Not Applicable
Not Applicable
This invention relates to improvements in power consumption of intermittently-operated traveling wave tube based amplifiers, particularly as used in satellite systems.
Amplifiers based on traveling wave tubes have numerous applications in wireless telecommunications and radar systems. Satellite communication is one class of applications, which, because of high efficiency and high reliability requirements, presents unique environmental constraints. On many satellites, traveling wave tube amplifiers, or TWTAs, are used to amplify low-level communication signals such that they can be transmitted to distant ground and/or space stations. For many satellite communication applications, TWTAs are the amplifier technology of choice because of their relatively high power and high conversion efficiency.
A satellite's cost is directly related to the amount of power and the thermal rejection capacity it must have. The amount of power required dictates the size and cost of the solar arrays, batteries and power conversion electronics that make up a satellite's power subsystem. The amount of thermal rejection capacity required dictates the size of the satellite's thermal radiators and the number of heat pipes, heaters and thermal blankets required in its thermal subsystem. In addition to the basic cost of these components, their mass directly affects cost of a satellite system since the cost of the required launch vehicle is directly related to the mass of the payload, such as a satellite.
Although many ways of terminating communications equipment power consumption during these no-service periods of the orbit have been considered previously, none has been able to achieve desired substantial efficiencies. For example, in the past, several methods that have been used to reduce power consumption, primarily by disabling the TWTAs. The most obvious and straightforward is to turn it off. This achieves the intended result, but the electronic power conditioner (EPC) units used to power the typical TWTA (see
Disabling the pre-amplifier used to drive the TWTA is another technique used to disable these devices. Unfortunately this does not prevent the TWTA from amplifying spurious noise power. Amplification of noise is undesirable because it creates a source of interference that degrades the signal of other active satellites. Additionally, disabling the driver amplifier only marginally reduces the TWTA power consumption and thermal dissipation. Therefore a satellite using it would require larger than desired power and thermal system capacity and is therefore for reasons mentioned earlier a more expensive system.
Biasing anode voltage is yet another method of disabling TWTA operation and reducing satellite power and thermal resource requirements. A substantial bias potential for the anode (˜5700V for example) is required in order to be effective. Although possible to do, creating this high voltage signal is complex and expensive.
Since TWTAs contribute disproportionately to a satellite's power and thermal requirements—TWTAs typically consume around 90% of the power generated and distributed on a satellite and typically dissipate directly or indirectly about 70% of the heat that must be eliminated by the satellite's thermal control system—what is needed is a mechanism for providing more efficient implementations and designs for TWTA based amplifiers used in satellites, particularly NGSO satellite designs.
According to the invention, a traveling wave tube (TWT) amplifier in a spacecraft such as an orbiting satellite includes a beam forming electrode (BFE) and a BFE modulator having a bias-based keyer so that the TWT amplifier signals are keyed off during periods when RF power is not to be amplified. Biasing the beam forming electrode voltage off relative to cathode voltage effectively modulates or shuts down the electron beam so that low-level RF signal input is not amplified, and no significant RF power is output. It also does not require shutting down the power supply and thus reduces undesired power supply stress and improves reliability. The voltage required to bias off the BFE to eliminate RF output is for example a cutoff voltage of approximately less than 10% of that required for an anode-based biasing scheme or only about 500V below cathode potential. Likewise, given that no amplification has taken place, no power associated with the TWT amplification function is consumed. Thus, the only power consumed by the TWT amplifier is that associated with the cathode heater and the electronic power conditioner (EPC) used as the electron beam source.
A TWT amplifier according to the invention is readily applicable for deployment in a non-geosynchronous (NGSO) satellite, or a satellite whose orbital period is not equal to terrestrial orbit period. Teledesic, Global Radio, Landsat and Spot are examples of systems that are known to use NGSO satellites. Unlike geosynchronous satellites, these satellites move relative to fixed locations on the earth. For this reason, line-of-sight based communications are not possible for large portions of the satellite's orbit, so it is prudent and beneficial to shut off amplification functions during periods when the satellites are out of communication range with communication locations.
The invention will be better understood by reference to the following detailed description of the invention and the accompanying drawings.
Referring to
As an example of advantages, an exemplary NGSO system uses a constellation consisting of two or three planes of seven satellites providing coverage to twenty spot beam locations scattered around the globe. Because of the satellite's orbits and the diurnal variations telecommunications service demand, the average traffic through each satellite varies, but it is about a 23% activity level. In order to make a minimum cost satellite network, each satellite must be able to minimize power consumption/thermal dissipation during periods of reduced or non-existent communications systems demands.
In order to quantify the potential savings of this invention, three test cases assuming a representative satellite in the exemplary system have been simulated.
As can be seen by comparing
Standard metrics can be used to estimate the cost savings associated with the invention relative to cases 1 and 2 as follows:
The invention has now been explained with reference to specific embodiments. Other embodiments will be evident to those of ordinary skill in this art. Therefore the invention should not be limited, except as indicated by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3812395 | Scott | May 1974 | A |
5461282 | Scheitrum et al. | Oct 1995 | A |
5550432 | Barker | Aug 1996 | A |
5932972 | Symons | Aug 1999 | A |
6111358 | Cardwell et al. | Aug 2000 | A |
6285254 | Chen et al. | Sep 2001 | B1 |
6356022 | Kosmahl | Mar 2002 | B1 |
6356023 | Kosmahl | Mar 2002 | B1 |
6498532 | Goren et al. | Dec 2002 | B2 |
6590450 | Chen et al. | Jul 2003 | B2 |
6617791 | Symons | Sep 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20040032295 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
60402913 | Aug 2002 | US |