Claims
- 1. A power-operated screwdriving device configured to be used with a rotary power source and a supply of screws releasably mounted on a collation, said screwdriving device comprising:a housing structure constructed and arranged to be engaged with the rotary power source, said housing providing a depth setting structure access opening; a feeding assembly defining a drive track carried by said housing and providing a workpiece engaging surface; said drive track being configured to receive a lead screw from the supply of screws; a rotatable screw engaging bit member constructed and arranged to be operatively connected to the rotary power source such that the rotary power source rotates said screw engaging bit member during a screwdriving operation wherein said workpiece engaging surface is engaged with a surface of a workpiece and the lead screw is driven into the workpiece; said rotatable screw engaging bit member being movable relative to said drive track and said workpiece engaging surface such that, when said workpiece engaging surface is engaged with the surface of the workpiece, rotation of said bit member and relative movement between said bit member and said drive track drives the lead screw into the workpiece during the screwdriving operation; screw depth setting structure located within said housing and providing a feeding assembly engaging surface that extends helically with respect to an axis of said depth setting structure, said screw depth setting structure being positioned and configured such that said feeding assembly engaging surface engages said feeding assembly to thereby limit the relative movement occurring between said screw engaging bit member and said workpiece engaging surface during said screwdriving operation, said depth setting structure being turnable about said axis thereof so that the amount of said relative movement occurring between said screw engaging bit member and said workpiece engaging surface during said screwdriving operation for each angular position of said depth setting structure is determined by the orientation of said helically extending depth setting structure; said workpiece engaging surface and said rotatable screw engaging bit member being constructed and arranged such that, when said feeding assembly is engaged with the feeding assembly engaging surface, a distance between a screw engaging end portion of said bit member and said workpiece engaging surface determines the depth to which the lead screw will be driven relative to the surface of the workpiece during said screwdriving operation; a manually engageable screw depth adjusting member disposed exteriorly of said housing structure and operatively connected to said screw depth setting structure through said depth setting structure access opening, said screw depth adjusting member being constructed and arranged such that manual operation thereof turns said screw depth setting structure about said axis thereof to orient said helically extending feeding assembly engaging surface for adjustment of the depth to which the lead screw will be driven to the surface of the workpiece during said screwdriving operation.
- 2. A power-operated screwdriving device according to claim 1, further comprising a motion transmitting structure operatively connecting said screw depth adjusting member and said screw depth setting structure such that manual movement of said screw depth adjusting member causes rotation of said screw depth setting structure.
- 3. A power-operated screwdriving device according to claim 2, wherein said screw depth setting structure has a set of circular gear teeth formed thereon,said motion transmitting structure being a worm gear, said worm gear being operatively connected with said screw depth adjusting member and intermeshed with said set of gear teeth on said screw depth setting structure such that movement of said screw depth adjusting member rotates said worm gear so as to cause rotation of screw depth setting structure through said range of adjustable positions.
- 4. A power-operated screwdriving device according to claim 3, wherein said screw depth adjusting member is a manually engageable knob disposed on the exterior of said housing structure and fixedly connected to said worm gear such that rotation of said knob rotates said worm gear.
- 5. A power-operated screwdriving device according to claim 4, wherein said housing structure has a depth setting structure viewing window formed therethrough,said screw depth setting structure and said depth setting structure viewing window being positioned and configured such that the distance between said screw engaging end portion of said bit member and said workpiece engaging surface is related to an amount of viewing area in said viewing window occupied by said screw depth setting structure, thereby allowing an operator to determine the depth to which the lead screw will be driven by looking into said viewing window.
- 6. A power-operated screwdriving device according to claim 4, wherein said feeding assembly includes a body and an adjustable workpiece contacting structure mounted on said body, said workpiece contacting structure providing said workpiece engaging surface,said workpiece contacting structure being constructed and arranged to be moved relative to said body through a range of adjustable positions to enable said workpiece contacting structure in be positioned in accordance with a length of the lead screw proximal a penetrating end of the lead screw to thereby minimize a distance between the penetrating end and the surface of the workpiece prior to driving the lead screw into the workpiece; a contacting structure locking structure movable rectilinearly between (1) a locking position wherein said locking structure engages said workpiece contacting structure to thereby limit movement of said workpiece contacting structure relative to said body within said range of adjustable positions and (2) an unlocked position wherein said locking structure is unlocked from said workpiece contacting structure to thereby allow said workpiece contacting structure to be moved through said range of adjustable positions.
