500. The shaft drive latching assembly 280 includes a latching knob 282 secured to a proximal end 214 of the hand piece 210 and a latching member 284 for releasably securing a coupling of the shaft drive assembly to the handle assembly 200.
The latching knob 282 of the drive shaft latching assembly 280 threads onto a threaded end section (not shown) of the frame tube (not shown) extending from the frame body 310. When the latching knob 282 is threaded onto the threaded proximal end section of the frame tube, the hand piece 210 is thereby sandwiched and secured to the rearward annular boss 350 of the frame body 310.
Head Assembly 300
The power operated rotary knife 100 includes a handle assembly 200 and the head assembly 300 releasably affixed to the handle assembly 200. As can best be seen in
Frame Body 310
The frame body 310 includes a forward or distal blade housing support region 320 and a rearward annular boss 350. The forward blade support region 320 includes a pair of outwardly extending arcuate arms 322 which define a blade housing mounting region 324 for receiving an arcuate mounting section 650 of the blade housing 600 and a clamping receiving region 326 for receiving the proximal wall of the clamp 332 of the clamping assembly 330. The clamp 332 is secured to the frame body 310 by a pair of threaded fasteners 334 that extend through respective openings in the arcuate arms 322 of the frame body 310. The arcuate mounting section 392 of the blade housing 390 is sandwiched between the forward blade housing support region 320 and the clamp 332 to releasably secure the blade housing 600 to the frame body 310.
In one exemplary embodiment, the rearward annular boss 350 of the frame body 310 includes an inner surface defining a rear portion of the central throughbore 312. The rear portion of the central throughbore 312 includes a threaded section. A frame tube (not shown) threads into and is affixed to the threaded section of the rearward annular boss 350. The frame tube (not shown) extends rearwardly though a central throughbore of a hand piece 210 of the handle assembly 200 and includes a threaded proximal end section. An outer surface 352 of the rearward annular boss 350 includes a first region 354, closest to the forward blade support region 320, and a middle region 356. The first region 354 includes a pair of exterior grooves on the outer surface 352 that receives a pair of sealing members 382 of the grease cup assembly 380. The middle region 356 includes a plurality of raised splines 358 and is sized to receive an annular mounting ring 392 of the pivoting thumb support 390. If desired and depending on operator preference, the pivoting thumb support 390 may be removed from the power operated rotary knife 100 and the knife 100 may be used without the thumb support 390. In such an alternate exemplary embodiment, the annular mounting ring 392 is replaced with an annular spacer ring (not shown) which is sized to fit on the plurality of raised splines 358 of the rearward annular boss 350 of the frame 310. Specific details of the structure and function of the pivoting thumb support 390, the grease cup assembly 380 and attachment structure of the handle assembly 200 to the head assembly 300 are found in U.S. Published Application No. US2014/0259690 to Mascari et al., published Sep. 18, 2014 and U.S. Published Application No. US2014/0250697 to Steele et al., published Sep. 11, 2014, issued as U.S. Pat. No. 9,321,183 on Apr. 26, 2016. Both U.S. Published Application No. US2014/0259690 and U.S. Published Application No. US2014/0250697 are assigned to the assignee of the present invention and both of the aforesaid published applications are incorporated herein in their respective entireties by reference.
Drive Mechanism 400
The drive mechanism 400 of the power operated rotary knife 100 includes the drive train 402 supported within the central throughbore 312 of the frame body 310. In one exemplary embodiment, the drive train 402 includes the pinion gear 404. The input shaft 408 of the pinion gear 404 is supported for rotation by the cylindrical bushing 410 positioned within the front portion of the throughbore 412. A drive coupling of a flexible shaft drive transmission (not shown), driven by a remote motor drive (not shown), extends through a throughbore of the hand piece 210 of the handle assembly 200 and engages a female coupling defined by the pinion gear input shaft 408 to rotate the pinion gear 404. The gear head 406 of the pinion gear 404 operatively engages the set of gear teeth of the rotary knife blade 500 to rotate the knife blade 500 within the blade housing 600.
