Power seat track assembly

Information

  • Patent Grant
  • 11584261
  • Patent Number
    11,584,261
  • Date Filed
    Thursday, January 9, 2020
    5 years ago
  • Date Issued
    Tuesday, February 21, 2023
    a year ago
Abstract
A power seat track assembly may include an elongated first rail, a second rail, a motor assembly, and a power-transfer assembly. The second rail may engage the first rail and may be movable along a length of the first rail. The motor assembly may be mounted to the second rail and may be operable to drive the second rail along the length of the first rail. The power-transfer assembly may include a first component mounted to the first rail and a second component mounted to the second rail. The first component may wirelessly transmit power to the second component. The second component may be electrically connected to the motor assembly to provide electrical current to the motor assembly.
Description
FIELD

The present disclosure relates to a power seat track assembly for a vehicle seat assembly.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


In one form, the present disclosure provides a vehicle seat assembly that may include a vehicle seat and a power seat track assembly. The power seat track assembly may include an elongated first rail, a second rail, a motor assembly, and a power-transfer assembly. The first rail may be mounted to a vehicle cabin floor. The second rail may engage the first rail and may be movable along a length of the first rail. The motor assembly may be mounted to the second rail and is operable to drive the second rail along the length of the first rail. The power-transfer assembly may include a first component mounted to the first rail and a second component mounted to the second rail. The first component may wirelessly transmits power to the second component. The second component is electrically connected to the motor assembly to provide electrical current to the motor assembly.


In some configurations of the vehicle seat assembly of the above paragraph, the first rail, the motor assembly, the power-transfer assembly, and a portion of the second rail are mounted below the vehicle cabin floor.


In some configurations of the vehicle seat assembly of any of the above paragraphs, the second rail includes a bracket portion that extends through an opening in the vehicle cabin floor.


In some configurations, the vehicle seat assembly of any of the above paragraphs includes an additional second rail and an additional motor assembly mounted to the additional second rail. The power-transfer assembly may include an additional second component mounted to the additional second rail and electrically connected to the additional motor assembly. The motor assemblies may be operable to independently drive the second rails along the length of the first rail.


In some configurations of the vehicle seat assembly of any of the above paragraphs, the first component is an elongated power-transfer rail, and the second components are power-transfer blocks.


In some configurations of the vehicle seat assembly of any of the above paragraphs, the first rail is fixed relative to the vehicle cabin floor, and the second rails support vehicle seats for movement relative to the first rail and the vehicle cabin floor.


In some configurations of the vehicle seat assembly of any of the above paragraphs, the motor assembly includes a pinion that is rotatable about a rotational axis. A rack may be fixed to the first rail and includes a plurality of teeth that meshingly engage the pinion.


In some configurations of the vehicle seat assembly of any of the above paragraphs, the rack includes a first aperture, and the first rail includes a second aperture. A fastener may extend through the first and second apertures and into a third aperture in the vehicle cabin floor.


In some configurations of the vehicle seat assembly of any of the above paragraphs, the teeth of the rack are formed on a lateral surface of the rack. The rotational axis of the pinion may be parallel to a longitudinal axis of the fastener.


In some configurations of the vehicle seat assembly of any of the above paragraphs, the rotational axis of the pinion is perpendicular to the vehicle cabin floor and is perpendicular to a direction in which the second rail is movable relative to the first rail.


In another form, the present disclosure provides a power seat track assembly that may include an elongated first rail, a second rail, a motor assembly, and a power-transfer assembly. The second rail may engage the first rail and may be movable along a length of the first rail. The motor assembly may be mounted to the second rail and may be operable to drive the second rail along the length of the first rail. The power-transfer assembly may include a first component mounted to the first rail and a second component mounted to the second rail. The first component may wirelessly transmit power to the second component. The second component may be electrically connected to the motor assembly to provide electrical current to the motor assembly.


In some configurations of the power seat track assembly of the above paragraph, the first rail, the motor assembly, the power-transfer assembly, and a portion of the second rail are mounted below a cabin floor of a vehicle.


In some configurations of the power seat track assembly of any of the above paragraphs, the second rail includes a bracket portion that extends through an elongated opening in the cabin floor.


