Power press

Information

  • Patent Grant
  • 6460396
  • Patent Number
    6,460,396
  • Date Filed
    Thursday, May 24, 2001
    23 years ago
  • Date Issued
    Tuesday, October 8, 2002
    22 years ago
Abstract
This invention relates to a hydraulic force modulator used in a power press to provide a predetermined force with a defined force applied by a ram of the press at defined incremental positions of the ram relative to a stationary part of the press. A moveable plate moves relative to a base plate. A resilient pneumatic bellows has one end sealingly mounted on the moveable plate. The resilient pneumatic bellows has an opposite end sealingly mounted on the base plate. A vessel is connected on one of the plates. A metering cylinder is mounted on the same plate as the vessel and is positioned within the vessel. A piston assembly is mounted in the metering cylinder. A piston rod has one end connected to the piston assembly and the opposite end connected to the other of the plates. The metering cylinder has a plurality of orifices regulate the flow of hydraulic fluid from the metering cylinder into the vessel as the piston assembly moves from a starting position and thereby regulates the force on the piston rod in response to the position of the moveable plate relative to the base plate and thereby co-acts with the defined force applied by the ram.
Description




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




Not Applicable.




BACKGROUND OF THE INVENTION




Power presses are built in a wide variety of styles and sizes to perform a variety of functions, such as stamping, drawing, forming and many others. The deleterious effect of impact loading associated with many functions of power presses is well known and recognized. A variety of cushion arrangements for use in power presses is well known. Examples of such cushion arrangements associated with power presses are taught in: U.S. Pat. No. 4,732,033, entitled, “Pneumatic Die Cushion,” issued Mar. 22, 1988, to Smedberg, et al.; U.S. Pat. No. 4,736,615, entitled, “Pneumatic Press Counterbalance”, issued Apr. 12, 1988, to Smedberg, et al.; U.S. Pat. No. 4,796,460 entitled, “Cushion Construction Including Snubber”, issued Jan. 10, 1989, to Smedberg, et al; U.S. Pat. No. 4,825,681, entitled, “Pneumatic Press Counterbalance and Cushion Construction”, issued May 2, 1989 to Smedberg, et al.; U.S. Pat. No. 4,860,571, entitled, “Power Press With Improved Cushioning System”, issued Aug. 29, 1989, to Smedberg, et al; and U.S. Pat. No. 4,930,336, entitled, “Single Action Cylinder”, issued Jun. 5, 1990, to Smedberg, et al.




Though cushioning improves operation of a power press, it is still necessary to provide a means to modulate the force applied by a press ram to work piece and stationary portions of the press to reduce further the deleterious effect of undesired shock loading on parts of the press and to achieve a smooth application of force to a work piece.




SUMMARY OF THE INVENTION




The herein disclosed invention provides an improved power press. This press construction provides improved holding of a work piece and generates an improved desirable loading in a power press. An improved force modulator is used to hold the work piece and to regulate the internal loading in the press having a ram moveable relative to a stationary part of the press. The force modulator includes a vessel with hydraulic fluid contained in the vessel. A hydraulic fluid container is mounted within the vessel. One end of the force modulator is connected to the press ram. An opposite end of the force modulator is connected to the stationary part of the power press. A regulator is connected to the container to control the flow of hydraulic fluid into the vessel thereby determine a back force on the press ram congruent with a defined force displacement curve, that is, the defined force for each incremental ram position in response to the position of the ram relative to the stationary part of the press. The back force on the press ram substantially eliminates undesirable impact loading on parts of the press and achieves a smooth application of a working force to a work piece positioned in the press.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a conventional power press having an improved force modulator mounted therein to provide an effective back force on a press ram congruent with a defined force displacement curve for the ram which is responsive to the position of the ram in relation to a stationary part of the press.