As mentioned above, in one exemplary embodiment, the drive mechanism 400 of the power operated rotary knife 100 may comprise a remote motor drive and a flexible shaft drive transmission which transfers rotational power from the motor drive to rotate a drive train 1550 of the power operated rotary knife 1000. The flexible shaft drive transmission includes a driver assembly which is received in a central, longitudinally extending throughbore of the handle assembly 200 to rotatably drive the drive train 402 of the drive mechanism 400. Such a drive mechanism, including a remote motor drive and flexible shaft drive transmission and driver assembly, are disclosed in U.S. Pat. No. 8,968,107 to Rapp et al., issued Mar. 3, 2015 and U.S. Published Application No. US2013/0174424 to Whited et al., published Jul. 11, 2013, issued as U.S. Pat. No. 9,265,263 on Feb. 23, 2016, both of which are assigned to the assignee of the present invention. Both U.S. Pat. No. 8,968,107 and U.S. Published Application No. US2013/0174424 are incorporated herein in their respective entireties by reference. In an alternate exemplary embodiment of the power operated rotary knife of the present disclosure, the drive mechanism 400 may include a pneumatic motor (not shown) disposed within the throughbore of the handle assembly 200. An output shaft and coupling of the pneumatic motor are operatively coupled to the female coupling defined by the pinion gear input shaft 408 to rotate the pinion gear 404. Such a pneumatic drive mechanism is disclosed in U.S. Pat. No. 7,207,114 to Rosu et al., issued Apr. 24, 2007 and U.S. Pat. No. 8,756,819 to Whited et al., issued Jun. 24, 2014, both of which are assigned to the assignee of the present invention. Both U.S. Pat. No. 7,207,114 and U.S. Pat. No. 8,756,819 are incorporated herein in their respective entireties by reference.
Blade Housing 600
The rotary knife blade 500 (
The mounting section 650 of the blade housing 600 includes an angled split 652 and a pinion clearance region 654. The pinion clearance region 654 of the blade housing mounting section 650 provides for clearance for the gear head 406 of the pinion gear 404 of the drive mechanism drive train 402. The angled split 652 of the mounting section 650 is circumferentially offset from the pinion clearance region 654 and provides for expansion of the blade housing diameter for purposes of changing the rotary knife blade 500 when the blade has reached the end of its useful life. Specific details regarding an annular blade housing with an angle split and offset pinion clearance region are disclosed in U.S. Pat. No. 8,661,692 to Whited et al., issued Mar. 4, 2014. U.S. Pat. No. 8,661,692 is assigned to the assignee of the present invention and is incorporated herein in its entirety by reference.
The rotary knife blade 500, the blade housing 600, and the trim guide 700, are all annular and, when assembled, define an overlapping sandwiched combination 450, as shown in
Rotary Knife Blade 500
The rotary knife blade 500 of the power operated rotary knife 100 includes an inner wall 502 and a radially spaced apart outer wall 504 and an upper end 506 and an axially spaced apart lower or bottom end 508. The inner wall 502 defines a central opening of the blade 500. The blade 500 includes the annular body 510 which defines an inner wall 512 (defining part of the inner wall 502 of the blade 500), an outer wall 514 (defining part of the outer wall 504 of the blade 500), an upper end 516 (defining the upper end 506 of the blade 500) and a lower end 518. The rotary knife blade 500 further includes the blade section 550 extending axially downwardly and radially inwardly (toward the blade axis of rotation R) from the lower end 518 of the annular body 510. The blade section 550 includes upper end 552 adjacent the annular body lower end 518 and a lower end 554 (defining the lower end 508 of the blade 500) and a generally frustoconical wall 556 extending therebetween.
The upper end 516 of the annular body 510, as mentioned above, defines the driven gear 520 of the blade 500. The driven gear 520 comprises a set of gear teeth formed in a circumference adjacent the outer wall 514 of the annular body. Adjacent the lower end 518 of the annular body, the blade bearing race 540 defining frustoconical bearing surfaces 542 is formed in the outer wall 514 of the annular body, as described above.
