(1) Field of the Invention
This invention relates generally to Liquid Crystal Displays (LCD), and more particularly to a method and a circuit to reduce power consumption of a LCD driver IC.
(2) Description of the Prior Art
Liquid crystal displays (LCD) use nematic liquid crystals. The molecular order in a nematic liquid crystal, which results from weak intermolecular forces, is easily disrupted. For this reason, the liquid crystals flow like an ordinary liquid. Because of the weakness of the intermolecular forces, the molecules in a nematic phase are easily realigned along new directions.
A liquid crystal display uses this ease of molecular reorientation to change areas of the display from light to dark, resulting in patterns that you see in the display. The display consists of liquid crystals contained between glass plates whose interior surfaces are treated to align the molecules in a given direction. When the voltage to a set of electrodes in some area of the display is turned on, the molecules of the liquid crystal in that area reorient along a new direction. When this voltage is turned off, the molecules return to their original orientation.
LCD's require an AC drive voltage with virtually no DC component. Prolonged DC operation may cause electrochemical reactions inside the display, which will cause significantly reduced life. It is essential that the voltage wave-form across the glass plates of the display be maintained at an average DC value of zero because the glass is likely to suffer a break-down if a non-zero DC voltage is applied for any sustained period of time. There is threshold behaviour for most LCD's and no change in transmission occurs until a threshold voltage, Vth, is reached. Transmission then decreases as the voltage increases until saturation is reached. Threshold voltage is typical 1.5–2.5 volts, and saturation occurs at about 4–5 volts.
The pixels across each horizontal “common” row of a LCD are connected together on the plate on one side of the liquid crystal film, and all the pixels in each vertical “segment” column are connected on the opposite side. The “commons” are then addressed serially by setting all the column voltages separately for each “common” and then turning on the “common” voltages in sequence.
Principally LCD's require a differential voltage greater than the threshold voltage Vth of the nematic fluid between two conducting layers to generate an “ON” pixel. The display consists of a matrix of pixels created by vertical “segment” (SEG) and horizontal “common” (COM) conductive layer either side of the nematic fluid. The display has the electrical characteristics of a capacitor, so requiring a “charging” current every time a “segment” and/or “common” are switched.
In order to display a whole picture the “commons” are scanned in sequence and the segments switched appropriately. This is done so that the applied root-mean-square (RMS) voltage between each common and segment is controlled to be greater (“ON”) or less than (“OFF”) the threshold voltage Vth of the display.
The data for the display is contained in a random access memory (RAM), which is typically structured to be the same as the display. For example, a display of 80 segments and 64 commons would have a RAM of 80 by 64 bits. The display scan reads a row of the RAM for each active common output.
Currently available driver IC's continually switch the LCD regardless of the displayed data. This causes a switching waveform, and hence power supply current, to be required through the whole display. This causes power consumption even if there is no change of data.
The following table shows related decode logic of said driver 21. The table shows which one of the four output voltages V0 to V3 is applied depending on the input values of data and PN:
As another example of a typical implementation
U.S. patent (U.S. Pat. No. 5,825,343 to Moon) describes a driving device and a method of driving a TFT-LCD using a two-pulse electrode voltage to thereby double the duration of the driving impulse. The driving device includes a liquid crystal interface IC that outputs a two-pulse start signal and a clock signal. A gate bus driver IC outputs a two-pulse gate electrode voltage to each gate line according to the start signal inputted from the liquid crystal interface IC and a liquid crystal pixel is driven by the difference in potential between a grey voltage and a common electrode voltage.
U.S. patent (U.S. Pat. No. 5,986,631 to Nanno et al.) discloses a driving method of an active matrix LCD. According to this method, a scan signal has three voltages levels, i.e., an ON voltage, an OFF voltage and a compensation voltage having the opposite polarity with respect to the OFF voltage. In contrast with the conventional capacitively coupled driving method in which the scan signal consists of four voltages, the driving method of this invention can reduce a cost and power consumption for a driver IC without degradation due to flickers or other causes.
U.S. patent (U.S. Pat. No. 6,232,944 to Kumagawa et al.) shows a compact and inexpensive LCD by improving a drive method for compensating a cross-talk using a compensating pulse added to a signal voltage so that a drive IC and a periphery of the LCD panel are reduced in size. Only one of positive and negative compensating pulses is added in accordance with a predetermined period. The compensating pulse preferably has a waveform including low frequency components. A width or a height of the compensating pulse varies in accordance with a location of the signal electrode, display pattern or other factors.