- 7. A power-operated screwdriving device according to claim 6, wherein said feeding assembly engaging surface of said depth setting structure engages a rearward surface of said workpiece contacting structure.
- 8. A power-operated screwdriving device according to claim 7, wherein said contacting structure locking structure is a door structure mounted to said feeding assembly,said door structure being movable, when in said unlocked position, between (1) an open position allowing access to an interior of said feeding assembly and the screws and portions of collation disposed said interior and (2) a closed position wherein said door structure inhibits access to said interior of said feeding assembly.
- 9. A power-operated screwdriving device according to claim 8, wherein said door structure has an locking projection and wherein said workpiece contacting structure has a set of locking teeth, said locking projection being positioned and configured to removably engage said teeth when said door structure is in said locked position.
- 10. A power-operated screwdriving device according to claim 9, wherein said workpiece contacting structure provides a subsequent lead screw contacting surface opposite said workpiece contacting surface,said locking projection being movably mounted on said door structure such that, when said door structure is in said locked position, force applied to said device towards the workpiece when the workpiece engaging surface is engaged with the workpiece will cause limited relative movement between said contacting structure and said body until said subsequent lead screw contacting surface contacts a penetrating end of the subsequent lead screw so as to terminate the relative movement between said workpiece contacting structure and said body.
- 11. A power-operated screwdriving device according to claim 10, further comprising a biasing spring disposed between said door structure and said locking projection, said biasing spring being configured to bias said locking projection and said workpiece contacting structure forwardly with respect to said door structure.
- 12. A power-operated screwdriving device according to claim 11, wherein said workpiece contacting structure comprises a rear half-shell portion and a forward workpiece contacting portion,said workpiece contacting portion having a pair of forwardly extending arms and a forward member interconnecting said arms, said forward member providing said workpiece engaging surface, said arms being spaced apart such that the collation and the screws pass between said arms as said feeding assembly feeds the collation and screws into said drive track.
- 13. A power operated screwdriving device according to claim 12, wherein a rear part of said rear half-shell portion is received within said housing structure and a front part of said rear half-shell portion extends outwardly from said housing structure,said half-shell portion having a set of screw length markings provided on an exterior surface thereof, said screw length markings being positioned and configured such that an operator can disengage said door structure from said locking teeth, move said workpiece contacting structure to an adjusted position wherein an edge of said housing structure is aligned with one of said screw length markings corresponding to a desired screw length, and then engage said door structure with said locking teeth to thereby fix said adjustable workpiece contacting structure at the position corresponding to the desired screw length.
- 14. A power-operated screwdriving device according to claim 5, wherein said feeding assembly includes a body and an adjustable workpiece contacting structure mounted on said body, said workpiece contacting structure providing said workpiece engaging surface and a subsequent lead screw engaging surface opposite said workpiece engaging surface,said workpiece contacting structure being constructed and arranged to be moved relative to said body through a range of adjustable positions to enable said workpiece contacting structure to be positioned in accordance with a length of the lead screw wherein force applied to said device towards the workpiece, when the workpiece engaging surface is engaged with the workpiece, will cause limited relative movement between said contacting structure and said body until said subsequent lead screw engaging surface contacts a penetrating end of the subsequent lead screw so as to terminate relative movement between the workpiece contacting structure and said body and hold the supply of collated screws as the lead screw is being driven into the workpiece; a contacting structure locking structure movable rectilinearly between (1) a locking position wherein said locking structure engages said workpiece contacting structure to thereby limit movement of said workpiece contacting structure relative to said body within said range of adjustable positions and (2) an unlocked position wherein said locking structure is unlocked from said workpiece contacting structure to thereby allow said workpiece contacting structure to be moved through said range of adjustable positions.
- 15. A power-operated screwdriving device according to claim 14, wherein said feeding assembly engaging surface of said depth setting structure engages a rearward surface of said workpiece contacting structure.