The lower end 554 of the blade section 550 includes a plurality interrupted arc portions 572 that define a lower edge 509 of the blade 500. The interrupted arc portions 572 are centered about the blade central axis of rotation R and, if connected and continued, would form a circle defining an inner diameter of the blade 500 with a center on the axis of rotation R. Typically, the interrupted arc portions 572 would define a cutting edge of the blade, but, in the rotary knife 500 of the present disclosure, the cutting edge 590 of the blade are defined by the recessed, arcuate cutting portions 580 within the plurality of notches 560. Interrupting the are portions 572 are the plurality of notches 560 formed at the lower end 554 of the frustoconical wall 556 of the blade section 550 and extending into the frustoconical wall 556. As can best be seen in
The trailing end 570 of the peripheral wall 562 includes an arcuate sharpened region 571 extending approximately from a transition segment 569 of the peripheral wall 562 bridging the linear central portion 568 and the trailing end 570 to a termination point 584 of the trailing end 570 located at the bottom edge 509 of the blade 500, as defined by the start of the next interrupted arc portion 572. The arcuate sharpened regions 571 may extend to the bottom edge 509 of the blade 500 or be in close proximity to the bottom edge. Both are contemplated by the present disclosure. The arcuate sharpened regions 571 are concave (like the inside of a bowl) in that they are curving in or hollowed inwardly due to the hook-shape of the trailing end 570 of the peripheral wall 562. The arcuate sharpened regions 571 of the plurality of notches 560 define the respective recessed arcuate cutting regions or portions 580 of the blade 500. The arcuate cutting portions 580 are recessed in that at least a portion of the arcuate sharpened region 571 is within an interior region 582 (that is, the central open portion 564) defined by each of the plurality of notches 560. It should be appreciated of course that the arcuate cutting portions 580 (and the associated sharpened regions 571), instead of being arcuate (by virtue of the hook-shaped trailing end 570 of the peripheral wall 562), could be linear or convex and the present disclose contemplates such an alternate embodiment. In one exemplary embodiment of the rotary knife blade 500, an inner diameter of the blade 500, as defined by the interrupted arc portions 572 constituting the lower edge 509 of the blade 500, is approximately 4.0 in., while the outside diameter of the blade, defined by the radial outermost extent of the outer wall 514 of the annular body 510 of the blade is approximately 5.092 in. In one exemplary embodiment, a thickness of the interrupted arc portions 572 is approximately 0.038 in. Additionally, in one exemplary embodiment, the number notches in the plurality of notches 560 is six, each of which is spaced equidistantly about an inner perimeter or inner diameter of the blade 500, each of the notches subtending an angle α (depicted schematically in
Trim Guide 700
The trim guide 700, which is stationary with respect to the rotation of the blade 500, includes an upper end 702 and a lower end 704 and defines the planar base 710, the guide section 720 extending axially below and radially inwardly from the base 710, and the guard section 750, including the upwardly extending rib 751, the vertical extension 754 and the radially inwardly extending lip 770, as previously described. The base 710 includes an attachment tab 718 extending from a rearward portion 712 of the base 710. The tab 718 includes an aperture 719. The trim guide 700 is releasably affixed to a bottom surface 321 of the blade housing support region 320 of the frame body 310 by a threaded fastener 800 that extends through the tab aperture 719 and threads into a threaded opening 321a of the bottom surface 321 of the blade housing support region 320 of the frame body 310.
The guide section 720 of the trim guide 700 includes an upper end 722 and a lower end 724 and defines a guide section frustoconical wall 721. The frustoconical wall 721 extends along the frustoconical wall 556 of the blade section 550. As described above, the extending distal portion 725 of guide section 720 extends axially below and radially inwardly beyond the lower edge 509 of the rotary knife blade 500 and has two functions: 1) to direct a branch or branches into an interior region 745 defined by one of the plurality of notches 730 as the knife 100 is moved by the operator to cut or trim a branch or branches within the central cutting opening CO of the knife 100; and 2) to guard the blade 500 from inadvertent contact with the ground or plastic mats or sheets positioned on the ground between rows of plants.
