The invention generally relates to the field of automotive door latches or locks, and more particularly to power released, double-locking latches.
Power release double-locking latches are known in the art. Such latches typically operate in conjunction with an outside door handle which has a mechanical lever that must be pulled open by the user. The actuation of the outside door handle lever is sensed by a controller, which then energizes a motor assembly for power release of the door latch. Because the power release double-locking latch typically mimics the operation of conventional manual latches, it becomes difficult to reduce the number of parts in such latches. The invention provides a more economical and sleek design for a power-release double-locking latch.
According to one aspect of the invention, a door lock system, including a latch, is provided for an automotive door. The latch includes a ratchet biased to a latched position and moveable to a released position, a pawl biased to engage the ratchet in the latched position, and an electro-mechanical exterior latch release mechanism for actuating the pawl to release the ratchet. The system also includes a controller, and a pressure sensitive switch, electrically connected to the controller, which is mounted on, in or proximate to an outside door handle of the automotive door. The controller is programmed to disable the pressure sensitive switch in response to a predetermined “lock” signal and enable the pressure sensitive switch in response to a pre-determined “unlock” signal, in which case the controller energizes the exterior latch release mechanism to release the ratchet in the event the pressure sensitive switch is actuated.
According to a further aspect of the invention, a latch is provided which includes: a housing; a ratchet, pivotally mounted to the housing, the ratchet being biased to a latched position and moveable to a released position; a pawl pivotally mounted to the housing and biased to engage the ratchet in the latched position; a first sector gear, pivotally mounted in the housing, for actuating the pawl to release the ratchet; a first motor assembly mounted in the housing for selectively driving the first sector gear; an arm rigidly connected to or integral with the first gear; and a cable connected to the arm for manually actuating the first sector gear and pawl, wherein the arm freewheels when the first sector gear is actuated by the first motor assembly.
According to a further aspect of the invention, a latch is provided which includes: (a) a latch housing having a first and a second surface, the first surface having a channel adapted to receive a striker; (b) a latch cover adapted to cooperate with the upper housing to form an interior cavity; a ratchet and pawl, each of the ratchet and pawl pivotally mounted to the first surface and a portion of the pawl extending into the interior cavity, the ratchet and pawl cooperatively operable to move between a latched position to hold the striker in the channel, and a released position to permit the striker from exiting the channel, the ratchet and pawl being biased towards the latched position; (c) an exterior latch release mechanism, mounted to the lower housing within the cavity, comprising a first means for actuating the pawl to release the ratchet and a first electromechanical means for selectively actuating the first pawl-actuating means; (d) an interior latch release and locking assembly, mounted to the lower housing within the cavity, comprising a second means for actuating the pawl to release the ratchet, means for connecting an inside release handle, and a second electromechanical means for selectively coupling or de-coupling the second pawl-actuating means from the handle-connecting means, the interior latch release and locking assembly being selectively operable to move between an unlocked state, wherein the handle-connecting means is kinematically coupled to the second pawl-actuating means, and a locked state, wherein the handle-connecting means is decoupled from the second pawl-actuating means; and (e) means comprising an arm on the pawl for driving the second electromechanical means into the unlocked state from the locked state, whenever the pawl is actuated to release the ratchet.
The foregoing and other aspects of the invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the following drawings, in which:
As further shown in
In the illustrated system, the inside door handle 222 is a conventional door handle having a lever mechanically linked to the latch (via cable 162), whereby actuating the inside door handle lever induces a corresponding movement to a lever (inside release lever 42) in the interior latch release mechanism 230. The outside door handle 214, however, includes or is associated with a force or pressure sensitive switch 216 instead of a moveable lever. The switch 216 is connected to the controller 210 in order to provide a signal to unlock and release the latch. Upon receipt of this signal, the controller 210 energizes the exterior latch release mechanism 220 to activate the pawl and release the ratchet. Conversely, the controller 210 can lock the latch 10 from the outside, e.g., in response to a “lock” signal from the key fob 212, by simply disabling the pressure sensitive switch 216 or otherwise ignoring the input therefrom. Likewise, the controller 210 enables input from the pressure sensitive switch in response to a pre-determined signal, such as an “unlock” signal from the key fob 212. Accordingly, the illustrated system not only eliminates the need to pull a lever on the outside door handle, but it should also be appreciated that the system eliminates the need for an exterior lock assembly and its corresponding lock button or knob in the passenger compartment for the control thereof.