FIG. 2

is a cross sectional view showing a die arrangement in the power press shown in

FIG. 1

with a work piece mounted in the die on a die ring with a moveable portion of the die positioned for engagement with the work piece and force modulators connected to the die ring;





FIG. 3

is a cross sectional view similar to

FIG. 2

, but showing the moveable portion of the die in engagement with a work piece forming a work piece to a desired form;





FIG. 4

is similar to

FIGS. 2 and 3

, but showing the moveable portion of the die retracted and a work piece resting on the die ring positioned out of engagement with a male portion of the die;





FIG. 5

is an enlarged cross sectional view of a force modulator shown in

FIGS. 1

,


2


,


3


and


4


and showing the force modulator in a collapsed attitude, as shown in

FIG. 3

;





FIG. 6

is a cross sectional view of the force modulator of

FIG. 5

, but showing the force modulator in an expanded attitude as shown in

FIGS. 2 and 4

;





FIG. 7

is an enlarged cross sectional view taken on Line


7





7


of

FIG. 6

;





FIG. 8

is an enlarged cross sectional view taken on Line


8





8


of

FIG. 6

showing the arrangement of parts through a head of the force modulator;





FIG. 9

is an enlarged cross sectional view taken on Line


9





9


of

FIG. 6

;





FIG. 10

is an enlarged cross sectional view taken on Line


10





10


of

FIG. 6

;





FIG. 11

is an enlarged cross sectional view through a piston assembly of the force modulator showing a sealing ring in contact with a piston guide in a sealed position for preventing the flow of fluid past the piston assembly during a down stroke;





FIG. 12

is an enlarged cross sectional view similar to

FIG. 11

, but showing the sealing ring in a displaced position relative to the piston guide to allow hydraulic fluid to flow past the piston assembly during an up stroke; and





FIG. 13

is a rolled out or flattened view of a metering cylinder showing the positioning of metering holes in the cylinder to effect a selected back force for various incremental positions of the ram.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now the drawings and especially to

FIG. 1

, a conventional power press generally indicated by numeral


20


is shown therein. Power press


20


is conventional, in that, it includes a conventional frame


22


with a conventional bolster


24


fixed within the frame. The bolster is a stationary portion of the press. A conventional ram


26


is movably mounted in the frame and is driven by a conventional drive assembly


28


from a conventional and well known power source not shown herein. A die assembly


30


is mounted within the press with four force modulators


32


(any appropriate number may be used) connected to the die assembly and bolster


24


though only two force modulators are shown in

FIGS. 2

,


3


and


4


.




As may be seen in

FIGS. 2

,


3


and


4


, die assembly


30


includes a male stationary portion


34


fixed to the bed. A movable die ring


36


is positioned adjacent to and surrounding male


34


. The die ring extends above male portions


34


as may be seen in

FIGS. 2 and 4

. A conventional female or moveable portion


38


of the die assembly is mateable with male portion


34


. Moveable portion


38


is fixed to ram


26


to move up and down with the ram within frame


22


. A work piece


40


is positioned on top of the die ring, as may be seen in

FIG. 2. A

plurality of identical force modulators


32


is mounted in bolster


24


and in engagement with bed ring


36


. When the female portion


38


moves down into engagement with work piece


40


, the work piece is locked at its outer periphery between the female portion and the die ring. Further downward movement of the ram causes the central portion of the work piece to be drawn around the stationary male portion. The force modulator is connected to the ram through the ring, the work piece and the moveable die portion. After the ram has completed its downward stroke, the ram is moved upward, which allows the die ring to move upward, and disengage the work piece from the male portion of the die, as shown in FIG.


4


. The work piece is then removed in a conventional and well known manner and a new work piece is positioned in the die in the attitude shown in FIG.


2


.




Each forming operation in the die requires a given force to be applied by the ram to the work piece to draw the work piece a selected amount. The given force varies incrementally in relation to the position of the ram relative to the bed as a defined force in a determined force displacement curve. The ram's downward motion is simple harmonic motion, wherein the initial vertical movement is slight. Then, the rate of the downward movement increases to a midpoint in the total displacement of the ram. After the midpoint, the rate of downward movement then decreases until the ram reaches the end of its downward stroke and starts to return to its starting position. Through each incremental position, the ram's defined force upon each work piece is observed relative to the bed to generate the defined force displacement curve for the given work piece.




The four force modulators


32


cooperate to provide a predetermined part holding force with the applied force from the ram to smooth out the force applied to the parts of the power press. The utilization of the predetermined force against the force of the ram reduces the deleterious effect of extraneous forces within the press generated by the ram. The hydraulic force modulators create the proper part holding force through the action of a piston assembly


41


, which may be seen in

FIG. 5

, moving within a container, that is, a metering cylinder


42


, which is an elongated tube, to force a conventional and well known hydraulic fluid from the metering cylinder through a plurality of metering orifices


43


. The amount of predetermined force is determined by the rate of flow of hydraulic fluid through the metering orifices. The initial number of orifices is large in view of the fact that the ram moves but a small amount initially. In this instance, the number of effective orifices becomes less as the ram moves further down toward the bed, until the ram bottoms out and there is one orifice.




