Electronic devices may engage with cables and connectors for a variety of purposes. Some cables and connectors may provide signals such as data or other communication signals, while others may provide power to the electronic device. Such power cables may engage an electronic device with a power source and may include a power plug to engage with a power receptacle of the electronic device. Some power cables may engage an electronic device with a wall outlet or other power source.
Electronic devices may engage with cables and connectors for a variety of purposes. Some cables and connectors may provide signals such as data or other communication signals, while others may provide power to the electronic device. Such power cables may engage an electronic device with a power source, for example, from a wall outlet, portable power supply, an uninterruptable power supply (UPS), or other power sources. In some situations, the power cable may engage with an alternating current (AC) power source and may include a power adapter to convert the AC power signal into a direct current (DC) power signal to provide the DC power signal to an electronic device.
Power cables may include a power plug having a connector designed to mechanically and electrically engage with a power receptacle of an electronic device. In some situations, the power plug and/or connector may operably engage with a power receptacle by being pushed directly into the power receptacle. The power plug and/or connector may be retained in the power receptacle by a slip fit, or sometimes by an interference or friction fit. However, such slip fit or friction fit of the power plug and/or connector may not be sufficiently robust enough to prevent the power plug from disengaging from the receptacle upon an accidental movement or tension on the power plug, for example, by a user accidentally kicking, tripping over, or tugging on the power plug without realizing it. In such cases, inadvertent disengagement of the power plug with the receptacle may result in potential negative effects on the performance of, or the shutting down completely of, the electronic device.
In some situations, supplemental plug retention devices may be employed to make it more difficult to accidentally unplug or disengage a power plug from an electronic device. Such supplemental retention devices may include adding an additional O-ring or other friction-inducing component into the power receptacle to help retain the power plug, adding a cable hook to the exterior of the electronic device, or adding a cam or ratchet device to the connector of the power plug to hold the power plug in operable engagement with the receptacle of the electronic device. Such existing techniques may require extensive additional design, manufacturing and/or assembly steps of the electronic device, or the inclusion of specialty components, thereby increasing cost and complexity, and/or restricting the use of the power plug to a specific electronic device or line of electronic devices.
Implementations of the present disclosure provide a way to prevent or minimize accidental unplugging or disengagement of a power plug from an electronic device, while avoiding significant extra development cost or complexity, and also while maintaining the ability of the power plug to be used with many different devices. Implementations of the present disclosure provide power plugs with lock rings, wherein the lock ring may be a supplemental retention device that may be employed with existing universal power plugs.
Referring now to
The power plug 100, and/or the connector 102 thereof may be used in conjunction with a removable lock ring 104. When power plug 100 is used in conjunction with the lock ring 104, in some situations the lock ring 104 may be considered as being a part of the power plug 100. The lock ring 104 may be considered removable in the sense that the power plug 100 may still be able to operably engage with an electronic device so as to provide power to the electronic device without the use of the lock ring 104, or with the use of the lock ring 104, and that the lock ring 104, once installed on to the power plug 100, may be able to be removed again. Referring additionally to
Referring now to
In some situations, the fastener 214 alone may be sufficient to install and effectively fix the lock ring 204 onto the connector 202, but in other implementations, the lock ring 204 may also include an adhesive, or an adhesive film 208 to fix the lock ring 204 onto the connector 202. In yet further implementations, the lock ring 204 may utilize the adhesive 208 alone, and omit the fastener 214, to achieve the desired installation security. In some implementations, the lock ring 204, when installed, may abut against a shoulder 210 of the power plug 200, adjacent to the connector 202. In other implementations wherein adhesive 208 is employed, either alone or in conjunction with the fastener 214, the adhesive 208 may be used to fix or adhere the lock ring 204 to the shoulder 210 of the power plug 200. In other words, the adhesive 208 may be applied between the shoulder 210 and a back side 216 of the lock ring 204.