In some configurations, the power seat track assembly of any of the above paragraphs may also include an additional second rail and an additional motor assembly mounted to the additional second rail.


In some configurations of the power seat track assembly of any of the above paragraphs, the power-transfer assembly may include an additional second component mounted to the additional second rail and electrically connected to the additional motor assembly.


In some configurations of the power seat track assembly of any of the above paragraphs, the motor assemblies may be operable to independently drive the second rails along the length of the first rail.


In some configurations of the power seat track assembly of any of the above paragraphs, the first component is an elongated power-transfer rail.


In some configurations of the power seat track assembly of any of the above paragraphs, the second components are power-transfer blocks.


In some configurations of the power seat track assembly of any of the above paragraphs, the first rail is fixed relative to the cabin floor, and the second rails support vehicle seats for movement relative to the first rail and the cabin floor.


In some configurations of the power seat track assembly of any of the above paragraphs, the motor assembly includes a pinion that is rotatable about a rotational axis, and a rack is fixed to the first rail and includes a plurality of teeth that meshingly engage the pinion.


In some configurations of the power seat track assembly of any of the above paragraphs, the rack includes a first aperture, and the first rail includes a second aperture. A fastener may extend through the first and second apertures and into a third aperture in the vehicle cabin floor.


In some configurations of the power seat track assembly of any of the above paragraphs, the teeth of the rack are formed on a lateral surface of the rack. The rotational axis of the pinion may be parallel to a longitudinal axis of the fastener.


In some configurations of the power seat track assembly of any of the above paragraphs, the rotational axis of the pinion is perpendicular to the vehicle cabin floor and is perpendicular to a direction in which the second rail is movable relative to the first rail.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is a perspective view of a power seat track assembly for a vehicle seat assembly;



FIG. 2 is another perspective view of the power seat track assembly of FIG. 1;



FIG. 3 is a perspective view of another power seat track assembly for a vehicle seat assembly;



FIG. 4 is a cross-sectional view of the power seat track assembly of FIG. 3;



FIG. 5 is a cross-sectional view of another power seat track assembly for a vehicle seat assembly;



FIG. 6 is a partial perspective view of another power seat track assembly for a vehicle seat assembly;



FIG. 7 is a side view of the power seat track assembly of FIG. 6; and



FIG. 8 is another partial perspective view of the power seat track assembly of FIG. 6.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.


Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


With reference to FIGS. 1 and 2, a power seat track assembly 10 is provided that may include a first rail 12, a second rail 14, a motor assembly 16, and a power-transfer assembly 18 (only partially shown in FIGS. 1 and 2). A pair (or multiple pairs) of the power seat track assemblies 10 (only one power seat track assembly 10 is shown in the figures) may be installed in or on a cabin floor of vehicle (e.g., an autonomous automotive vehicle or a human-driven automotive vehicle) and may support one or more vehicle seats (not shown). The power seat track assemblies 10 are operable to selectively move the one or more vehicle seats relative to the cabin floor (e.g., in fore-aft directions).


The first rail 12 may be an elongated, extruded rail and may be fixed relative to the cabin floor (e.g., fixedly mounted above or below the cabin floor). A rack 20 having a plurality of rack teeth may be attached to or formed on the first rail 12. A cross-sectional shape of the first rail 12 defines a channel 22 that movably receives a portion of the second rail 14. That is, a portion of the second rail 14 includes a cross-sectional shape that fits within the channel 22 to allow the second rail 14 to move (e.g., slide) along the length of the first rail 12. A vehicle seat may be mounted to the second rail 14 (i.e., the vehicle seat may be mounted to the second rail 14 of each power seat track assembly 10 of a pair of power seat track assemblies 10).


The motor assembly 16 may be mounted to the second rail 14 and may include a motor 24 and a pinion 26 (FIG. 2). The pinion 26 may be meshingly engaged with the rack 20. The motor 24 may drive rotation of the pinion 26 relative to the rack 20 to move the second rail 14 along the length of the first rail 12.