A specific construction of each force modulator


32


is identical to each other force modulator and the construction shown in detail in

FIGS. 5 and 6

. Force modulator


32


generally includes a hydraulic cylinder


44


and a conventional resilient pneumatic bellows


45


connected to the cylinder. A moveable base plate


46


is connected to die ring


36


. A fixed base plate


56


is connected to bolster


24


. The pneumatic bellows has one end sealingly secured to fixed base plate


48


and its opposite end is secured to moveable plate


46


. A stop


50


is welded to the moveable base plate


46


.




Cylinder


44


includes a piston head


52


which is sealingly mounted in fixed plate


48


. The cylinder includes a container cylinder or vessel


54


, which has one end sealingly connected to the head


52


. A closed end head


56


is sealingly connected to the other end of vessel


54


. Metering cylinder


42


is concentric with vessel


54


and has one end sealingly secured to the piston head


52


and the other end sealingly secured to the closed end head


56


. A plurality of identical elongated tie rods


60


are threadedly mounted in closed end head


56


and extend through head


52


and plate


58


. A conventional tie rod nut


59


is threaded on the end of each tie rod extending through plate


58


to secure vessel


54


and metering cylinder


42


in position.




Cylinder


44


includes a piston rod


62


which is slidably mounted in head


52


with a bearing


64


positioned therein to guide the rod in head


52


. Piston rod


62


is secured to stop


50


by a screw


66


. Piston assembly


41


is mounted on the free end of rod


62


. Rod


62


includes a piston stud


70


which receives piston assembly


41


. A conventional nut


72


secures the piston assembly to the piston rod.




As may be best seen in

FIGS. 11 and 12

, piston assembly


41


includes a piston


74


which has a plurality of ports


76


extending therethrough. A piston guide


78


is mounted on stud


70


in engagement with piston


74


. The outside diameter of the piston guide is less than the inside diameter of the metering cylinder allowing hydraulic fluid to flow between the piston guide and the metering cylinder. Piston guide


78


includes a recess


80


adjacent to the piston. A piston ring


82


is movably mounted in recess


80


. Piston ring


82


sealingly engages the interior of the metering cylinder. However, the piston ring is moveable from sealing engagement with the piston guide to engagement with the piston. When the piston ring is in engagement with the piston, hydraulic fluid may flow through ports


76


, past the piston ring and the piston guide during return of the piston assembly from its bottom position shown in

FIG. 5

to its starting position adjacent to piston head


52


shown in

FIG. 6






Closed end head


56


includes a fluid passage


84


between the metering cylinder and vessel


54


. A ball check valve


86


is positioned in the passage to control the flow of hydraulic fluid through the fluid passage. Ball check valve


86


includes a ball


88


connected to a spring


90


through a plug


92


. The spring urges the ball


88


toward passage


84


so that the ball seats in the passage. A port


93


in fluid passage


84


provides communication for hydraulic fluid between the interior of the metering cylinder and the ball. When pressure is increased within the metering cylinder, the increase in pressure effectively urges the ball into greater contact with the seat in head


56


to seal closed passage


84


. However, when the pressure within the metering cylinder is decreased so that the pressure within vessel


54


is greater than the pressure in the metering cylinder, the ball is displaced from its seat to allow hydraulic fluid to flow into the metering cylinder. Passage


84


is connected through a port


94


to a hydraulic fluid supply reservoir, which is not shown herein.




The interior of the vessel communicates with the interior of the pneumatic bellows through an overflow passage


95


. Overflow passage


95


allows fluid to flow from the vessel into the pneumatic bellows which acts as an overflow reservoir. A tube


96


is mounted in plate


48


and is connected to a conventional source of compressed air, not shown therein, through a line


98


. Tube


96


extends above the maximum of height of hydraulic fluid in the pneumatic bellows.




The defined force applied to the ram at its incremental positions relative to the stationary part of the press has a predetermined force generated by the force modulators for each position. The predetermined force generated by each of the force modulators is determined by the number of orifices in each force modulator which allow the hydraulic fluid to flow out of the respective metering cylinder. The defined force for each force modulator is determined by the pressure drop across the orifices, which is determined by the following formula:







Δ





P

=



Q
2


ρ



236
2



d
0
4



c
2













Wherein:




ΔP=pressure drop across the orifices in pounds per square inch




Q=the rate of flow in gallons per minute




d


0


=orifice diameter in inches




c=flow coefficient.