The principal object of the present invention is to reduce the power consumption of a LCD driver IC.
In accordance with the objects of this invention a method to reduce the current consumption of a LCD driver IC by avoiding COMMON output to LCD rows having all blanks has been achieved. Said method comprises first providing a display data RAM, a means to detect an all-zero condition in a COMMON row, a SEGMENT decode block, SEGMENT pads, COMMON pads, a COMMON decode block, a COMMON logic block and a control logic block. The steps of said method are to select a COMMON row number according to any defined sequence, to read COMMON rows selected from RAM, to check if the data of COMMON row selected row contains all zeros, if the data of selected COMMON row is all zero, to go back to read next the COMMON row, or if the data of selected row number is not all zero switch common row selected and go back to read next COMMON ROW.
In accordance with the objects of this invention a system to reduce the power consumption of a LCD driver IC by avoiding COMMON output to LCD rows having all blanks is achieved. Said system comprises first a display data RAM containing the data to be displayed on a LCD being controlled by a control logic block and providing output to a means of detecting an all-zero condition in a COMMON row selected, a control logic block controlling the overall display of the data stored in said display data RAM and a means to detect an all-zero condition in a COMMON row selected by said control logic block providing information to a COMMON logic block and a to a SEGMENT decode block. Furthermore said system comprises a COMMON logic block having an input and an output wherein said input is from said means to detect an all-zero condition and from said control logic block and the output is controlling a COMMON decode block, a COMMON decode block receiving signals from said COMMON logic block and providing signals to COMMON pads, a SEGMENT decode block receiving signals from said means to detect an all-zero condition and providing signals to SEGMENT pads. Finally said system comprises SEGMENTS pads to control the SEGMENTS of a LCD-display and COMMON pads to control the COMMONS of a LCD display.
In the accompanying drawings forming a material part of this description, there is shown:
The preferred embodiments disclose a method and a circuit to reduce the power consumption of an LCD driver IC.
In prior art available driver IC's continually switch the LCD regardless of the displayed data.
In case if the data of a row are all zero's the corresponding common output is not selected. This leaves all of the driver pins at the “OFF” state and does not switch the display and hence does not charge/discharge the capacitance of the display. This technique will automatically reduce the driver pins switching when the LCD is used in a partial mode, i.e. where one part or several parts contain one or more blank rows. However the scan rate of the display remains constant and this maintains the correct RMS voltage applied for the “ON” pixels.
As an example of the constant frame rate achieved: a 80 by 64 display has just the central 35 lines containing data, say from 20 to 54 inclusive. The scan starts at line COM1 and detects all zeros contained in the RAM so the common 1 output is NOT selected. This also occurs for lines 2 to 19 inclusive. Lines 20 to 54 are driven as normal as each line contains data. Lines 55 to 64 are also not selected, as these contain no data. The frame rate remains the time taken to complete the 64 line scan, thus giving the same RMS drive voltage regardless of the number of lines containing data.
The segment pad structure and “ALL-ZERO” detection of the invention presented is showed in
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
02392017 | Jul 2002 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4471379 | Stephens | Sep 1984 | A |
4604617 | Morozumi | Aug 1986 | A |
5231663 | Earl et al. | Jul 1993 | A |
5526025 | Selwan et al. | Jun 1996 | A |
5712999 | Guttag et al. | Jan 1998 | A |
5790096 | Hill, Jr. | Aug 1998 | A |
5825343 | Moon | Oct 1998 | A |
5986631 | Nanno et al. | Nov 1999 | A |
6037919 | Hanson | Mar 2000 | A |
6075509 | Ellis et al. | Jun 2000 | A |
6127994 | Ellis et al. | Oct 2000 | A |
6188378 | Yamamoto et al. | Feb 2001 | B1 |
6232944 | Kamagawa et al. | May 2001 | B1 |
6259810 | Gill et al. | Jul 2001 | B1 |
6348910 | Yamamoto et al. | Feb 2002 | B1 |
6690344 | Takeuchi et al. | Feb 2004 | B1 |
20020057238 | Nitta et al. | May 2002 | A1 |
20020080109 | Nagata et al. | Jun 2002 | A1 |
20020101396 | Huston et al. | Aug 2002 | A1 |
20030107753 | Sakamoto | Jun 2003 | A1 |
20030184593 | Dunlop | Oct 2003 | A1 |
20040066363 | Yamano et al. | Apr 2004 | A1 |
20040095302 | Tyrrell et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
WO9844480 | Oct 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20040095302 A1 | May 2004 | US |