- 16. A power-operated screwdriving device according to claim 15, wherein said contacting structure locking structure is a door structure mounted to said feeding assembly,said door structure being movable, when in said unlocked position, between (1) an open position allowing access to an interior of said feeding assembly and the screws and portions of collation disposed said interior and (2) a closed position wherein said door structure inhibits access to said interior of said feeding assembly.
- 17. A power-operated screwdriving device configured to be used with a rotary power source and a supply of screws releasably mounted on a collation, said screwdriving device comprising:a housing structure constructed and arranged to be engaged with the rotary power source; a feeding assembly defining a drive track constructed and arranged to receive a lead screw from the supply of screws; said feeding assembly including a body and an adjustable workpiece contacting structure mounted on said body, said workpiece contacting structure providing a workpiece engaging surface, a rotatable screw engaging bit member constructed and arranged to be operatively connected to the rotary power source such that the rotary power source rotates said bit member during a screwdriving operation wherein said workpiece engaging surface is engaged with a surface of a workpiece and the lead screw is driven into the workpiece; said workpiece contacting structure being constructed and arranged to be moved relative to said body through a range of adjustable positions to enable said workpiece contacting structure to be positioned in accordance with a length of the lead screw proximal a penetrating end of the lead screw to thereby minimize a distance between the penetrating end and the surface of the workpiece prior to driving the lead screw into the workpiece; a contacting structure locking structure movable rectilinearly between (1) a locking position wherein said locking structure engages said workpiece contacting structure to thereby limit movement of said workpiece contacting structure relative to said body within said range of adjustable positions and (2) an unlocked position wherein said locking structure is unlocked from said workpiece contacting structure to thereby allow said workpiece contacting structure to be moved through said range of adjustable positions; said rotatable screw engaging bit member being movable relative to said drive track and said workpiece engaging surface such that, when said workpiece engaging surface is engaged with the surface of the workpiece, rotation of said screw engaging bit member and relative movement between said screw engaging bit member and said drive track drives the lead screw into the workpiece during said screwdriving operation.
- 18. A power-operated screwdriving device according to claim 17, wherein said contacting structure locking structure is a door structure mounted to said feeding assembly,said door structure being movable, when in said unlocked position, between (1) an open position allowing access to an interior of said feeding assembly and the screws and portions of collation disposed in said interior and (2) a closed position wherein said door structure inhibits access to said interior of said feeding assembly.
- 19. A power-operated screwdriving device according to claim 18, wherein said door structure has an locking projection and wherein said workpiece contacting structure has a set of locking teeth, said locking projection being positioned and configured to removably engage said teeth when said door structure is in said locked position.
- 20. A power-operated screwdriving device according to claim 19, wherein said workpiece contacting structure provides a subsequent lead screw contacting surface opposite said workpiece contacting surface,said locking projection being movably mounted on said door structure such that, when said door structure is in said locked position, force applied to said device towards the workpiece when the workpiece engaging surface is engaged with the workpiece will cause limited relative movement between said contacting structure and said body until said subsequent lead screw contacting surface contacts a penetrating end of the subsequent lead screw so as to terminate the relative movement between said workpiece contacting structure and said body.
- 21. A power-operated screwdriving device according to claim 20, further comprising a biasing spring disposed between said door structure and said locking projection, said biasing spring being configured to bias said locking projection and said workpiece contacting structure forwardly with respect to said door structure.
- 22. A power-operated screwdriving device according to claim 21, wherein said workpiece contacting structure comprises a rear half-shell portion and a forward workpiece contacting portion,said workpiece contacting portion having a pair of forwardly extending arms and a forward member interconnecting said arms, said forward member providing said workpiece engaging surface, said arms being spaced apart such that the collation and the screws pass between said arms as said feeding assembly feeds the collation and screws into said drive track.
- 23. A power operated screwdriving device according to claim 22, wherein a rear part of said rear half-shell portion is received within said housing structure and a front part of said rear half-shell portion extends outwardly from said housing structure,said half-shell portion having a set of screw length markings provided on an exterior surface thereof, said screw length markings being positioned and configured such that an operator can disengage said door structure from said locking teeth, move said workpiece contacting structure to an adjusted position wherein an edge of said housing structure is aligned with one of said screw length markings corresponding to a desired screw length, and then engage said door structure with said locking teeth to thereby fix said adjustable workpiece contacting structure at the position corresponding to the desired screw length.
