This invention relates generally to power recharging systems, and more particularly, to regenerative power charging systems for electric vehicles (EVs).
EVs typically include one or more rechargeable power supplies, for example, battery packs, for storage of electric power. The stored electric power may be used to power a drive motor to propel the vehicle and several electronic elements used to control the vehicles performance and safety while being driven. For example, known EVs typically include a motor controller that not only provides the amperage required by the motor to move the vehicle (e.g., power from the battery pack to the motor), but also monitors the flow of that power and other aspects of motor performance, such as the ohms reading from a potentiometer. If a reading is out of a predetermined and/or preprogrammed value range, then for example, the logic portion of the motor controller shuts off the power portion of the motor controller, thereby turning off the power to the motor and bringing the vehicle to rest until the condition (e.g., performance abnormality) is corrected. Once the condition is corrected the motor controller resumes normal operating power functions, for example, according to the drivers input with a potentiometer that usually operates in conjunction with the foot feed, commonly referred to as the “gas pedal” of the vehicle.
Additionally, when “regenerative braking” is incorporated in an EV, either the motor acts as a regenerative source of power upon deceleration, which typically supplies less than twenty five percent of the used battery amperage back to the battery pack during deceleration once the brake pedal is applied, or an additional alternator or generator and regulator are incorporated in the system, supplying even less battery amperage back to the battery pack than the motor during regeneration and deceleration. With only twenty five percent regeneration of the amperage draw during brake application occurring during deceleration and deceleration occurring only a very small percentage of the time the vehicle is traveling, the amount of regeneration is even smaller resulting in a very small and inefficient recharge verses amperage draw ratio with the conventional EV. Thus, an EV has a substantially lower amount of available travel distance compared to a vehicle using an internal combustion engine and a supply of gasoline or diesel. For example, a typical gasoline powered automobile can travel three to four hundred miles on a tank of fuel and takes about five minutes to refuel. The average EV only travels about one hundred miles per battery charge and typically takes six to eight hours to recharge even with “regenerative braking” added to the EVs system. This limited travel distance per charge and length of recharge time has resulted in the unpopularity and lack of demand for EVs.
In one embodiment, a regenerative charging system is provided that includes a rechargeable power supply and a power regeneration system connected to the rechargeable power supply. The regenerative charging system further includes a controller configured to engage the power regeneration system upon detecting a deceleration condition.
In another embodiment, a regenerative charging system is provided that includes a rechargeable power supply and a wind regeneration charging system connected to the rechargeable power supply. The regenerative charging system further includes a controller configured to engage the wind regenerative system upon detecting a predetermined minimum speed.
In yet another embodiment, a method for recharging a power supply in a moving object is provided. The method includes determining when the moving object is decelerating and engaging a momentum regenerative charging system upon determining that the moving object is decelerating. Optionally, the method may include engaging a wind regenerative charging system.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” and “an embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
Various embodiments of the invention provide a momentum regenerative charging system. The momentum regenerative charging system includes electrical and mechanical components that utilize the momentum of the vehicle to recharge one or more battery packs. Optionally and/or additionally, a regenerative wind charging system may be provided that includes electrical and mechanical components that generate additional power to charge the one or more battery packs using the power of the wind.
As shown in
The power supply 22 may be configured in different arrangements to provide power to one or more systems or components. For example, in an automobile application, a standard twelve volt battery may be used to power accessories in the automobile, such as, lights, wipers, horn, etc. A separate low voltage (e.g., twelve volt) battery pack may be provided to power non-motor components, such as, the electromagnetic clutches 24 and 28, relays, processors, a stepper motor, etc. A high voltage (e.g., ninety-six volt) battery pack also may be provided to separately power the motor 30. It should be noted that the twelve volt batteries may be combined as a single battery. The voltage and amperage of the battery packs may be provided as needed with a plurality of individual batteries (e.g., 6 volts batteries) wired in series, series/parallel combinations, or parallel.
Various embodiments of the invention provide a momentum regeneration system 20 including a momentum regenerative charging system 40 as shown in
Each alternator 42 is connectively wired to one or more batteries in the power supply 22 (shown in
Optionally and/or additionally, a wind regenerative charging system 50 for power regeneration also may be provided as shown in
In operation in a motive application (e.g., in a vehicle), when the momentum regenerative charging system 40 is engaged, which occurs in a motive application each time the vehicle decelerates as described below, the momentum regenerative charging system 40 provides power to charge, for example, the power supply 22, including the both the high voltage and the low voltage battery packs. The momentum regenerative charging system 40 for power regeneration is activated, and in particular, engaged by the electromagnetic clutch 24 as controlled by the controller 26, during a majority of periods of deceleration without, for example, having to apply the brake pedal in the vehicle. The wind regenerative charging system 50 is activated upon activation of the ignition of the vehicle 58 (e.g., when the ignition key is inserted and turned).
