The invention relates to control of wind turbines, particularly to control of wind turbines in connection with power ramp rates.
Power ramping requirements originating from grid codes may be in conflict with protection of the mechanical components of wind turbines. Tower oscillations may be excited if a wind turbine follows a request to ramp the active power with large amplitude and high ramp rate. Tower oscillations may reduce the life-time of the wind turbine and should therefore be avoided as much as possible. As grid codes may set higher requirements to wind turbine's ability to change power from one set-point to another set-point, the structural requirements, e.g. in terms of the mechanical strength of the tower or other wind turbine components, may increase.
Accordingly, there is a need to improve the capability of wind turbines to handle power ramping requirements.
WO2013044927 discloses a method for operating a wind power plant, with at least one wind turbine generator and a power plant controller. The method includes the steps of receiving a request to reduce active power output from the wind power plant, dispatching a reference set point to the at least one wind turbine generator to lower a voltage level of the least one wind turbine generator, and the at least one wind turbine generator controls the voltage level of the least one wind turbine generator, to a new lower set point.
It is an object of the invention to improve the control of a wind turbine in relation to handling power ramping requirements, particularly to handle large rate of change levels in power references provided from an external source to a wind turbine.
It is a further object of the invention to reduce structural loads and oscillations of wind turbine components due to changes in generated power as required by external power references.
In a first aspect of the invention there is provided a method for controlling a wind turbine, the method comprising
The generator reference is generally determined based on an external power reference provided from an external source to the wind turbine.
Advantageously, by restricting the rate of change of the generator reference dependent on a change of the monitored generator reference or generated power within a predetermined period of time, the wind turbine may be better able to handle large rate of change levels in external power references. Specifically, due to the possible restriction in changes of the generator reference, structural loads and oscillations of wind turbine components due to changes in generated power as dictated by the generator reference may be reduced.
According to an embodiment, the step of determining the rate of change limit comprises
Accordingly, the power ramp rate limiter of the wind turbine may comprise two predefined rate of change limits. Generally, the ramp rate limiter may comprise two or more predefined rate of change limits such as three limits for increases in the generator reference. Similarly two or more limits may be defined for decreases in the generator reference.
According to an embodiment, the method according to the first aspect further comprises
Advantageously, by determining the rate of change limit dependent both on a value relating to the monitored operational parameter and dependent on the change of the monitored generator reference or generated power a decision whether or not to restrict the rate of change of the generator reference can be based two different operational parameters of the wind turbine. For example, dependent on the value relating to the monitored operational parameter, the method may comprise a step of determining not to restrict the rate of change of the generator reference, irrespective of the change of the monitored generator reference or generated power.
According to an embodiment the at least one other operational parameter comprises structural loads or oscillations of a wind turbine component, and the value relating to the monitored operational parameter comprises a value relating to the monitored structural loads or oscillations.
Accordingly, if e.g. a tower oscillation is below a given threshold it may be determined not to restrict the rate of change of the generator reference, even if the change of the monitored generator reference or generated power would otherwise trigger a restriction of the power ramp rate.
According to an embodiment the at least one other operational parameter comprises a rotation speed of the generator, and the value relating to the monitored operational parameter comprises a value relating to the monitored rotation speed.
Accordingly, if e.g. the rotation speed is below a given threshold, e.g. the nominal rotation speed, it may be determined not to restrict the rate of change of the generator reference, even if the change of the monitored generator reference or generated power would otherwise trigger a restriction of the power ramp rate.
According to another embodiment the method may comprise determining the change of the monitored generator reference or generated power by determining a difference between maximum and minimum values of the monitored generator reference or generated power within the predetermined period of time.
According to another embodiment the method may comprise determining the change of the monitored generator reference or generated power within the predetermined period of time by low-pass filtering the signal of the generator reference or the generated power and determining a difference between the low-pass filtered signal and an unfiltered generator reference signal or generated power signal, or by determining a high-pass filtered generator reference signal or generated power signal.
According to an embodiment the method may further comprise determining the generator reference based on a received external power reference.
A second aspect of the invention relates to a ramping control system for a wind turbine, wherein the wind turbine comprises a power generator configured to generate power according to a received generator reference, the control system comprises
A third aspect of the invention relates to a wind turbine comprising a ramping control system according to the second aspect.
In general the various aspects of the invention may be combined and coupled in any way possible within the scope of the invention. These and other aspects, features and/or advantages of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Embodiments of the invention will be described, by way of example only, with reference to the drawings, in which
Structural components of the wind turbine such as the tower may be influenced by forces created due to changes in the power set point, i.e. when the generator is controlled to change the amount of produced power. Such structural oscillations affect the structural components with fatigue loads and may therefore reduce the lifetime of wind turbines. Accordingly, it may be desired to avoid such oscillations.
The wind turbine 100 may further comprise a power production controller 210 configured to determine an intermediate generator reference 251a based on a received external power reference 253. The power production controller 210 may determine the intermediate generator reference 251a dependent on operating conditions such as temperature, wind, pitch angle. Accordingly, the intermediate generator reference 251a may be equal to the external power reference or the intermediate generator reference 251a may be modified, e.g. reduced, by the power production controller 210.
The external power reference 253 may be an active power reference dispatched to a wind turbine from a central controller, e.g. a power plant controller PPC configured to control power production from one or more wind turbines. The level of the external power reference 253 may largely be determined by power commands from a grid operator, i.e. commands dictating a desired power production from the power plant. The power plant controller PPC determines the external power references 253 for the individual wind turbines, possibly dependent on other operating conditions.