The power-transfer assembly 18 can be any suitable type of wireless power-transfer assembly such as an inductive power transfer assembly, for example. The power-transfer assembly 18 may include an elongated power-transfer rail 28 and a power-transfer block 30. The power-transfer rail 28 may be fixed to the first rail 12 and may extend along much of (or the entire) length of the first rail 12. The power-transfer block 30 may be mounted to the second rail 14 and may move with the second rail 14 relative to the power-transfer rail 28 and the first rail 12 during operation of the motor assembly 16. The power-transfer rail 28 may be connected via wires to a source of electrical power (e.g., a battery). Power may be wirelessly transferred from the power-transfer rail 28 to the power-transfer block 30 (via induction, for example) even while the power-transfer block 30 moves along the length of the power-transfer rail 28. The power-transfer block 30 may be connected via wires to the motor 24 to provide electrical current to the motor 24.


In some configurations, a pair of power seat track assemblies 10 may movably support multiple vehicle seats (e.g., a front row seat, a second row seat, a third row seat, etc.). That is, each power seat track assembly 10 may include more than one second rail 14 engaging a single first rail 12. Each second rail 14 may be independently driven by a respective motor assembly 16 and can support a respective vehicle seat. In this manner, multiple vehicle seats can be independent moved along a single first rail 12 (or a single pair of first rails 12). Each second rail 14 may also include a respective power-transfer block 30 that is movable along the power-transfer rail 28. Each power-transfer block 30 can independently receive power from the power-transfer rail 28. This significantly reduces length of wire harnesses powering the motor assemblies 16.


With reference to FIGS. 3 and 4, another power seat track assembly 110 is provided that may include a first rail 112, a plurality of second rails 114, a plurality of motor assemblies 116 (only one of which is shown), and a power-transfer assembly 118. As described above with respect to the power seat track assembly 10, a pair (or multiple pairs) of the power seat track assemblies 110 (only one power seat track assembly 110 is shown in the figures) may be installed in or on a cabin floor of vehicle (e.g., an autonomous automotive vehicle or a human-driven automotive vehicle) and may support a plurality of vehicle seats (not shown). The power seat track assemblies 110 are operable to independently move the vehicle seats relative to the cabin floor (e.g., in fore-aft directions).


The first rail 112 and the second rails 114 can be generally similar to the first rail 12 and second rail 14 described above. That is, the first rail 112 may be an elongated, extruded rail and may be fixed relative to the cabin floor (e.g., fixedly mounted above or below the cabin floor). A rack 120 having a plurality of rack teeth may be attached to or formed on the first rail 112. A cross-sectional shape of the first rail 112 defines a channel 122 that movably receives a portion of each of the second rails 114. That is, a portion of each of the second rails 114 includes a cross-sectional shape that fits within the channel 122 to allow the second rails 114 to move (e.g., slide or move along bearings) along the length of the first rail 112. A vehicle seat may be mounted to each of the second rails 114 (i.e., each vehicle seat may be mounted to a respective one of the second rails 114 of each power seat track assembly 110 of a pair of power seat track assemblies 110).


Each of the motor assemblies 116 may be mounted to a respective one of the second rails 114 and each may include a motor 124 and a pinion 126 (FIG. 4). The pinion 126 of all of the motor assemblies 116 may be meshingly engaged with the rack 120. Each motor 124 may drive rotation of the respective pinion 126 relative to the rack 120 to move the respective second rail 114 along the length of the first rail 112.


The power-transfer assembly 118 can be any suitable type of wireless power-transfer assembly such as an inductive power transfer assembly, for example. The power-transfer assembly 118 may include an elongated power-transfer rail 128 and a plurality of power-transfer blocks 130. The power-transfer rail 128 may be fixed to the first rail 112 and may extend along much of (or the entire) length of the first rail 112. Each of the power-transfer blocks 130 may be mounted to a respective one of the second rails 114 and may move with the respective second rail 114 relative to the power-transfer rail 128 and the first rail 112 during operation of the respective motor assembly 116. The power-transfer rail 128 may be connected via wires to a source of electrical power (e.g., a battery). Power may be wirelessly transferred from the power-transfer rail 128 to the power-transfer blocks 130 (via induction, for example) even while the power-transfer blocks 130 move along the length of the power-transfer rail 128. Each of the power-transfer blocks 130 may be connected via wires to the respective motor 124 to provide electrical current to the motor 124. Like the power-transfer assembly 18, the power-transfer assembly 118 may be disposed in a space 132 between the first rail 112 and the second rails 114.