In the forward portion 726 of the guide section 720 are the plurality of notches 730 formed the lower end 724 and extending into the frustoconical wall 721. The lower end 724 of the guide section 720 also includes interrupted arc portions 738 that define a lower edge 709 of the trim guide 700. The interrupted arc portions 738 are centered about the blade central axis of rotation R and, if connected and continued, would form a circle defining an inner diameter of the trim guide 700 with a center on the axis of rotation R. Interrupting the arc portions 738 in the forward portion 726 of the guide section 720 are the plurality of notches 730 formed at the lower end 724 of the frustoconical wall 721 of the guide section 720 and extending into the frustoconical wall 721. As can best be seen in
For each of the plurality of notches 730, the leading end 734 of the peripheral wall 742 defines a shearing region or portion 740 extending approximately from a termination point 747 of the notch 730 at the lower end 724 of the guide section 720 where the next adjacent interrupted arc portion 738 commences and extending to a radially innermost point 746 (
As explained above, the cutting action of the knife 100 occurs through the combination 480 of the rotating rotary knife blade 500 and the stationary trim guide 700. As the blade 500 rotates about its central axis of rotation R, the shearing portions 740 of the guide section notches 730 come into overlapping axial alignment with the arcuate cutting portions 580 of the blade section notches 560. Additionally, the central open portion 564 or interior region 582 of each of the plurality of notches 560 of the blade section 550 of the rotary knife blade 500 come into overlapping axial alignment with the central open portion 743 or interior region 745 of each of the plurality of notches 730 as the blade 500 rotates about the axis of rotation R. This transitory overlapping alignment of the central open portions 564, 743 or interior regions 582, 745 define transitory cutting pockets 799 (two of which can be seen in
In one exemplary embodiment of the trim guide 700, an inner diameter of the trim guide 700, as defined by the interrupted arc portions 738 constituting the lower edge 709 of the trim guide 700, is approximately 3.809 in., while a diameter defined by a radially innermost point of each of the plurality of notches 730 of the guide section 720 is approximately 4.631 in. Additionally, in one exemplary embodiment, the number notches in the plurality of notches 730 is six, each of the notches subtending an angle β (depicted schematically in
Annular, as used herein, means generally ring-like or generally ring-shaped in configuration and includes configuration wherein the ring include or does not include a split extending through a diameter of the ring or annulus. Axially above or axially spaced above, as used herein, means positioned above as viewed with respect to an axis, for example, the central axis of rotation R of the rotary knife blade 500, even if the two elements are not in axial alignment with respect to the axis. Similarly, the terms axially below or axially spaced below, as used herein, means positioned below as viewed with respect to an axis, for example, the central axis of rotation R of the rotary knife blade 500, even if the two elements are not in axial alignment with respect to the axis. Axially extending, as used here, means one element extends from and is positioned above or below a second element with respect to an axis, even if the two elements are not in axial alignment with respect to the axis. Similarly, the terms radially offset from, radially outward of, radially inward of, as used herein, means one element is positioned offset from a second element, as viewed along a radius line extending radially from an axis, for example, the central axis of rotation R of the rotary knife blade 500, even if the two elements are not in radial alignment along the radius line because one element is axially above or axially below the other element
A second exemplary embodiment of a power operated rotary knife assembly of the present disclosure is schematically shown, generally at 1000, in
For brevity, the structural details/functions/advantages of those components and assemblies of the power operated rotary knife 1100 which are similar to the corresponding components and assemblies of the power operated rotary knife 100 will not be repeated in detail, all of the structural details/functions/advantages discussed above with respect to the power operated rotary knife 100 are hereby incorporated by reference with respect to the second exemplary embodiment. Explanations regarding the description of the power operated rotary knife 100, set forth above, are also hereby incorporated by reference with respect to the second exemplary embodiment. Common reference numbers and letters used in the two embodiments are assumed to represent similar concepts and/or structural details.
As best seen in
The head assembly 1300 (
In addition to the foregoing, the head assembly 1300 of the power operated rotary knife 1100 further includes a vacuum connector 1910 (
As mentioned above, the head assembly 1300 includes the notched annular rotary knife blade 1500 (
As can be seen in
As schematically depicted in
Blade Housing 1600
As best seen in
The mounting section 1650 of the blade housing 1600 includes an angled split 1652 and a pinion clearance region 1654. The pinion clearance region 1654 of the blade housing mounting section 1650 provides for clearance for a gear head 1406 of a pinion gear 1404 of a drive train 1402 of the drive mechanism 1400. The angled split 1652 of the mounting section 1650 is circumferentially offset from the pinion clearance region 1654 and provides for expansion of the blade housing diameter for purposes of changing the rotary knife blade 1500 when the blade has reached the end of its useful life. Specific details regarding an annular blade housing with an angle split and offset pinion clearance region are disclosed in U.S. Pat. No. 8,661,692 to Whited et al., issued Mar. 4, 2014. U.S. Pat. No. 8,661,692 is assigned to the assignee of the present invention and is incorporated herein in its entirety by reference.