In the event of a power or controller failure, however, the outside door handle 214 does include or is otherwise associated with a key cylinder 218, which is mechanically coupled to the exterior latch release mechanism in order to activate the pawl to release the ratchet, as discussed in greater detail below.
From the interior, latch 10 is locked by mechanically de-coupling the inside door handle 222 from the interior latch release mechanism 230. This is electro-mechanically controlled by the interior lock assembly 240, which is selectively energized by the controller 210, as discussed in greater detail below. The latch 10 is “double locked” when the inside door handle 222 is de-coupled from the interior latch release mechanism 230 and the pressure sensitive switch 216 is disabled. This is useful for a variety of functions, as discussed in greater detail below.
Referring now to
Referring now specifically to
Ratchet 18 is pivotally mounted to substrate 46 via a pin 63 inserted into aligned holes 64 (
Pawl 20 is pivotally mounted to latch housing 16 by a pawl axle 57 that is inserted into aligned holes 72 in front plate 22 and backplate 24. The angular travel of pawl 20 is delimited by a pawl bumper 74 and a wall segment 76 of peripheral wall 48, and provides an “engaged” position, where a pawl shoulder 78 abuts a hook shoulder 80 on ratchet 18 (forcing ratchet 18 into its engaged position), and a “released” position, where ratchet 18 rotates into its released position. A torsion spring 82 is installed around a post 84 formed in substrate 46 in order to bias pawl 20 in the engaged position.
Ratchet 18 and pawl 20 are preferably constructed out of metal but covered with a plastic material in order to reduce noise during operation. Certain portions subject to wear, such as pawl shoulder 78 and hook shoulder 80 are not covered by plastic.
Referring back to
As previously mentioned, both the exterior and the interior latch release mechanisms 220, 230 act upon pawl 20 to release ratchet 18. The exterior latch release mechanism 220, manipulated by the outside door handle 214, is substantially separate from the interior latch release mechanism 230, which is actuated by the inside door handle 222.
The exterior latch release mechanism 220 is discussed greater detail with specific reference to
Power release sector gear 34 is rotatably mounted to the surface of latch cover 26 by a pin 108 that snaps into aligned sector mount holes 110 provided on latch cover 26 (not shown), power release sector gear 34, and latch housing 16 (
A power release return spring 118 is mounted to a post 120 formed in latch cover 26 and biases power release sector gear 34 into its resting position. A hooked spring arm 122 extends from power release return spring 118 and hooks into a tab slot 124 in power release sector gear 34. A straight spring arm 126 also extends outwards from power release return spring 118 and abuts a wall portion 128 of latch cover 26. As power release sector gear 34 rotates to the activated position, the position of tab slot 124 also moves to so that hooked spring arm 122 abuts the sidewall of tab slot 124. Then, as power release sector gear 34 continues to rotate, power release return spring 118 rotates in the opposite direction, compressing straight spring arm 126. As soon as power release motor assembly 30 disengages, straight spring arm 126 decompresses and power release return spring 118 urges power release sector gear 34 back into the resting position. A pair of power release bumpers 130 are mounted in a pair of niches 132 in latch cover 26 to absorb the impact of power release sector gear 34 in both the resting position and the activated position.