With reference to FIG. 5, another power seat track assembly 210 is provided that may include a first rail 212, one or more second rails 214, one or more motor assemblies 216 (only one of which is shown), and a power-transfer assembly 218. As described above with respect to the power seat track assembly 10, 110, a pair (or multiple pairs) of the power seat track assemblies 210 (only one power seat track assembly 210 is shown in FIG. 5) may be installed in or on a cabin floor of vehicle (e.g., an autonomous automotive vehicle or a human-driven automotive vehicle) and may support a plurality of vehicle seats 202 (shown schematically). The power seat track assemblies 210 are operable to independently move the vehicle seats relative to the cabin floor (e.g., in fore-aft directions).


The first rail 212 may be an elongated, extruded rail and may be fixedly mounted below a cabin floor 213 of the vehicle. A rack 220 having a plurality of rack teeth may be attached to or formed on the first rail 212. A cross-sectional shape of the first rail 212 defines a channel 222 that movably receives a portion of each of the second rails 214. That is, a portion of each of the second rails 214 includes a cross-sectional shape that fits within the channel 222 to allow the second rails 214 to move (e.g., slide or move along bearings) along the length of the first rail 212. Each of the second rails 214 may also include a blade or bracket portion 215 that extends upward through an elongated slot or opening 217 in the cabin floor 213. A vehicle seat may be mounted to the bracket portion 215 (i.e., each vehicle seat may be mounted to the bracket portion 215 of a respective one of the second rails 214 of each power seat track assembly 210 of a pair of power seat track assemblies 210). As shown in FIG. 5, the bracket portion 215 may be the only part of the power seat track assembly 210 that is disposed above the cabin floor 213. That is, the first rail 212, a portion of the second rails 214, the motor assemblies 216, and the power-transfer assemblies 218 may be disposed beneath the cabin floor 213.


Each of the motor assemblies 216 may be mounted to a respective one of the second rails 214 (e.g., via motor bracket 219) and each may include a motor 224 and a pinion 226. The pinion 226 of all of the motor assemblies 216 may be meshingly engaged with the rack 220. Each motor 224 may drive rotation of the respective pinion 226 relative to the rack 220 to move the respective second rail 214 along the length of the first rail 212. The horizontal orientation of the motor assemblies 216 (i.e., the pinion 226 being horizontally adjacent the rack 220 rather than vertically above the rack 220) reduces the thickness of the power seat track assembly 210 to allow all of the power seat track assembly 210 (except for the bracket portion 215 to be disposed below the cabin floor 213.


The power-transfer assembly 218 can be any suitable type of wireless power-transfer assembly such as an inductive power transfer assembly, for example. The power-transfer assembly 218 may include an elongated power-transfer rail 228 and a plurality of power-transfer blocks 230. The power-transfer rail 228 may be fixed to the first rail 212 and may extend along much of (or the entire) length of the first rail 212. Each of the power-transfer blocks 230 may be mounted to a respective one of the second rails 214 and may move with the respective second rail 214 relative to the power-transfer rail 228 and the first rail 212 during operation of the respective motor assembly 216. The power-transfer rail 228 may be connected via wires to a source of electrical power (e.g., a battery). Power may be wirelessly transferred from the power-transfer rail 228 to the power-transfer blocks 230 (via induction, for example) even while the power-transfer blocks 230 move along the length of the power-transfer rail 228. Each of the power-transfer blocks 230 may be connected via wires to the respective motor 224 to provide electrical current to the motor 224. Like the power-transfer assembly 18, 118, the power-transfer assembly 218 may be disposed in a space 232 between the first rail 212 and the second rails 214.


With reference to FIGS. 6-8, another power seat track assembly 310 is provided that may include a first rail 312, one or more second rails 314, one or more motor assemblies 316 (only one of which is shown), and a power-transfer assembly 318 (e.g., similar or identical to the power-transfer assemblies 18, 118, 218). As described above with respect to the power seat track assembly 10, 110, 210, a pair (or multiple pairs) of the power seat track assemblies 310 may be installed on a cabin floor 313 of vehicle (e.g., an autonomous automotive vehicle or a human-driven automotive vehicle) and may support a one or more vehicle seats 302 (shown schematically). The power seat track assemblies 310 are operable to independently move the vehicle seat(s) relative to the cabin floor 313 (e.g., in fore-aft directions).