The rotary knife blade 1500, the blade housing 1600, and the trim guide 1700, are all annular and, when assembled, define an overlapping sandwiched combination 1450 wherein the blade housing blade support section 1610 is radially sandwiched between, on the radial inside, the annular body 1510 of the rotary knife blade 1500 and, on the radial outside, by a radially outwardly and axially upwardly extending rib 1751 of the guard section 1750 of the trim guide 1700. The rib 1751 includes a frustoconical section 1752. A vertical extension 1754 of the guard section 1750 extends from an upper end 1751a of the rib 1751 and is disposed axially above the rib 1751. A radially inwardly extending lip 1770 of the guide section 1570 extends from an upper end 1754a of the vertical extension 1754 in a radially inward direction. An angle subtended by the rib frustoconical section 1752 is greater than 180°, while an angle subtended by the upper vertical extension 1754 and the lip 1770 are significantly less than 180°.
Rotary Knife Blade 1500
As best seen in
The upper end 1516 of the annular body 1510, as mentioned above, defines the driven gear 1520 of the blade 1500. The driven gear 1520 comprises a set of gear teeth formed in a circumference adjacent the outer wall 1514 of the annular body. Adjacent the lower end 1518 of the annular body, the blade bearing race 540 defining frustoconical bearing surfaces 542 is formed in the outer wall 1514 of the annular body, as described above.
The lower end 1554 of the blade section 1550 includes interrupted arc portions 1572 that define a lower edge 1509 of the blade 1500. The interrupted are portions 1572 are centered about the blade central axis of rotation R and, if connected and continued, would form a circle defining an inner diameter of the blade 1500 with a center on the axis of rotation R. Typically, the interrupted arc portions 1572 would define a cutting edge of the blade, but, in the rotary knife 1500, the cutting edge 1590 of the blade is defined by a plurality of recessed, arcuate cutting portions 1580 within the plurality of notches 1560. Interrupting the arc portions 1572 are the plurality of notches 1560 formed at the lower end 1554 of the frustoconical wall 1556 of the blade section 1550 and extending into the frustoconical wall 1556. As can best be seen in
As best seen in
It should be appreciated of course that the arcuate cutting portions 1580 (and the associated sharpened regions 1571), instead of being arcuate (by virtue of the hook-shaped trailing end 1570 of the peripheral wall 1562), could be linear or convex and the present disclose contemplates such an alternate embodiment. In one exemplary embodiment of the rotary knife blade 1500, an inner diameter of the blade 1500, as defined by the interrupted are portions 1572 constituting the lower edge 1509 of the blade 1500, is approximately 3.704 in., while the outside diameter of the blade, defined by the radial outermost extent of the outer wall 1514 of the annular body 1510 of the blade is approximately 5.092 in. The inner diameter of the blade 1500 is approximately twice the radius RAD, schematically depicted in
Trim Guide 1700
As can best be seen in
As can best be seen in
Unlike the trim guide 700 of the power operated rotary knife 100 of the first embodiment, the plurality of notches 1730 are disposed circumferentially in spaced-apart relationship about an entirety (that is around the entire 360° circumference) of the lower end 1724 of the guide section 1720. That is, in the trim guide 700, the guide section 720 included the forward portion 725, subtending just over 180 degrees of the total annulus defined by the trim guide 700. As shearing action for trimming of branches occurred in a region of the plurality of notches 730 of the guide section 720, for trimming branches, in the power operated rotary knife 100 of the first embodiment, the operator needed to pull the power operated rotary knife 100 in a rearward or proximal direction RW along the handle assembly longitudinal axis LA toward himself or herself since the plurality of notches 730 were positioned in a forward portion 726 of the guide section 720.