- 24. A power-operated screwdriving device according to claim 22, wherein said workpiece contacting portion is fastened to said rear half-shell portion by a pair of fasteners.
- 25. A power-operated screwdriving device according to claim 17, further comprising:screw depth setting structure providing a feeding assembly engaging surface, said screw depth setting structure being positioned and configured such that said feeding assembly engaging surface engages a rearward surface of said workpiece contacting structure to thereby limit the relative movement occurring between said bit member and said workpiece engaging surface during said screwdriving operation; said workpiece engaging surface and said rotatable screw engaging bit member being constructed and arranged such that, when said workpiece contacting structure is engaged with the feeding assembly engaging surface, a distance between a screw engaging end portion of said bit member and said workpiece engaging surface determines the depth to which the lead screw will be driven relative to the surface of the workpiece during said screwdriving operation; a manually engageable screw depth adjusting member disposed exteriorly of said housing structure and operatively connected to said screw depth setting structure, said screw depth adjusting member being constructed and arranged such that manual operation thereof moves said screw depth setting structure through a range of adjustable positions to thereby adjust the depth to which the lead screw will be driven to the surface of the workpiece during said screwdriving operation.
- 26. A power-operated screwdriving device according to claim 25, wherein said screw depth setting structure is mounted for rotational movement within said housing structure,said feeding assembly engaging surface having a helical configuration and being aligned coaxially with said screw engaging bit member such that manual movement of said screw depth adjusting member rotates said screw depth setting structure through the range of adjustable positions.
- 27. A power-operated screwdriving device according to claim 26, further comprising a motion transmitting structure operatively connecting said screw depth adjusting member and said screw depth setting structure such that manual movement of said screw depth adjusting member causes rotation of said screw depth setting structure.
- 28. A power-operated screwdriving device according to claim 27, wherein said screw depth setting structure has a set of circular gear teeth formed thereon,said motion transmitting structure being a worm gear, said worm gear being operatively connected with said screw depth adjusting member and intermeshed with said set of gear teeth on said screw depth setting structure such that movement of said screw depth adjusting structure rotates said worm gear so as to cause rotation of screw depth setting structure through said range of adjustable positions.
- 29. A power-operated screwdriving device according to claim 28, wherein said screw depth adjusting structure is a manually engageable knob disposed on the exterior of said housing structure and fixedly connected to said worm gear such that rotation of said knob rotates said worm gear.
- 30. A power-operated screwdriving device according to claim 29, wherein said housing structure has a depth setting structure viewing window formed therethrough,said screw depth setting structure and said depth setting structure viewing window being positioned and configured such that the distance between said screw engaging end portion of said bit member and said workpiece engaging surface is related to an amount of viewing area in said viewing window occupied by said screw depth setting structure, thereby allowing an operator to determine the depth to which the lead screw will be driven by looking into said viewing window.
- 31. A power-operated screwdriving device according to claim 30, wherein said rearward surface of said workpiece contacting structure has a helical configuration complementing the helical configuration of said feeding assembly engaging surface.
