This application is a National Stage Application of PCT/AU2008/000470, filed 2 Apr. 2008, which claims benefit of Serial No. 2007902395, filed 4 May 2007 in Australia and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
The present invention relates to a power outlet.
Power outlets are typically used to electrically couple electric devices to the insulated conductors of a power cable. They have previously employed screw contacts to effect electrical connections to the insulated conductors of the power cable. The following steps may be performed to electrically connect a power outlet to the insulated conductors of a power cable:
Performing the above-described steps to install a power outlet may be labour intensive and inconvenient.
An electrical connection may otherwise be effected using an insulation displacement contact that includes a contact element which is bifurcated so as to define two opposed contact portions separated by a slot into which an insulated conductor may be pressed so that edges of the contact portions engage and displace the insulation and such that the contact portions resiliently engage and make electrical connection with the conductor of the wire. Such a contact is described in, for example U.S. Pat. Nos. 4,452,502 and 4,405,187. While, in some cases, making electrical connection to a single wire in the above way is all that is necessary, occasions arise where it would be useful to make connection to more than one wire by inserting the wires, one after the other, into the slot. With a carefully designed contact it may be possible to make connections in this way to two wires, but it is difficult to make effective connections to several wires. This arises because, during the process of introducing a first wire into the slot, the contact portions are resiliently deformed, such that the gap between them is to some extent increased. The resultant increase in slot width may still permit an adequate connection to be made to a second wire when inserted into the slot. However, the increased slot width may even be such that the contact portions fail to properly pierce the insulation, or it may otherwise leave the second wire unreliably gripped. This problem becomes worse as more wires are inserted.
The above problem is alleviated in Krone LSA-PLUS connectors by arranging that the contact portions are torsionally twisted during insertion of the wires. That is, the wires are introduced into the slot with their directions of extent arranged at an angle of about 45 degrees to the side to side direction of the slot, so that insertion of the wires tends to deflect contacting edges of the respective contact portions outwardly away from each other, in opposite directions relative to the general plane of the contact. In that case, it is possible to achieve good connection to two wires but even in this construction more than two wires may not be adequately accommodated. U.S. Pat. No. 5,492,484 also describes a particular form of contact that is indicated as being able to terminate more than a single conductor. This is however complicated in form.
It is generally desirable to provide a power outlet that can effect quick and easy electrical connection to the insulated conductors of a power cable.
It is generally desirable to overcome or ameliorate one or more of the above mentioned difficulties, or at least provide a useful alternative.
In accordance with the present invention, there is provided a power outlet for effecting an electrical connection between an electric device and insulated conductors of an electric power cable including:
Advantageously, the above described power outlet can effect quick and easy electrical connection to the insulated conductors of a power cable.
Preferred embodiments of the present invention are hereafter described, by way of non-limiting example only, with reference to the accompanying drawing in which:
The power outlet 10 shown in
The outlet 10 includes a socket 16a having apertures 18a, 18b, 18c including electrically conductive socket contacts 20a, 20b, 20c, seated therein, arranged in the manner shown in
The outlet 10 also includes another socket 16b having apertures 28a, 28b, 28c including electrically conductive socket contacts 30a, 30b, 30c, seated therein, arranged in the manner shown in
As particularly shown in
The active socket contacts 20a, 30a can be independently electrically isolated from the corresponding insulation displacement contact 26a by corresponding switches 17a, 17b. The switches operate in a conventional manner and are not described here in further detail.
The socket contacts 20b and 30b of the sockets 16a and 16b are shaped for electrical connection to corresponding neutral electrical contacts of a plug of an electrical device (not shown). The socket contacts 20b and 30b are electrically coupled to an electrically conductive spanning contact 32b. The insulation displacement contact 26b includes a longitudinal bifurcated contact 36b electrically coupled to the spanning contact 32b. The spanning contact 32b is electrically connected to the insulation displacement contact 26b when inserted between the bifurcated arms of the contact 36b. The bifurcated arms of the contact 36b resiliently bear against the spanning contact 32b and thereby secure the contacts 32b, 36b in electrical communication.
The socket contacts 20c and 30c of the sockets 16a and 16b are shaped for electrical connection to corresponding earth electrical contacts of a plug of an electrical device (not shown). The socket contacts 20c and 30c are electrically coupled to an electrically conductive spanning contact 32c. The insulation displacement contact 26c includes a lateral bifurcated contact 36c electrically coupled to the spanning contact 32c. The spanning contact 32c is electrically connected to the insulation displacement contact 26c when inserted between the bifurcated arms of the contact 36c. The bifurcated arms of the contact 36c resiliently bear against the spanning contact 32c and thereby secure the contacts 32c, 36c in electrical communication.
The insulation displacement contacts 26a, 26b, 26c are preferably electrically connected to respective spanning contacts 32a, 32b, 32c by bifurcated contacts 36a, 36b, 36. However, they could, alternatively, be electrically coupled to the spanning contacts 32a, 32b, 32c by any other suitable means.