The first rail 312 may be an elongated, extruded rail and may be fixedly mounted to the cabin floor 313 (FIG. 7) of the vehicle. A rack 320 having a plurality of rack teeth 321 may be attached to or formed on the first rail 312. A cross-sectional shape of the first rail 312 may define a first channel 322 and a second channel 323 that movably receive portions of each of the second rails 314. That is, portions of each of the second rails 314 include cross-sectional shapes that fits within the first and second channels 322, 323 to allow the second rails 314 to move (e.g., slide or move along bearings) along the length of the first rail 312. Each of the second rails 314 may also include a bracket portion 315 to which a vehicle seat may be mounted.


The motor assembly 316 may be mounted to the second rail 314 and disposed within the second channel 323. The motor assembly 316 may include a motor 324 and a pinion 326 (FIG. 7). The pinion 326 may be meshingly engaged with the rack 320. The motor 324 may drive rotation of the respective pinion 326 about a rotational axis R relative to the rack 320 to move the second rail 314 along the length of the first rail 312. The rack 320 may be oriented horizontally such that the teeth 321 extend horizontally outward from a lateral surface of the rack 320 so that the pinion 326 is horizontally adjacent the rack 320 (rather than vertically above the rack 320). The rotational axis R of the pinion 326 extends in a vertical direction (e.g., perpendicular to the cabin floor 313 and perpendicular to the direction in which the second rail 314 moves relative to the first rail 312). This orientation of the rack 320 and the pinion 326 allow fasteners 329 (e.g., threaded fasteners or rivets) to extend through the rack 320 and the first rail 312 and extend into the cabin floor 313 to secure the power seat track assembly 310 to the cabin floor 313. As shown in FIG. 7, the fasteners 329 extend through respective apertures 331 in the rack 320 and apertures 333 in the first rail 312 and into apertures 335 in the cabin floor 313. A longitudinal axis A of the fastener 329 may be parallel to the rotational axis R of the pinion 326 (i.e., in a direction perpendicular to the cabin floor 313 and perpendicular to the direction in which the second rail 314 moves relative to the first rail 312).