A door ajar switch 134 and a door open switch 136 are mounted into a switch niche 137 formed in latch cover 26. As ratchet 18 rotates into the open position (
The interior latch release mechanism 230 and interior lock assembly 240 are discussed greater detail with specific reference to
Door lock motor assembly 32 includes a reversible motor 138 coupled to a worm 140 by a shaft 142. Motor 138 is connected to controller 210 via electrical connector 44, and operable by remote key fob 212 or other signal-providing device. When energized, motor assembly 32 selectively drives sector gear 36 into a “locked” or “unlocked” position (described below). Motor 138 is mounted in a motor housing 144 that provides a shaft gap 146 in the sidewall of motor housing 144.
Sector gear 36 is rotatably mounted to the latch cover 26 by a pin 148 that snaps into aligned sector mount holes 150 provided on latch cover 26 (not shown) and sector gear 36. The teeth 152 of sector gear 36 are coupled with worm 140 so that engaging motor 138 selectively rotates sector gear 36 into its “locked” position, where the sector gear 36 is furthest from motor 138, or its unlocked position, where the sector gear 36 is closest to motor 138. The angular travel of sector gear 36 is delimited by a pin 151 that extends from the surface of the gear 36 and abuts one of a pair of sector tabs 153 that depend from the lower surface of substrate 46 (
Referring now to
Auxiliary inside release lever 42 includes an integrally formed hole 172 that allows auxiliary inside release lever 42 to rotatably mount to post 168 between inside release lever 40 and side plate 28. Auxiliary inside release lever 42 further includes a pawl arm 176, a link arm 178 and a door lock hook 180. Pawl arm 176 abuts pawl 20, so that when auxiliary inside release lever 42 is rotated around hole 174, pawl 20 is actuated into its released position. A slot 182 is formed in auxiliary inside release lever 42 between link arm 178 and door lock hook 180. Link arm 178 is longer than door lock hook 180.
Door lock link 38 is pivotally coupled at a first end to a door lock arm 184 on sector gear 36 (
An inside release spring 188 is mounted to a post 190 formed in latch cover 26 and biases auxiliary inside release lever 42 towards its engaged position. A hooked spring arm 192 extends from inside release spring 188 and hooks into a tab slot 194 in auxiliary inside release lever 42. Another spring arm 196 also extends outwards from inside release spring 188 and is biased against a wall portion 197 of latch cover 26. As auxiliary inside release lever 42 rotates clockwise, the position of tab slot 194 also moves to so that hooked spring arm 192 abuts the sidewall of tab slot 194. Then, as auxiliary inside release spring 188 continues to rotate clockwise, inside release spring 188 counterclockwise, compressing spring arm 196. As soon as inside handle release cable 162 disengages, spring arm 196 decompresses and inside release spring 188 urges auxiliary inside release lever 42 back into its held position.
Sector gear 36 further includes a safety backup arm 158. When the sector gear 36 is in the locked position, safety backup arm 158 is positioned into the rotational path of an arm 116A on pawl 20 (see
Referring back to
If desired, since the emergency key release cable 200 is intended to be used only when there is no power available to engage power release motor 98, the key cylinder 218 on the exterior of the vehicle may be hidden from view by a slidable cover to enhance the aesthetics of the door. The key cylinder may be mounted on, in, or otherwise in the general vicinity of the outside door handle, as desired.
In operation, pawl 20 can be actuated to allow ratchet 18 to move from the engaged position to the released position by: (a) actuating the inside release lever 40 when sector gear 36 is in the unlocked position; (b) energizing power release motor assembly 30 when sector gear 36 is in the unlocked position; or (c) actuating the emergency key release cable 200 regardless of whether or not the sector gear 36 is in the locked or unlocked position. Under the first option (a), when the sector gear 36 is in the unlocked position, actuating the inside release handle 22 moves inside handle release cable 162 and actuates inside release lever 40, which, in turn, engages door lock link 38. Depending tab 186 on door lock link 38 actuates auxiliary inside release lever 42, which engages pawl 20 to release ratchet 18. When the sector gear 36 is in the locked position, door lock link 38 freewheels without actuating auxiliary inside release lever 42. Under the second option (b), power release motor assembly 30 drives power release sector gear 34. A projection on power release sector gear 34 actuates sector arm 116 on pawl 20 to release ratchet 18. Alternatively, under the third option (c), manually actuating emergency key release cable 200 by turning a key cylinder actuates power release sector gear 34 in lieu of power release motor assembly 30.