As particularly shown in
As particularly shown in
The connector 28 is formed of an electrically insulative material and has an elongate and somewhat planar shape. The connector 28 is shaped to fit over the channel plate 42 so as to close the channels 22a, 22b, 22c. A restraining means, in the form of a hinge 48, is provided to for pivotally coupling the connector 28 to the channel plate 42. The hinge 48 rotates about an axis generally parallel to, and to one side of, the lengthwise direction of extent of the outlet 10. The connector is adapted to rotate about the hinge 48 between the open position shown in
As particularly shown in
The following steps are performed to effect electrical connection between the power outlet 10 and the insulated conductors 12 of the cable 14:
Following the above steps, the power outlet 10 need only be terminated once to provide a double socket 16a, 16b outlet. As will be observed particularly from
As above mentioned, the insulation displacement contacts 26a, 26b, 26c are centrally disposed. As such, the force applied to close the connector 28 can be concentrated in one spot. Advantageously, the centrally disposed insulation displacement contacts reduce the force needed to close the connector 28.
As shown in
As particularly shown in
The conductors 62a, 62b, 62c overlie the conductors 24a, 24b, 24c when arranged in the above described manner. The insulation displacement contacts 26a, 26b, 26c are located at the intersections of corresponding primary and secondary channels 22a, 22b, 22c, 58a, 58b, 58c. Thus, each insulation displacement contact 26a, 26b, 26c is adapted to receive, and form electrical connections therewith, two insulated conductors.
The primary and secondary channels 22a, 22b, 22c, 58a, 58b, 58c include restraining flanges 70 to inhibit longitudinal movement of the insulated conductors in the channels.
As particularly shown in
The first primary channel 22a preferably extends at an angle of substantially 145 degrees to a corresponding first secondary channel 58a. The second primary channel 22b extends at an angle of substantially 111 degrees to a corresponding second secondary channel 58b. A third primary channel 22c extends at an angle of substantially 91 degrees to a corresponding third secondary channel 58c.
The connector 28 can preferably be terminated (closed) using standard electrician's pliers. The insulated connector 28 can prevent accidental shock. The outlet preferably includes a stripping length guide. The connector 28 is adapted to over travel past the closed position to allow correct clip engagement.
While we have shown and described specific embodiments of the present invention, further modifications and improvements will occur to those skilled in the art. We desire it to be understood, therefore, that this invention is not limited to the particular forms shown and we intend in the append claims to cover all modifications that do not depart from the spirit and scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
2007902395 | May 2007 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2008/000470 | 4/2/2008 | WO | 00 | 4/1/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/134791 | 11/13/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
D91940 | Hollingsworth | Apr 1934 | S |
D198131 | Radtke | May 1964 | S |
4171857 | Forberg et al. | Oct 1979 | A |
4333700 | Pugh, III | Jun 1982 | A |
4405187 | Muller et al. | Sep 1983 | A |
4452502 | Forberg et al. | Jun 1984 | A |
4500746 | Meehan | Feb 1985 | A |
4548459 | Mosser, III | Oct 1985 | A |
4614576 | Goldstein | Sep 1986 | A |
D299822 | Constable et al. | Feb 1989 | S |
5094630 | Jammet | Mar 1992 | A |
5100332 | Egawa | Mar 1992 | A |
D329422 | Fujiyoshi | Sep 1992 | S |
5228872 | Liu | Jul 1993 | A |
D347622 | Flasz | Jun 1994 | S |
5492484 | Archer | Feb 1996 | A |
5500746 | Aida | Mar 1996 | A |
D401217 | Wirth | Nov 1998 | S |
5919060 | Lee | Jul 1999 | A |
5947761 | Pepe | Sep 1999 | A |
6095848 | Munshi | Aug 2000 | A |
D454543 | Hu | Mar 2002 | S |
6406323 | Shan | Jun 2002 | B2 |
6488539 | Turek et al. | Dec 2002 | B1 |
6558190 | Pierson, Jr. | May 2003 | B1 |
7234954 | Srage et al. | Jun 2007 | B1 |
7329140 | O'Connell et al. | Feb 2008 | B2 |
7347712 | O'Connell et al. | Mar 2008 | B2 |
7435119 | Chang et al. | Oct 2008 | B2 |
D585845 | Dennes | Feb 2009 | S |
D587203 | Dennes et al. | Feb 2009 | S |
7510429 | Savicki et al. | Mar 2009 | B1 |
20020013081 | Shan | Jan 2002 | A1 |
20040264076 | Lee | Dec 2004 | A1 |
20060030183 | Yoshida et al. | Feb 2006 | A1 |
20090258533 | Dennes et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
2001250509 | Jul 2001 | AU |
784652 | Jan 2003 | AU |
2005203509 | Feb 2006 | AU |
2006241314 | Dec 2006 | AU |
0382482 | Aug 1990 | EP |
0382482 | May 1995 | EP |
0398560 | Aug 1995 | EP |
2 165 101 | Apr 1986 | GB |
2 292 269 | Feb 1996 | GB |
WO 0150548 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100197161 A1 | Aug 2010 | US |