More particularly, and referring to
Specifically, once the electromagnetic clutch 24 is engaged thereby rotating the pulley of the electromagnetic clutch 24, the rotation is transferred through a belt to the shaft 46, with the shaft 46 rotating the adaptably mounted pulleys 45. The rotation of the pulleys 45 in turn is transferred through the belts 44 to the plurality of alternators 42, thereby rotating the alternators 42 and generating power that is provided through wiring into batteries of the battery packs within the power supply 22. This rotating operation creates additional stored power (e.g., amperage) capable of transporting the vehicle 58, for example, for an extended period of time and for greater distances. Thus, the regeneration system 20 harnesses the momentum of, for example, an electric vehicle and converts that momentum into regenerative electrical power.
It should be noted that with the electromagnetic clutch 24 adaptably coupled to, for example, the pulley in the transmission system 32 that is closest to the motor 30, the rate of motion remains relatively the same, generating relatively the same amount of power even as the vehicle 58 decreases in speed.
It further should be noted that the engagement of the momentum regenerative charging system 40 by the electromagnetic clutch 24 occurs with or without applying the brake pedal 73 (shown on
Further, in operation, particularly at higher speeds, the wind regenerative charging system 50 is configured to harness the power of wind resistance created with movement of an object, for example, the vehicle 58. More particularly, the basic equation for energy production through wind generation is: P=ρAV3, where “P” is power in Joules, “ρ” is the density of the air, “A” is the area of the propeller that faces the oncoming wind, and “V” is the wind speed in meters per second. The most important term of this relationship is the wind speed “V”. This equation shows that the power in Joules is proportional to the cube of the value of wind speed. This indicates that the power that can be produced from the wind is exponentially larger than the wind speed. For example, if the speed of the wind is two meters per second, the wind power available is eight joules. Accordingly, instead of sealing off the front (usually engine) compartment of the vehicle 58 as is customary in EVs, the opening usually provided for the radiator air flow in internal combustion vehicles is utilized to generate secondary power regeneration, during movement of the vehicle, and particularly at higher speeds, such as during highway travel, where deceleration does not occur as often as during city driving.
The wind regenerative charging system 50 essentially forms multiple wind tunnels. As the speed of the vehicle 58 increases, the air flow through the wind tunnels increases thereby increasing the amount of power generated by the generators 64 connected to the wind turbines 52. This power generation can multiply exponentially so as to provide exponentially more power to the battery packs during the time that the deceleration rate is exponentially lower.
Accordingly, various embodiments of the invention provide power regeneration in motive applications. More particularly, as shown in
Thereafter, a determination is made at 108 as to whether acceleration is desired. If acceleration is not desired, for example, if the vehicle continues to decelerates, then the engagement of the power regeneration system is maintained at 110. However, if a determination is made at 108 that acceleration is desired, then at 112, the power regeneration system is disengaged and the motor reengaged with the transmission system. The determination of whether acceleration is desired may be based on, for example, detecting that the gas pedal is being depressed.
It should be noted that a wind regenerative charging system also may be provided to charge one or more battery packs in the vehicle as described herein.
The momentum regenerative charging system 40 and the wind regenerative charging system 50 may be provided in different configurations. One configuration for the momentum regenerative charging system 40 is shown in
While particular embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the various embodiments of the invention. For example, the number of alternator or generators may be increased or decreased based on the power requirements for the application. The number and power output of the battery packs also may be increased or decreased based on the power requirements for the application. Further, the various embodiments may be implemented in connection with any motive application and are not limited to electric vehicles. For example, in addition to cars, buses, golf carts, urban commuter vehicles, etc., the various embodiments may be implemented in connection with lawn mowers, wheelchairs, etc.
Thus, a momentum regenerative charging system is provided that utilizes the momentum of the vehicle to recharge the battery packs upon deceleration of the vehicle. Further, an additional regenerative wind charging system also may be provided that generates additional power to the battery packs by harnessing the power of the wind, particularly at higher vehicle speeds.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the various embodiments of the invention can be practiced with modification within the spirit and scope of the claims.
This application claims priority to and the benefit of the filing date of U.S. Provisional Application No. 60/27,958, filed on Oct. 18, 2005, entitled “Regeneratively Charged Electric Vehicle,” which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60727958 | Oct 2005 | US |