Typically, unlocking the vehicle by pressing an unlock/lock control on a remote key fob causes the interior locking assembly 240 to enter into an unlocked state (by energizing door lock motor assembly 32 to move door lock sector gear 36 into the unlocked position) and enables the pressure sensitive switch 216 on the outside door handle 214. Thus, both the exterior and the interior door handles are operable to open the latch. Unlocking the vehicle by pressing an unlock/lock control located (such as a rocker switch) inside the vehicle when it is in a locked state preferably only disables the pressure sensitive switch 216 on the outside handle 214. Thus, double-locking can only be done by pressing lock/unlock button on the remote key fob. Unlocking the vehicle by pressing an unlock/lock button inside the vehicle that is in a double locked state preferably causes no change to the interior or exterior latch release mechanisms 220, 230.
It is contemplated that variations on the double-locking system will occur to those of skill in the art. For example, as a safety feature, the pressure sensitive switch 216 on each of the outside door handles of the vehicle could be electronically deactivated after the vehicle begins to move (auto lock feature). Alternatively, for each of the rear doors of a vehicle, door lock motor assembly 32 may not drive door lock sector gear 36 into the unlocked position unless a child lock switch is disengaged. This switch could be placed on a dashboard or in another location not accessible from the rear seat. Other variations will occur to those of skill in the art without departing from the spirit of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2005/001227 | 8/10/2005 | WO | 00 | 2/7/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/015481 | 2/16/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5516167 | Hayakawa et al. | May 1996 | A |
5577782 | Johnson et al. | Nov 1996 | A |
5634677 | Buscher et al. | Jun 1997 | A |
5899508 | Cetnar et al. | May 1999 | A |
5938252 | Uemura et al. | Aug 1999 | A |
6053543 | Arabia, Jr. et al. | Apr 2000 | A |
6145354 | Kondo et al. | Nov 2000 | A |
6338508 | Kleefeldt | Jan 2002 | B1 |
6349983 | Dupont et al. | Feb 2002 | B1 |
6511106 | Perkins et al. | Jan 2003 | B2 |
6511107 | Barczynski et al. | Jan 2003 | B2 |
6733052 | Perkins et al. | May 2004 | B2 |
6764113 | Cetnar | Jul 2004 | B1 |
6786070 | Dimig et al. | Sep 2004 | B1 |
7070213 | Willats et al. | Jul 2006 | B2 |
7105943 | Willats et al. | Sep 2006 | B2 |
7145436 | Ichikawa et al. | Dec 2006 | B2 |
7210715 | Kobayashi et al. | May 2007 | B2 |
7293806 | Umino | Nov 2007 | B2 |
7363788 | Dimig et al. | Apr 2008 | B2 |
20020074806 | Perkins et al. | Jun 2002 | A1 |
20030070457 | Arlt et al. | Apr 2003 | A1 |
20030080569 | Raymond et al. | May 2003 | A1 |
20030122426 | Aiyama et al. | Jul 2003 | A1 |
20030184098 | Aiyama et al. | Oct 2003 | A1 |
20050140148 | Stoof et al. | Jun 2005 | A1 |
20060237974 | Hamm et al. | Oct 2006 | A1 |
20070046035 | Tolley | Mar 2007 | A1 |
20080105011 | Machida et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
0 564 066 | Oct 1993 | EP |
0647754 | Apr 1995 | EP |
0805247 | Nov 1997 | EP |
0916789 | May 1999 | EP |
1103432 | May 2001 | EP |
1 296 009 | Mar 2003 | EP |
0322991 | Nov 2003 | GB |
0037755 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20070210588 A1 | Sep 2007 | US |