Referring additionally to
The lock ring 204 may further include the lock tab 206 disposed on the collar 218 at the separated portion 209. The lock tab 206 may radially extend from the collar 218 and may be sized and structured to be able to insert into a lock notch of a power receptacle with which the power plug 200, or the connector 202 thereof, is to engage. In some implementations, in order to enable a clamping ability of the lock ring 204, the lock tab 206 may include a first tab portion 222a and a second tab portion 222b, spaced from the first tab portion 222a. The collar 218 at the separated portion 209 and the first tab portion 222a may define a first clamping arm 224a, while the collar 218 at the separated portion 209 and the second tab portion 222b may define a second clamping arm 224b. The first and second clamping arms 224a and 224b may be flexible or movable relative to one another such that when a fastener is inserted into the fastener opening 212 and tightened, the first and second clamping arms 224a and 224b may be drawn towards one another, effectively closing or reducing the space between the first and second tab portions 222a and 222b and decreasing the approximate diameter of the collar 218. Stated differently, the lock ring 204 may further include the fastener 214 to extend through the fastener opening 212 of the lock tab 206 to clamp the first clamping arm 224a and the second clamping arm 224b towards each other in order to tighten the collar 218, and thus the lock ring 204, around the outer periphery of the connector 202. Such flexibility and movement of the first and second clamping arms 224a and 224b relative to one another may be enabled by the separated portion 209 of the collar 218.
Referring now to
Electronic device 301 may include a chassis 326. The chassis 326 may be or may be a part of an electronic device housing, casing, enclosure, frame, or other structural or aesthetic component, represented by example computing device housing 332. The chassis 326 may include a power receptacle 328. The power receptacle 328 may refer to a cutout, window, or other type of opening in the chassis 326 through which a power plug 300, or a connector 302 thereof, may insert and engage with an electronic component of the electronic device 301. In some implementations, the power receptacle 328 may refer to both the opening in the chassis 326, as well as the electronic component itself. The connector 302 may removably engage with the power receptacle 328 so as to be able to be plugged in and unplugged again. The power receptacle 328 may include a lock notch 330, in some implementations, which may be an additional cutout in the chassis 326, or a cutout or opening that is supplementary to and intersects with the power receptacle opening. In some implementations, the lock notch 330 may extend from a side of the power receptacle 328.
The electronic device 301 may further include the power plug 300, which may be attached to a power cable 334. The power cable 334 may be or may include conductive traces or lines to engage with and deliver power from a power source, through the power plug 300 and/or connector 302 thereof, to the power receptacle 328, and thus the electronic device 301. In other words, the power plug 300, or the connector 302 thereof, may provide power to the electronic device 301 through the engagement of the power plug 300, or the connector 302 thereof, with the power receptacle 328 when the power cable 334 is engaged with a power source.
In some implementations, the power cable 334 may connect the power plug 300 to a power adapter, e.g., a device to convert AC power signals to DC power signals. Thus, in some implementations, the power plug 300, power cable 334, and power adapter (not shown) may all be a part of a standalone power adapter device for use with electronic devices, and, in some implementations, may be an off-the-shelf unit that may be used or compatible with multiple different electronic devices, or electronic device types. Thus, the lock ring 304 may be able to be used with existing power plugs or power adapter devices.
As stated above, in some implementations, the power plug 300 may be another type of connector or plug, aside from a power plug. In some implementations, the power plug 300 may be a connector or plug to deliver communication signals, e.g., electrical, optical, or other communication signals. Such connectors or plugs may include coaxial connectors, audio or video signal connectors, or other types of connectors.
Referring now to
Referring now to
Upon the connector 302 being engaged with the power receptacle 328, and the lock tab 306 being inserted through the lock notch 330, the power plug 300, and thus the lock ring 304, is able to rotate relative to the chassis 326, the power receptacle 328, and lock notch 330. As illustrated, e.g., by example rotation arrow 313, the power plug 300 may rotate such that the lock tab 306 is no longer aligned with the lock notch 330. Upon the lock tab 306 no longer being aligned with the lock notch 330, the power plug 300 may not be able to be unplugged, or pulled out of engagement with the power receptacle, e.g., along disengagement direction 315, without substantial and intentional force being applied. Thus, the lock tab 306 of the lock ring 304 is able to effectively lock the power plug 300 into an engaged state with the electronic device 301, thereby avoiding accidental unplugging of the power plug 300. It should be noted that, while
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/103166 | 8/30/2018 | WO | 00 |