ρ=density in pounds per foot


3






The pattern of orifice placement in the force modulators is shown in

FIG. 13

, wherein orifices


43


are positioned axially along the length of the cylinder matched with the speed of the ram to effect the desired predetermined force. At the top of the cylinder, that is, adjacent to head


52


, a plurality of orifices


102


is formed therein.




When the ram starts its initial downward movement, the initial force is small, thus, reducing the initial impact. As the ram moves down and into engagement with the work piece, the back pressure builds up to be congruent with the force applied to the work piece by the ram. Thus, the force modulators follow the motion of the ram to maintain a predetermined force on the ram. The inward movement of the piston assembly for each force modulator from its starting position as shown in

FIG. 6

causes the hydraulic fluid contained in the metering cylinder to be pushed out of the cylinder into vessel


54


through orifices


43


. The ball check valve prevents any flow of hydraulic fluid out of the end of the metering cylinder. The piston rod takes up a volume within the metering cylinder greater than that which was originally taken up by the piston so that there is an excess of hydraulic fluid in the metering cylinder between the piston assembly and head


52


. The hydraulic fluid passes through overflow passage


95


into the pneumatic bellows were it is retained.




The inward movement of the piston assembly does not allow any hydraulic fluid to flow past the piston. As may be seen in

FIG. 11

, when the piston assembly moves toward head


56


, sealing ring


82


engages piston guide


78


, thereby preventing the flow of fluid past the guide. Thus, the hydraulic fluid cannot pass the piston assembly. When the ram reaches the bottom of its stroke, that is, the position shown in

FIG. 3

, stop


50


is positioned adjacent to head


52


and thereby prevents the further movement of the piston assembly into the metering cylinder. As the ram retracts, the force modulator expands, that is, the pneumatic bellows filled with compressed air acts as a pneumatic operation and raises moveable plate


46


to move the piston assembly toward its starting position. The drain ports


102


allow the hydraulic fluid to flow out of the metering cylinder and into the vessel. The piston assembly also allows the hydraulic fluid to flow through the assembly. The upward movement of the piston assembly places sealing ring


82


into the position shown in

FIG. 12

to act as a return valve. The hydraulic fluid passes the piston guide since the sealing ring is disengaged from the piston guide and the hydraulic fluid flows through ports


76


of the piston to the other side of the piston assembly. The movement of the piston assembly to its starting position also causes a decreased pressure in the metering cylinder in the space between the piston assembly and head


56


, so that hydraulic fluid from the vessel has a free flow return through passage


84


and past the ball check assembly to flow into the metering cylinder. Thus, the force modulator readily moves into its starting position.




Although a specific embodiment of the herein disclosed invention has been described in detail above, it is readily apparent that those skilled in the art may make various modifications and changes to a specific construction without departing from the spirit and scope of the present invention. It is to be expressly understood that the instant invention is limited only by the appended claims.