Advantageously, with the trim guide 1700 and the vacuum assembly 1900 of the power operated rotary knife 1100, the operator may move the power operated rotary knife 100 in any direction, i.e., toward the operator along the longitudinal axis LA of the handle assembly 1200 in the rearward or proximal direction RW, away from operator along the longitudinal axis LA of the handle assembly 1200 in the forward or distal direction FW, or anywhere therebetween, as plurality of notches 730 are spaced about the entire 360 of the guide section 1720 and shearing action is therefore not limited to a forward portion of the guide section but may take place at any circumferential position where a notch 1730 is disposed and shearing action occurs, as explained. Additionally and advantageously, the vacuum assembly 1900 functions to expeditiously and efficiently remove trimmed branch materials from the cutting opening CO region and away from the plant, keeping the plant and the plant bed areas clean and free from trimmed branch materials and possible diseases and other problems associated with leaving trimmed materials on the remaining branches of the plant or left to compost on the plant bed area.
The notches 1730 of the trim guide 1700 function to direct the plant branches to be cut into recessed shearing portions 1740 defined by each of the plurality of notches 1730 of the trim guide 1700 wherein the recessed arcuate cutting portions 1580 of the plurality of notches 1560 of the rotary knife blade 1500 cut the branches by shearing action as the blade 1500 rotates with respect to the stationary trim guide 1700. To cut or trim a branch and then evacuate the cut or severed portions of the branch, the power operated rotary knife 1100 is positioned with respect to a plant branch to be cut or trimmed such that the branch extends through the cutting opening CO defined by the power operated rotary knife 1100, the operator then moves the knife 1100 in a direction such that the branch is moved within the cutting opening CO and urged against the guide section 1720 of the trim guide 1700. Depending on the position of the branch within the cutting opening CO, the movement of the rotary knife 1100 by the operator will move the branch into one of the plurality of notches 1730 of the trim guide section 1720. A cutting portion 1580 of the rotary knife blade 1500 will impact the branch within the interior region 1745 of the notch 1720, cutting the branch by a shearing action between the shearing portion 1740 of the trim guide notch 1720 at the leading end 1732 of the notch 1720 and the cutting portion 1580 of the blade section notch 1560 at the trailing end 1570 of the notch 1560.
As best seen in
As best seen in
The angled leading end 1734 of the peripheral wall 1742 defines a shearing region or portion 1740 extending approximately from a termination point 1747 at the lower end 1724 of the guide section 1720 where the next adjacent interrupted are portion 1738 commences and extending to a transition point 1748 along the central portion 1733 of the peripheral wall 1742 where the angled leading end 1732 terminates. The transition point 1748 being along the central portion 1733 is one of the radially innermost points of the peripheral wall 1742. When viewed in top plan view, the shearing portions 1740 defined by the leading ends 1734 of the respective plurality of notches 1730 define a linear segment 1740a over most of their extent moving radially inwardly from the lower end 1724 of the guide section 1720 and then transition into a shorter arcuate segment 1740b as the transition point 1748 of the peripheral wall 1742 is approached. The shearing portions 1740 of the plurality of notches 1730 of the trim guide 700 are recessed in that at least a portion of the shearing portion 1740 is within an interior region 1745 (that is, the central open portion 1743) defined by each of the plurality of notches 1730.
As explained above, the cutting action of the power operated rotary knife 1100 occurs through the combination 1480 of the rotating rotary knife blade 1500 and the stationary trim guide 1700. As the blade 1500 rotates about its central axis of rotation R, the shearing portions 1740 of the guide section notches 1730 come into overlapping axial alignment with the arcuate cutting portions 1580 of the blade section notches 1560. Additionally, the central open portion 1564 or interior region 1582 of each of the plurality of notches 1560 of the blade section 1550 of the rotary knife blade 1500 come into overlapping axial alignment with the central open portion 1743 or interior region 1745 of each of the plurality of notches 1730 as the blade 1500 rotates about the axis of rotation R. This transitory overlapping alignment of the central open portions 1564, 1743 or interior regions 1582, 1745 define transitory cutting pockets 1799. (Such transitory cutting pockets 1799 are depicted schematically, for example, in
In one exemplary embodiment of the trim guide 1700 of the power operated rotary knife 1100, an inner diameter of the trim guide 1700, as defined by the interrupted arc portions 1738 constituting the lower edge 1709 of the trim guide 1700, is approximately 3.808 in., while a diameter defined by a radially innermost point of each of the plurality of notches 1730 of the guide section 1720 is approximately 4.631 in. Additionally, in one exemplary embodiment, the number notches in the plurality of notches 1730 is ten, spaced about the entirety of the 360° of the central opening CO3 of the trim guide 1700 and circumferentially spaced apart by ten interrupted are portions 1738 wherein each of the notches of the plurality of notches 1730 subtends an angle β (depicted schematically in
Advantageously, with the trim guide 1700 and the vacuum assembly 1900 of the power operated rotary knife 1100, the operator may move the power operated rotary knife 100 in any direction, i.e., a rearward or proximal direction RW toward the operator along the longitudinal axis LA of the handle assembly 1200, a forward or distal direction FW away from operator, or any direction therebetween, as plurality of notches 1730 are spaced about the entire 360° of the guide section 1720 and shearing action is therefore not limited to a forward portion of the guide section but may take place at any circumferential position where a notch 1730 is disposed and shearing action occurs, as explained. Additionally and advantageously, the vacuum assembly 1900 functions to expeditiously and efficiently remove trimmed branch materials from the cutting opening CO region and away from the plant, keeping the plant and the plant bed areas clean and free from trimmed branch materials and possible issues associated with leaving trimmed materials on the remaining branches of the plant or dropping to the ground and decaying on the ground in the plant bed area.