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A vehicle seat assembly comprising: a vehicle seat;an elongated first rail mounted to a vehicle cabin floor;a second rail engaging the first rail and movable along a length of the first rail;a motor assembly mounted to the second rail and operable to drive the second rail along the length of the first rail; anda power-transfer assembly including a first component mounted to the first rail and a second component mounted to the second rail, wherein the first component wirelessly transmits power to the second component, and wherein the second component is electrically connected to the motor assembly to provide electrical current to the motor assembly,wherein the first rail is fixed relative to the vehicle cabin floor, and wherein the second rail supports the vehicle seat for movement relative to the first rail and the vehicle cabin floor,wherein the motor assembly includes a pinion that is rotatable about a rotational axis, and wherein a rack is fixed to the first rail and includes a plurality of teeth that meshingly engage the pinion,wherein the rack includes a first aperture, wherein the first rail includes a second aperture, and wherein a fastener extends through the first and second apertures and into a third aperture in the vehicle cabin floor, andwherein the teeth of the rack are formed on a lateral surface of the rack, and wherein the rotational axis of the pinion is parallel to a longitudinal axis of the fastener.
  • 2. The vehicle seat assembly of claim 1, wherein the first rail, the motor assembly, the power-transfer assembly, and a portion of the second rail are mounted below the vehicle cabin floor.
  • 3. The vehicle seat assembly of claim 2, wherein the second rail includes a bracket portion that extends through an opening in the vehicle cabin floor.
  • 4. The vehicle seat assembly of claim 1, further comprising an additional second rail and an additional motor assembly mounted to the additional second rail, wherein the power-transfer assembly includes an additional second component mounted to the additional second rail and electrically connected to the additional motor assembly, and wherein the motor assemblies are operable to independently drive the second rails along the length of the first rail.
  • 5. The vehicle seat assembly of claim 1, wherein the first component is an elongated power-transfer rail, and wherein the second component is a power-transfer block.
  • 6. The vehicle seat assembly of claim 1, wherein the rotational axis of the pinion is perpendicular to the vehicle cabin floor and is perpendicular to a direction in which the second rail is movable relative to the first rail.
  • 7. A power seat track assembly comprising: an elongated first rail;a second rail engaging the first rail and movable along a length of the first rail;a motor assembly mounted to the second rail and operable to drive the second rail along the length of the first rail; anda power-transfer assembly including a first component mounted to the first rail and a second component mounted to the second rail, wherein the first component wirelessly transmits power to the second component, and wherein the second component is electrically connected to the motor assembly to provide electrical current to the motor assembly,wherein the first rail is fixed relative to a vehicle cabin floor, and wherein the second rail supports a vehicle seat for movement relative to the first rail and the vehicle cabin floor,wherein the motor assembly includes a pinion that is rotatable about a rotational axis, and wherein a rack is fixed to the first rail and includes a plurality of teeth that meshingly engage the pinion,wherein the rack includes a first aperture, wherein the first rail includes a second aperture, and wherein a fastener extends through the first and second apertures and into a third aperture in the vehicle cabin floor, andwherein the teeth of the rack are formed on a lateral surface of the rack, and wherein the rotational axis of the pinion is parallel to a longitudinal axis of the fastener.
  • 8. The power seat track assembly of claim 7, wherein the first rail, the motor assembly, the power-transfer assembly, and a portion of the second rail are mounted below a vehicle cabin floor.
  • 9. The power seat track assembly of claim 8, wherein the second rail includes a bracket portion that extends through an opening in the vehicle cabin floor.
  • 10. The power seat track assembly of claim 7, further comprising an additional second rail and an additional motor assembly mounted to the additional second rail, wherein the power-transfer assembly includes an additional second component mounted to the additional second rail and electrically connected to the additional motor assembly, and wherein the motor assemblies are operable to independently drive the second rails along the length of the first rail.
  • 11. The power seat track assembly of claim 7, wherein the first component is an elongated power-transfer rail, and wherein the second component is a power-transfer block.
  • 12. The power seat track assembly of claim 7, wherein the rotational axis of the pinion is perpendicular to the vehicle cabin floor and is perpendicular to a direction in which the second rail is movable relative to the first rail.
  • 13. A vehicle seat assembly comprising: a vehicle seat;an elongated first rail mounted to a vehicle cabin floor;a second rail engaging the first rail and movable along a length of the first rail;a motor assembly mounted to the second rail and operable to drive the second rail along the length of the first rail; anda power-transfer assembly including a first component mounted to the first rail and a second component mounted to the second rail, wherein the first component wirelessly transmits power to the second component, and wherein the second component is electrically connected to the motor assembly to provide electrical current to the motor assembly,wherein the first rail is fixed relative to the vehicle cabin floor, and wherein the second rail supports the vehicle seat for movement relative to the first rail and the vehicle cabin floor,wherein the motor assembly includes a pinion that is rotatable about a rotational axis, and wherein a rack is fixed to the first rail and includes a plurality of teeth that meshingly engage the pinion, andwherein the rack is disposed on a surface of the first rail, wherein the teeth of the rack are arranged in a linear pattern that extends along a length of the first rail and parallel to a direction in which the first component of the power-transfer assembly extends.
  • 14. The power seat track assembly of claim 13, wherein the first rail, the motor assembly, the power-transfer assembly, and a portion of the second rail are mounted below a vehicle cabin floor.
  • 15. The power seat track assembly of claim 13, wherein the first component is an elongated power-transfer rail, and wherein the second component is a power-transfer block.
  • 16. The power seat track assembly of claim 13, wherein the first rail has an L-shaped profile.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/790,245, filed on Jan. 9, 2019. The entire disclosure of the above application is incorporated herein by reference.