- 32. A power-operated screwdriving device configured to be used with a rotary power source and a supply of screws releasably mounted on a collation, said screwdriving device comprising:a housing structure constructed and arranged to be engaged with the rotary power source; a feeding assembly defining a drive track constructed and arranged to receive a lead screw from the supply of screws; said feeding assembly including a body and an adjustable workpiece contacting structure mounted on said body, said workpiece contacting structure providing a workpiece engaging surface and a subsequent lead screw engaging surface opposite said workpiece engaging surface, a rotatable screw engaging bit member constructed and arranged to be operatively connected to the rotary power source such that the rotary power source rotates said bit member during a screwdriving operation wherein said workpiece engaging surface is engaged with a surface of a workpiece and the lead screw is driven into the workpiece; said workpiece contacting structure being constructed and arranged to be moved relative to said body through a range of adjustable positions to enable said workpiece contacting structure to be positioned in accordance with a length of the lead screw wherein force applied to said device towards the workpiece when the workpiece engaging surface is engaged with the workpiece will cause limited relative movement between said contacting structure and said body until said subsequent lead screw engaging surface contacts a penetrating end of the subsequent lead screw so as to terminate relative movement between the workpiece contacting structure and said body so as to hold the supply of collated screws as the lead screw is being driven into the workpiece; a contacting structure locking structure movable between (1) a locking position wherein said locking structure engages said workpiece contacting structure to thereby limit movement of said workpiece contacting structure relative to said body within said range of adjustable positions and (2) an unlocked position wherein said locking structure is unlocked from said workpiece contacting structure to thereby allow said workpiece contacting structure to be moved through said range of adjustable positions; said rotatable screw engaging bit member being movable relative to said drive track and said workpiece engaging surface such that, when said workpiece engaging surface is engaged with the surface of the workpiece, rotation of said screw engaging bit member and relative movement between said screw engaging bit member and said drive track drives the lead screw into the workpiece during said screwdriving operation.
- 33. A power-operated screwdriving device according to claim 32, wherein said contacting structure locking structure is a door structure mounted to said feeding assembly,said door structure being movable, when in said unlocked position, between (1) an open position allowing access to an interior of said feeding assembly and the screws and portions of collation disposed in said interior and (2) a closed position wherein said door structure inhibits access to said interior of said feeding assembly.
- 34. A power-operated screwdriving device according to claim 33, wherein said door structure has an locking projection and wherein said workpiece contacting structure has a set of locking teeth, said locking projection being positioned and configured to removably engage said teeth when said door structure is in said locked position.
- 35. A power-operated screwdriving device according to claim 34, wherein said locking projection is movably mounted on said door structure to provide the limited relative movement between said contacting structure and said body.
- 36. A power-operated screwdriving device according to claim 35, further comprising a biasing spring disposed between said door structure and said locking projection, said biasing spring being configured to bias said locking projection and said workpiece contacting structure forwardly with respect to said door structure.
- 37. A power-operated screwdriving device according to claim 36, wherein said workpiece contacting structure comprises a rear half-shell portion and a forward workpiece contacting portion,said workpiece contacting portion having a pair of forwardly extending arms and a forward member interconnecting said arms, said forward member providing said workpiece engaging surface, said arms being spaced apart such that the collation and the screws pass between said arms as said feeding assembly feeds the collation and screws into said drive track.
- 38. A power operated screwdriving device according to claim 37, wherein a rear part of said rear half-shell portion is received within said housing structure and a front part of said rear half-shell portion extends outwardly from said housing structure,said half-shell portion having a set of screw length markings provided on an exterior surface thereof, said screw length markings being positioned and configured such that an operator can disengage said door structure from said locking teeth, move said workpiece contacting structure to an adjusted position wherein an edge of said housing structure is aligned with one of said screw length markings corresponding to a desired screw length, and then engage said door structure with said locking teeth to thereby fix said adjustable workpiece contacting structure at the position corresponding to the desired screw length.
- 39. A power-operated screwdriving device according to claim 38, wherein said workpiece contacting portion is fastened to said rear half-shell portion by a pair of fasteners.
- 40. A power-operated screwdriving device according to claim 39, further comprising:screw depth setting structure providing a feeding assembly engaging surface, said screw depth setting structure being positioned and configured such that said feeding assembly engaging surface engages a rearward surface of said workpiece contacting structure to thereby limit the relative movement occurring between said bit member and said workpiece engaging surface during said screwdriving operation; said workpiece engaging surface and said rotatable screw engaging bit member being constructed and arranged such that, when said workpiece contacting structure is engaged with the feeding assembly engaging surface, a distance between a screw engaging end portion of said bit member and said workpiece engaging surface determines the depth to which the lead screw will be driven relative to the surface of the workpiece during said screwdriving operation; a manually engageable screw depth adjusting member disposed exteriorly of said housing structure and operatively connected to said screw depth setting structure, said screw depth adjusting member being constructed and arranged such that manual operation thereof moves said screw depth setting structure through a range of adjustable positions to thereby adjust the depth to which the lead screw will be driven to the surface of the workpiece during said screwdriving operation.