Claims
  • 1. A power press comprising:a. a stationary die, b. a movable die movable toward the stationary die along a die closing and opening axis, c. a ram for urging the movable die toward the stationary die along the axis, d. a force modulator operatively connected to exert a force in the direction of the axis between the stationary die and the movable die, the force being variable in response to the position of the movable die relative to the stationary die, the force modulator comprising: e. a base plate, f. a movable plate that is movable relative to the base plate, g. a resilient pneumatic bellows having one end sealingly mounted on the movable plate, said resilient pneumatic bellows having an opposite end sealingly mounted on the base plate, h. a vessel connected to one of said plates, i. a metering cylinder mounted on the same plate as the vessel and being positioned within the vessel, j. a piston assembly slidably mounted in the metering cylinder, k. a piston rod having one end connected to the piston assembly and an opposite end connected to the other of said plates, said metering cylinder having a plurality of orifices along its length to regulate the flow of hydraulic fluid from the metering cylinder into the vessel as the piston assembly moves from a starting position into the metering cylinder and thereby regulate a force on the piston rod in response to the position of the movable plate relative to the base plate and thereby coact with the defined force applied by the ram.
  • 2. A power press as defined in claim 1, wherein the pneumatic bellows is a pneumatic operator to return the piston to a starting position.
  • 3. A power press as defined in claim 1, including a return valve mounted in the piston assembly to allow hydraulic fluid to flow from one side of the piston assembly to the other side of the piston assembly to facilitate return of the piston assembly to a starting position.
  • 4. A power press as defined in claim 1, including a fluid passage between the metering cylinder and the vessel, and a check valve in the fluid passage to prevent flow of hydraulic fluid through the fluid passage in one direction and allow hydraulic fluid to flow in the opposite direction to facilitate return of the piston to a starting position.
  • 5. A power press as defined in claim 1, said piston assembly including a piston guide mounted on the piston rod cooperative with a piston, and a sealing ring mounted between the piston and the piston guide to prevent flow of hydraulic fluid past the piston in one direction and to allow free flow of hydraulic fluid in the other direction to facilitate return of the piston to a starting position.
  • 6. A power press as defined in claim 1, including a return valve mounted in the piston assembly to allow hydraulic fluid to flow from one side of the piston assembly to the other side of the piston assembly to facilitate return of the piston assembly to a starting position, and the pneumatic bellows provides a pneumatic operator to return the piston assembly to the starting position.
  • 7. A power press as defined in claim 1, including a fluid passage between the metering cylinder and the vessel, and a check valve in the fluid passage to prevent flow of hydraulic fluid through the fluid passage and in one direction and allow hydraulic fluid to flow in the opposite direction to facilitate return of the piston to a starting position, and the pneumatic bellows provides a pneumatic operator to return the piston assembly to the starting position.
  • 8. A power press as defined in claim 1, including a fluid passage between the metering cylinder and the vessel, a check valve in the fluid passage to prevent flow of hydraulic fluid through the fluid passage in one direction and allow hydraulic fluid to flow in the opposite direction, and a return valve mounted in the piston assembly to allow hydraulic fluid to flow from one side of the piston assembly to the other side of the piston assembly to facilitate return of the piston assembly to a starting position.
  • 9. A power press as defined in claim 1, including a fluid passage between the metering cylinder and the vessel, a check valve in the fluid passage to prevent flow of hydraulic fluid through the fluid passage in one direction when the movable plate moves toward the base plate and to allow hydraulic fluid to flow in the opposite direction in the fluid passage when the movable plate moves away from the base plate, said piston assembly includes a piston guide mounted on the piston rod cooperative with a piston, and a sealing ring mounted between the piston and the piston guide to prevent the free flow of hydraulic fluid past the piston in one direction when the movable plate moves toward the base plate and to allow free flow of hydraulic fluid in the other direction when the movable plate moves away from the base plate.
  • 10. A power press as defined in claim 1, including a fluid passage between the metering cylinder and the vessel, a ball check valve in the passage to prevent flow of hydraulic fluid through the fluid passage when the movable plate moves toward the base plate and to allow hydraulic fluid to flow in the opposite direction when the movable plate moves away from the base plate, said piston assembly including a piston guide mounted on the piston rod cooperative with a piston, and a sealing ring mounted between the piston and the piston guide sealingly engageable with the metering cylinder to prevent the free flow of hydraulic fluid past the piston when the movable plate moves toward the base plate and to allow the free flow of hydraulic fluid in the other direction when the movable plate moves away from the base plate to facilitate return of the piston assembly to a starting position, and the pneumatic bellows provides a pneumatic operator to return the piston assembly to a starting position by urging the movable plate away from the base plate.