Vacuum Assembly 1900
As best seen in
The vacuum connector 1910 has a generally inverted funnel shape and includes the lower, larger diameter lower mounting section 1950 and an upper, reduced diameter cylindrical section 1920, bridged by a tapered middle section 1940 that necks down the diameter between the mounting section 1950 and the cylindrical section 1920. An inner wall or inner surface 1911 of the vacuum connector 1910 defines the inverted funnel-shaped interior region 1912 that is in fluid communication with the interior region 1992 of the vacuum hose 1990. An outer wall or outer surface 1913 is radially spaced from the inner wall 1911 and generally conforms to the shaped of the inner wall 1911. Advantageously, the necked down configuration of the vacuum connector 1910 provides for the funnel shape of the interior region 1912 that proceeds from a larger diameter at a generally cylindrical entry end 1916 of the vacuum connector 1910, where trimmed branches/foliage material enter the interior region 1912 of the vacuum connector 1910 from the cutting opening CO of the power operated rotary knife 1100 defined by the assembled combination 1450 of the blade 1500, blade housing 1600 and trim guide 1700, to a cylindrical exit or upper end 1914 of the vacuum connector 1910, where trimmed branches and foliage material exit the interior region 1912 of the vacuum connector 1910. Additionally, the inner surface 1911 of the vacuum connector 1910 is smooth, with minimal discontinuities, to facilitate flow of trimmed foliage materials from the entry end 1916 to the exit end 1914 of the vacuum connector 1910. The vacuum connector 1910 is centered about a central axis VCA extending though the interior region 1912 of the vacuum connector 1910. When the vacuum connector 1910 is coupled to the head assembly 1300 of the power operated rotary knife 1100, the central axis VCA of the vacuum connector 1910 is substantially parallel to but slightly offset by a radial distance schematically shown as distance d in
The lower mounting section 1950 of the vacuum connector 1910 includes a lower end 1952. The lower end 1952 of the mounting section 1950 includes a lower edge 1958. The lower end 1952 of the mounting section 1950 corresponds to a lower end 1916 of the vacuum connector 1910. The lower edge 1958 of the lower end 1952 of the mounting section 1950, which corresponds to a lower edge 1918 of the lower end 1916 of the vacuum connector 1910, is defined by an axially lowest peripheral edge 1979 of a C-shaped latch 1972 of the a trim guide interface portion 1970. A generally proximal portion 1954 of the lower end 1952 includes a clamp interface portion 1960, while a generally distal portion 1959 of the lower end 1952 includes the trim guide interface portion 1970. The clamp interface portion 1960 extends peripherally between approximate endpoints 1954a, 1954b of the proximal portion 1954, while the trim guide interface portion 1960 includes the remainder of the lower end 1952. The arcuate trim guide interface portion 1970 and the clamp interface portion 1960, advantageously function in co-acting relationship to releasably secure the vacuum connector 1910 to the head assembly 1300 of the power operated rotary knife 1100.