The wind turbine 100 comprises a ramping control system 200 configured according to an embodiment of the invention. The ramping control system 200 comprises a power detector 201 configured to monitor the generator reference 251 or the generated power 252 of the power generator. The ramping control system 200 further comprises a ramp rate limiter 202 configured to restrict a rate of change of the generator reference 251 where the rate of change is restricted according to a rate of change limit and configured so that the rate of change limit is dependent on a change of the monitored generator reference 251 or generated power 252 within a predetermined period of time.
For example, the detector 201 could monitor the generator reference 251 or the generated power 252 of the power generator via supplied measurements of the power 251 or via monitoring of the generator reference outputted by the a ramp rate limiter 202.
The determination of the change of the monitored generator reference 251 or generated power 252 within a predetermined period of time may be performed by the detector 201 or the ramp rate limiter 202.
In comparison with the external power reference 253, the internal generator reference 251 is an internal reference, i.e. a reference used only internally in a given wind turbine. The generator reference 251 may in some situations be identical the external power reference 253, in other situations the generator reference 251 have been restricted relative to the external power reference 253, e.g. by the ramp rate limiter 202.
The ramping control systems 200 in
Accordingly, if the monitored generator reference 251 or generated power 252 increases above a given power variation threshold within a predetermined period of time (as determined by the detector 201 or ramp rate limiter 202), the ramp rate limiter determines the rate of change limit RR2up and restricts the maximum rate of change of the generator reference 251 according to the determined rate of change limit RR2up.
The maximum allowed ramp rate limits RR0up and RR0down may be selectable, e.g. by the ramp rate limiter 202, as default first rate of change limits. The restricted ramp rate limits RR2up and RR1down may be selectable as second rate of change limits for the rate of change limit dependent on the change of the monitored generator reference or generated power within the predetermined period of time.
The absolute values of the default first rate of change limits RR0down, RR0up are greater than or equal to the absolute value of the second rate of change limits RR1down, RR1up. For example, RR0up may be greater than RR1up, whereas RR0down may be equal to RR1down.
The stepwise increase of the generator reference 251 in
At time t1 the change of the monitored generator reference 251 or generated power 252 within a predetermined time triggers the a ramp rate limiter 202 to restrict the maximum rate of change of the generator reference 251 to the second rate of change limit RR2up. Accordingly, after time t1, the rate of change ΔGref is equal to or less than the first rate of change limit RR2up.
The generator reference 251 is increased up to the desired level Pc, but with a restricted ramp rate ΔGref.
The absolute value of the first rate of change limit is greater than the absolute value of the second rate of change limit
The change of the monitored generator reference 251 which triggers the ramp rate restriction, i.e. the restriction of the rate of change of the generator reference 251, may be determined as the power difference (Pb-Pa) 501 which has increased to the power variation threshold ΔP within the predetermined period of time Tp=t1-t0.
The change of the monitored generator reference 251 or generator power 252 may be determined by the detector 201, the ramp rate limiter 202 or other component of the ramping control system 200. In response to determination of 10 the change, a component of the ramping control system 200, e.g. the detector 201, may trigger the ramp rate limiter to invoke a restriction of the rate of change of the generator reference 251.
Referring again to
For example, dependent on the value relating to the monitored operational parameter, the ramping controller 200 may be configured to determine not to restrict the rate of change of the generator reference, irrespective of the change (e.g. Pb-Pa) of the monitored generator reference 251 or generated power 252.
Thus, if the monitored operational parameter is within acceptable limits, no restriction of the rate of change of the generator reference 251 is invoked, irrespective of a possible large increase of the monitored internal generator reference or generated power (e.g. Pb-Pa).
For example, the at least one other operational parameter may comprise structural loads or oscillations of a wind turbine component, and the value relating to the monitored operational parameter comprises a value relating to the monitored structural loads or oscillations. The wind turbine component could be the tower, the drive-train or one or more blades. The value relating to the monitored structural loads or oscillations could be an amplitude value, e.g. the acceleration amplitude of tower oscillations.
In another example, the at least one other operational parameter may comprise a rotation speed of the generator, and the value relating to the monitored operational parameter comprises a value relating to the monitored rotation speed. The value relating to the monitored rotation speed could be an absolute rotation speed value or a variational value of the rotation speed, e.g. a variational value representing max-min values within a period of time.
Similarly, if the rotation speed of the generator is below a given threshold, e.g. a threshold close to the nominal rotation speed, the generator reference 251 may be allowed to change according the default rate of change limit RR0up, RR0down, even though the generator reference 251 has changed more than ΔP over the predetermined period Tp.
The change of the monitored generator reference 251 or generator power 252 may be determined in different ways, for example by determining a difference between maximum and minimum values of the monitored generator reference or generated power within the predetermined period of time Tp.
In another example, the change of the monitored generator reference or generated power may be determined by low-pass filtering the signal of the generator reference or the generated power and by determining a difference between the low-pass filtered signal and an unfiltered generator reference signal or generated power signal. Alternatively, the change of the monitored generator reference or generated power may be determined by high-pass filtering the generator reference signal or generated power signal and the output from the high-pass filter is used as a value for the change of the monitored generator reference 251.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. The mere fact that certain features are recited in mutually different dependent claims does not indicate that a combination of these features cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
PA 2014 70756 | Dec 2014 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DK2015/050365 | 11/30/2015 | WO | 00 |