US Referenced Citations (144)
Number Name Date Kind
546249 Regan Sep 1895 A
657542 Ingersoll Sep 1900 A
978371 Harrison Dec 1910 A
1192627 Hatlee Jul 1916 A
1694031 Braren Dec 1928 A
1770035 Heap et al. Jul 1930 A
2168164 Kittredge Aug 1939 A
2170951 Perry Aug 1939 A
2250259 Foote, Jr. Jul 1941 A
2475504 Jackson Jul 1949 A
2508121 McIver May 1950 A
2609713 Martin Sep 1952 A
2972910 Menge, Sr. Feb 1961 A
2995226 Gilder Aug 1961 A
3013447 Hils et al. Dec 1961 A
3037400 Sundt Jun 1962 A
3144791 Menge, Sr. Aug 1964 A
3319482 Campbell et al. May 1967 A
3427901 Wildhaber Feb 1969 A
3451290 Wildhaber Jun 1969 A
3965773 Bert et al. Jun 1976 A
4023441 Osterwalder May 1977 A
4228698 Winiasz Oct 1980 A
4269075 Crist et al. May 1981 A
4452102 Shaffer Jun 1984 A
4720073 Mann Jan 1988 A
4721337 Tomita Jan 1988 A
4805866 Aihara et al. Feb 1989 A
4884844 Kershaw et al. Dec 1989 A
4930367 Nagasawa Jun 1990 A
4967615 Mills Nov 1990 A
5030184 Rennerfelt Jul 1991 A
5094420 Aihara Mar 1992 A
5099717 Ochiai et al. Mar 1992 A
5222402 White et al. Jun 1993 A
5259257 Mouri Nov 1993 A
5314158 Mouri May 1994 A
5349878 White et al. Sep 1994 A
5425683 Bang Jun 1995 A
5505668 Koriakov-Savoysky et al. Apr 1996 A
5598746 Chen Feb 1997 A
5701783 Lin Dec 1997 A
5816555 Ito et al. Oct 1998 A
5865506 Sakamoto Feb 1999 A
6032550 Rugh Mar 2000 A
6138974 Okada et al. Oct 2000 A
D437334 Song Feb 2001 S
6220642 Ito et al. Apr 2001 B1
6260672 Frohnhaus Jul 2001 B1
6260922 Frohnhaus et al. Jul 2001 B1
6261199 Schlangen Jul 2001 B1
6322146 Fisher, Jr. Nov 2001 B1
6548332 Peng et al. Apr 2003 B2
6742409 Blanchard Jun 2004 B2
6915998 Borbe et al. Jul 2005 B2
7041024 Becker et al. May 2006 B2
7048244 Hauck May 2006 B2
7051986 Taubmann et al. May 2006 B1
7143513 Taubmann et al. Dec 2006 B2
7198243 Hofschulte et al. Apr 2007 B2
7313982 Wisner et al. Jan 2008 B2
7322257 Becker et al. Jan 2008 B2
7340974 Landskron et al. Mar 2008 B2
7437962 Taubmann et al. Oct 2008 B2
7571666 Borbe et al. Aug 2009 B2
7703347 Porinsky et al. Apr 2010 B2
7887020 Ferguson et al. Feb 2011 B2
8061228 Becker et al. Nov 2011 B2
8087974 Maeda et al. Jan 2012 B2
8113074 Wohrle et al. Feb 2012 B2
8128051 Koga et al. Mar 2012 B2
8171823 Koga et al. May 2012 B2
8453529 Birker et al. Jun 2013 B2
8485489 Hofschulte et al. Jul 2013 B2
8777794 Oishi Jul 2014 B2
8826756 Hoffmann et al. Sep 2014 B2
8864231 Shimoda et al. Oct 2014 B2
8904895 Woehrle et al. Dec 2014 B2
9180795 Flieger et al. Nov 2015 B2
9205763 Anticuar et al. Dec 2015 B2
9415713 Line et al. Aug 2016 B2
9689464 Hamakita Jun 2017 B2
9694724 Nagata et al. Jul 2017 B2
9827879 Fujita Nov 2017 B2
9902295 Napau et al. Feb 2018 B2
10021991 Klimm Jul 2018 B2
10024392 Napau et al. Jul 2018 B2
10195975 Becker et al. Feb 2019 B2
10208835 Noguchi et al. Feb 2019 B2
10220730 Nagata et al. Mar 2019 B2
10220732 Auer et al. Mar 2019 B2
10300812 Flieger et al. May 2019 B2