The arcuate trim guide interface portion 1970 of the lower mounting section 1950 of the vacuum connector 1910 includes the radially extending arcuate rim portion 1971 that seats on the rib 1751, the vertical extension 1754 and the lip 1770 of the guard section 1750 of the trim guide 1700. As can be seen in
The C-shaped latch 1972 of the trim guide interface portion 1970 is located at and extends from a lower end 1956 of the distal portion 1952 of the lower mounting section 1950 of the vacuum connector 1910. The C-shaped latch 1972 includes an upper horizontal section 1973, a vertical section 1975, and a lower frustoconical section 1977. When the trim guide interface portion 1960 is latched to the trim guide 1700, a horizontal wall 1974 of the upper horizontal section 1973 bears against an upper surface 1772 of the radially inwardly extending lip 1770 of the guard section 1750 in the trim guide 1700, a vertical wall 1976 of the middle vertical section 1975 bears against an outer surface 1753 of the vertical extension 1754 of the guard section 1750 of the trim guide 1700, and an angled wall 1978 bears against the outer surface 1753 of the frustoconical section 1752 of the rib 1751 of the guard section 1750 of the trim guide 1700. The axially lowest peripheral edge 1979 of the C-shaped latch 1972 defines the lower edge 1918 of the lower end 1916 of the vacuum connector 1910 and the lower edge 1958 of the lower end 1952 of mounting section 1950.
Additionally, as best seen in
The clamp interface portion 1960 further includes a pair of axially extending pedestals 1964a, 1964b circumferentially flanking the boss 1962. The pair of pedestals 1964a, 1964b fit into and engage respective ones of a pair of axially extending slots 1335 formed in the proximal wall 1333 of the clamp 1332. The clamp interface portion 1960 further includes a contoured opening 1966 sized and shaped to engage the upper surface 1340 of the clamp 1332. The contoured opening 1966 is defined by the lower edge 1958 of the lower end 1952 of the vacuum connector 1910 in the region of the clamp interface portion 1960. The contoured opening 1966 of the clamp interface portion 1960 comprises a pair of lateral contoured openings 1966a, 1966b and a central contoured opening 1966c. The contoured opening 1966a is adjacent the pedestal 1964a, while the contoured opening 1962b is adjacent the pedestal 1964b. The central contoured opening 1966c, which includes the generally planar lower surface 1962a of the boss 1962, engages a central portion 1341 of the upper surface 1340 of the clamp 1332. The contoured opening 1962 is defined by a lower peripheral edge 1964 of the lower mounting section 1950 in the region of the clamp 1332. The peripheral edge 1964 bears against the upper surface 1340 of the clamp 1332 along a region of contact corresponding to the clamp interface portion 1960, that is, the portion 1954 of the lower end 1952 of the mounting section 1950 of the vacuum connector 1910 corresponding to the clamp interface portion 1960 to provide a seal between the vacuum connector 1910 and the clamp upper surface 1340 to mitigate loss of vacuum pressure which would otherwise occur if there was a gap or space between the vacuum connector 1910 and the upper surface of the clamp 1332.
As used herein, terms of orientation and/or direction such as front, rear, forward, rearward, distal, proximal, distally, proximally, upper, lower, inward, outward, inwardly, outwardly, upwardly, downwardly, horizontal, horizontally, vertical, vertically, axial, radial, longitudinal, axially, radially, longitudinally, etc., are provided for convenience purposes and relate generally to the orientation shown in the Figures and/or discussed in the Detailed Description. Such orientation/direction terms are not intended to limit the scope of the present disclosure, this application, and/or the invention or inventions described therein, and/or any of the claims appended hereto. Further, as used herein, the terms comprise, comprises, and comprising are taken to specify the presence of stated features, elements, integers, steps or components, but do not preclude the presence or addition of one or more other features, elements, integers, steps or components.
What have been described above are examples of the present invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the present invention, but one of ordinary skill in the art will recognize that many further combinations and permutations of the present invention are possible. Accordingly, the present invention is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims.
The following application claims priority to co-pending U.S. Provisional Patent Application Ser. No. 62/196,973, filed Jul. 25, 2015 entitled Power Operated Rotary Knife With Notched Rotary Knife Blade and Trim Guide. The above-identified U.S. provisional patent application (Ser. No. 62/196,973) is fully incorporated herein by reference in its entirety for any and all purposes.
Number | Date | Country | |
---|---|---|---|
62196973 | Jul 2015 | US |