- 41. A power-operated screwdriving device according to claim 40, wherein said screw depth setting structure is mounted for rotational movement within said housing structure,said feeding assembly engaging surface having a helical configuration and being aligned coaxially with said screw engaging bit member such that manual movement of said screw depth adjusting member rotates said screw depth setting structure through the range of adjustable positions.
- 42. A power-operated screwdriving device according to claim 41, further comprising a motion transmitting structure operatively connecting said screw depth adjusting member and said screw depth setting structure such that manual movement of said screw depth adjusting member causes rotation of said screw depth setting structure.
- 43. A power-operated screwdriving device according to claim 42, wherein said screw depth setting structure has a set of circular gear teeth formed thereon,said motion transmitting structure being a worm gear, said worm gear being operatively connected with said screw depth adjusting member and intermeshed with said set of gear teeth on said screw depth setting structure such that movement of said screw depth adjusting structure rotates said worm gear so as to cause rotation of screw depth setting structure through said range of adjustable positions.
- 44. A power-operated screwdriving device according to claim 43, wherein said screw depth adjusting structure is a manually engageable knob disposed on the exterior of said housing structure and fixedly connected to said worm gear such that rotation of said knob rotates said worm gear.
- 45. A power-operated screwdriving device according to claim 44, wherein said housing structure has a depth setting structure viewing window formed therethrough,said screw depth setting structure and said depth setting structure viewing window being positioned and configured such that the distance between said screw engaging end portion of said bit member and said workpiece engaging surface is related to an amount of viewing area in said viewing window occupied by said screw depth setting structure, thereby allowing an operator to determine the depth to which the lead screw will be driven by looking into said viewing window.
- 46. A power-operated screwdriving device according to claim 45, wherein said rearward surface of said workpiece contacting structure has a helical configuration complementing the helical configuration of said feeding assembly engaging surface.
- 47. A power-operated screwdriving device configured to be used with a supply of screws releasably mounted on a collation, said screwdriving device comprising:a housing structure having an depth setting structure access opening; a rotary power source carried by said housing structure; a feeding assembly defining a drive track carried by said housing and providing a workpiece engaging surface; said drive track being configured to receive a lead screw from the supply of screws; a rotatable screw engaging bit member constructed and arranged to be operatively connected to the rotary power source such that the rotary power source rotates said screw engaging bit member during a screwdriving operation wherein said workpiece engaging surface is engaged with a surface of a workpiece and the lead screw is driven into the workpiece; said rotatable screw engaging bit member being movable relative to said drive track and said workpiece engaging surface such that, when said workpiece engaging surface is engaged with the surface of the workpiece, rotation of said bit member and relative movement between said bit member and said drive track drives the lead screw into the workpiece during the screwdriving operation; screw depth setting structure located within said housing and providing a feeding assembly engaging surface that extends helically with respect to an axis of said depth setting structure, said screw depth setting structure being positioned and configured such that said feeding assembly engaging surface engages said feeding assembly to thereby limit the relative movement occurring between said screw engaging bit member and said workpiece engaging surface during said screwdriving operation, said depth setting structure being turnable about said axis thereof so that the amount of said relative movement occurring between said screw engaging bit member and said workpiece engaging surface during said screwdriving operation for each angular position of said depth setting structure is determined by the orientation of said helically extending depth setting structure; said workpiece engaging surface and said rotatable screw engaging bit member being constructed and arranged such that, when said feeding assembly is engaged with the feeding assembly engaging surface, a distance between a screw engaging end portion of said bit member and said workpiece engaging surface determines the depth to which the lead screw will be driven relative to the surface of the workpiece during said screwdriving operation; a manually engageable screw depth adjusting member disposed exteriorly of said housing structure and operatively connected to said screw depth setting structure through said depth setting structure access opening, said screw depth adjusting member being constructed and arranged such that manual operation thereof turns said screw depth setting structure about said axis thereof to orient said helically extending feeding assembly engaging surface for adjustment of the depth to which the lead screw will be driven to the surface of the workpiece during said screwdriving operation.