  • 11. A power press as defined in claim 1, wherein said metering cylinder has one end sealingly connected to the base plate, said vessel is a cylinder coaxial with said metering cylinder, said vessel having one end sealingly connected to the base plate, a head sealingly connected to the opposite end of the metering cylinder, said head sealingly connected to the opposite end of the vessel, a plurality of tie rods securing the head to the metering cylinder and to the vessel, said head containing a fluid passage connecting the metering cylinder and the vessel, a ball check valve mounted in the fluid passage to allow hydraulic fluid to flow from the vessel into the metering cylinder and to restrict the flow of hydraulic fluid from the metering cylinder into the vessel, said metering cylinder having a plurality of apertures adjacent to the one end adjacent to the base plate to allow hydraulic fluid to flow from the metering cylinder into the vessel when the piston moves toward its starting position, said piston assembly including a piston guide mounted on the piston rod adjacent to a piston, said piston having a plurality of piston ports to allow hydraulic fluid to flow through the piston, and a sealing ring mounted on the piston rod between the piston and the piston guide in sealing engagement with the metering cylinder, the sealing ring being engageable with the piston guide to effect a seal between the ring and the guide to prevent the free flow of hydraulic fluid past the piston when the moveable plate moves toward the base plate, said sealing ring being positionable in engagement with the piston and spaced from the piston guide to allow free flow of hydraulic fluid to pass the piston to facilitate return of the piston to its starting position, and a relief passage from the vessel to the pneumatic bellows to allow excess hydraulic fluid expelled into the vessel from the metering cylinder to flow into the pneumatic bellows.
  • 12. A power press comprising:a. a stationary portion, b. a press ram movably mounted to advance toward and retract away from the stationary portion, c. a die assembly having a first portion connected to the ram and a second portion connected to the stationary portion and mateable with the first portion; and d. a force modulator exerting a force on the press ram, when the press ram is advancing toward the stationary portion, that is a function of the position of the ram relative to the stationary portion, and of the speed of the ram advancing toward the stationary portion of the press.
  • 13. A power press as defined in claim 12, wherein the force modulator includes a vessel, hydraulic fluid in the vessel, and a regulator controlling the flow of hydraulic fluid from the vessel to exert the force on the press ram.
  • 14. A power press as defined in claim 13, further comprising a die ring surrounding the second portion and connected to the force modulator, the die ring releasably secured to a work piece to hold a peripheral portion of the work piece between the die ring and one of the portions of the die assembly while the work piece is formed by the die assembly.
  • 15. A power press as defined in claim 1, wherein the force modulator is expandable and includes a vessel, hydraulic fluid contained in the vessel, a hydraulic fluid container mounted on the vessel, and a regulator connected to the container directing the flow of hydraulic fluid from the vessel, said regulator including a piston moveable in response to the movement of the ram, said container including an elongated tube receiving the piston, said tube having a plurality of spaced apertures along the length of the tube for regulating the rate of flow of hydraulic fluid out of said container, a free flow return in said force modulator to allow hydraulic fluid to flow freely from the vessel into the container as the force modulator expands, and a pneumatic operator connected to the stationary part of the press for expanding the force modulator concurrent with movement of the ram away from the stationary part of the press.
  • 16. A power press as defined in claim 14, wherein one of the first and second portions is a female portion, the other of the first and second portions is a male portion, and the die assembly is adapted to hold the work piece between the die ring and the female portion while a portion of the work piece within the peripheral portion is formed on the male portion.
  • 17. A power press as defined in claim 12, wherein the force modulator comprises:a. a piston having a leading portion moveable in response to the movement of the ram between first and second axial extremities of travel; b. a metering cylinder having a cylindrical inner wall receiving the piston and allowing axial travel of the piston leading portion within the inner wall between the first and second extremities of travel, the piston and the cylinder defining at least part of a variable volume enclosure for receiving a working fluid, the enclosure having its greatest volume when the piston leading portion is at its first extremity of travel; c. a fluid supply for interposing a working fluid in the enclosure; and d. a plurality of fluid outlets for passing the working fluid out of the enclosure, at least one fluid outlet being located on the cylindrical inner wall between the first and second extremities of travel of the piston leading portion.
  • 18. A power press as defined in claim 17, wherein the force modulator further comprises a free flow return to allow a working fluid to flow freely into the enclosure as the piston leading portion moves toward its first extremity of travel.
  • 19. A power press as defined in claim 17, further comprising a fluid operator for moving the piston leading portion toward its first extremity of travel concurrent with movement of the ram away from the stationary part of the press.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 09/203,133, filed Dec. 1, 1998, to be issued as U.S. Pat. No. 6,237,381 on May 29, 2001. U.S. Ser. No. 09/203,133 is incorporated by reference in full to provide continuity of disclosure.

US Referenced Citations (14)
Number Name Date Kind
4732033 Smedberg et al. Mar 1988 A
4736615 Smedberg et al. Apr 1988 A
4796460 Smedberg et al. Jan 1989 A
4825681 Smedberg et al. May 1989 A
4860571 Smedberg et al. Aug 1989 A
4886251 Haussermann Dec 1989 A
4930336 Smedberg et al. Jun 1990 A
5219051 Davis Jun 1993 A
5366048 Watanabe et al. Nov 1994 A
5477946 Kawamata et al. Dec 1995 A
5499525 Kordak et al. Mar 1996 A
5794482 Walkin Aug 1998 A
5966981 Janos et al. Oct 1999 A
6237381 Smedberg et al. May 2001 B1
Continuations (1)
Number Date Country
Parent 09/203133 Dec 1998 US
Child 09/864832 US