- 48. A power-operated screwdriving device configured to be used with a supply of screws releasably mounted on a collation, said screwdriving device comprising:a housing structure; a rotary power source carried by said housing structure; a feeding assembly defining a drive track constructed and arranged to receive a lead screw from the supply of screws; said feeding assembly including a body and an adjustable workpiece contacting structure mounted on said body, said workpiece contacting structure providing a workpiece engaging surface, a rotatable screw engaging bit member constructed and arranged to be operatively connected to the rotary power source such that the rotary power source rotates said bit member during a screwdriving operation wherein said workpiece engaging surface is engaged with a surface of a workpiece and the lead screw is driven into the workpiece; said workpiece contacting structure being constructed and arranged to be moved relative to said body through a range of adjustable positions to enable said workpiece contacting structure to be positioned in accordance with a length of the lead screw proximal a penetrating end of the lead screw to thereby minimize a distance between the penetrating end and the surface of the workpiece prior to driving the lead screw into the workpiece; a contacting structure locking structure movable rectilinearly between (1) a locking position wherein said locking structure engages said workpiece contacting structure to thereby limit movement of said workpiece contacting structure relative to said body within said range of adjustable positions and (2) an unlocked position wherein said locking structure is unlocked from said workpiece contacting structure to thereby allow said workpiece contacting structure to be moved through said range of adjustable positions; said rotatable screw engaging bit member being movable relative to said drive track and said workpiece engaging surface such that, when said workpiece engaging surface is engaged with the surface of the workpiece, rotation of said screw engaging bit member and relative movement between said screw engaging bit member and said drive track drives the lead screw into the workpiece during said screwdriving operation.
- 49. A power-operated screwdriving device configured to be used with a supply of screws releasably mounted on a collation, said screwdriving device comprising:a housing structure; a rotary power source carried by said housing structure; a feeding assembly defining a drive track constructed and arranged to receive a lead screw from the supply of screws; said feeding assembly including a body and an adjustable workpiece contacting structure mounted on said body, said workpiece contacting structure providing a workpiece engaging surface and a subsequent lead screw engaging surface opposite said workpiece engaging surface, a rotatable screw engaging bit member constructed and arranged to be operatively connected to the rotary power source such that the rotary power source rotates said bit member during a screwdriving operation wherein said workpiece engaging surface is engaged with a surface of a workpiece and the lead screw is driven into the workpiece; said workpiece contacting structure being constructed and arranged to be moved relative to said body through a range of adjustable positions to enable said workpiece contacting structure to be positioned in accordance with a length of the lead screw wherein force applied to said device towards the workpiece when the workpiece engaging surface is engaged with the workpiece will cause limited relative movement between said contacting structure and said body until said subsequent lead screw engaging surface contacts a penetrating end of the subsequent lead screw so as to terminate relative movement between the workpiece contacting structure and said body so as to hold the supply of collated screws as the lead screw is being driven into the workpiece; a contacting structure locking structure movable between (1) a locking position wherein said locking structure engages said workpiece contacting structure to thereby limit movement of said workpiece contacting structure relative to said body within said range of adjustable positions and (2) an unlocked position wherein said locking structure is unlocked from said workpiece contacting structure to thereby allow said workpiece contacting structure to be moved through said range of adjustable positions; said rotatable screw engaging bit member being movable relative to said drive track and said workpiece engaging surface such that, when said workpiece engaging surface is engaged with the surface of the workpiece, rotation of said screw engaging bit member and relative movement between said screw engaging bit member and said drive track drives the lead screw into the workpiece during said screwdriving operation.
Parent Case Info
This application claims the benefit of U.S. Provisional No. 60/058,865 filed Sep. 12, 1997.
US Referenced Citations (32)
Foreign Referenced Citations (8)
Number |
Date |
Country |
38 08 534 |
Sep 1989 |
DE |
4208715 |
Sep 1992 |
DE |
42 08 715 |
Sep 1992 |
DE |
778 108 |
Jun 1997 |
EP |
9306320 |
Apr 1993 |
GB |
53-37968 |
Apr 1978 |
JP |
7-256564 |
Oct 1995 |
JP |
9529794 |
Nov 1995 |
WO |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/058865 |
Sep 1997 |
US |