10486554 Napau et al. Nov 2019 B2
10500984 Hoffmann Dec 2019 B2
10562411 Higuchi et al. Feb 2020 B2
10737591 Ito Aug 2020 B2
10843591 Becker et al. Nov 2020 B2
10857910 Madhu Dec 2020 B2
10933771 Geiges et al. Mar 2021 B2
10953772 Napau et al. Mar 2021 B2
11180064 Navatte et al. Nov 2021 B2
11273506 Napau et al. Mar 2022 B2
20040206195 Landskron et al. Oct 2004 A1
20040221670 Becker et al. Nov 2004 A1
20040254041 Becker et al. Dec 2004 A1
20050082890 Taubmann et al. Apr 2005 A1
20050116132 Sakamaki Jun 2005 A1
20050126333 Dohles et al. Jun 2005 A1
20050146174 Maddelein et al. Jul 2005 A1
20050253036 Li et al. Nov 2005 A1
20050269478 Woehrle et al. Dec 2005 A1
20060084547 Dill et al. Apr 2006 A1
20060117885 Robson et al. Jun 2006 A1
20060213302 Hoffmann et al. Sep 2006 A1
20060249644 Folliot et al. Nov 2006 A1
20070029893 Schuler et al. Feb 2007 A1
20070108360 Ito et al. May 2007 A1
20070209857 Wolf Sep 2007 A1
20070241602 Thiel et al. Oct 2007 A1
20080261743 Junkers Oct 2008 A1
20090045661 Stoessel et al. Feb 2009 A1
20100139425 Schulz et al. Jun 2010 A1
20100237216 Napau et al. Sep 2010 A1
20100320352 Weber Dec 2010 A1
20110079699 Tarusawa et al. Apr 2011 A1
20110308340 Bosecker et al. Dec 2011 A1
20120325033 Bosecker et al. Dec 2012 A1
20130180348 Andres et al. Jul 2013 A1
20130333496 Boutouil et al. Dec 2013 A1
20140238188 Ito Aug 2014 A1
20150020955 Hoffmann et al. Jan 2015 A1
20150210187 Harleb et al. Jul 2015 A1
20150283924 Boutouil et al. Oct 2015 A1
20150360587 Hoffmann et al. Dec 2015 A1
20160257223 Markel et al. Sep 2016 A1
20170059017 Napau et al. Mar 2017 A1
20170203677 Becker et al. Jul 2017 A1
20180065507 Napau et al. Mar 2018 A1
20180334054 Higuchi Nov 2018 A1
20190152347 Becker et al. May 2019 A1
20190202322 Napau et al. Jul 2019 A1
20200215936 Teer et al. Jul 2020 A1
20200262317 Napau et al. Aug 2020 A1
20210016375 Napau et al. Jan 2021 A1
Foreign Referenced Citations (76)
Number Date Country
87101620 Sep 1988 CN
1109566 Oct 1995 CN
1251411 Apr 2000 CN
1309750 Aug 2001 CN
101448674 Jun 2009 CN
201350516 Nov 2009 CN
101528502 Aug 2012 CN
103095041 May 2013 CN
103101455 May 2013 CN
203146709 Aug 2013 CN
103498891 Jan 2014 CN
204226562 Mar 2015 CN
104520140 Apr 2015 CN
104802666 Jul 2015 CN
204774719 Nov 2015 CN
204774722 Nov 2015 CN
105270212 Jan 2016 CN
105599643 May 2016 CN
207078030 Mar 2018 CN
208306408 Jan 2019 CN
208324966 Jan 2019 CN
1755740 Jan 1972 DE
3107455 Oct 1982 DE
19815283 Oct 1999 DE
19861100 Feb 2000 DE
19911432 Sep 2000 DE
10139631 Mar 2003 DE
10250994 Aug 2003 DE
10247204 Apr 2004 DE
10203983 May 2004 DE
10327103 Dec 2004 DE
102004013543 Oct 2005 DE
102005044467 Mar 2007 DE
202008016335 Mar 2009 DE
102009006815 Aug 2009 DE
102013009846 Dec 2013 DE
10362326 Feb 2014 DE
102015205440 Sep 2016 DE
102017100934 Jul 2017 DE
102017008036 Mar 2018 DE
0450324 Oct 1991 EP
0617213 Sep 1994 EP
0848672 Dec 1999 EP
0992711 Apr 2000 EP
1068093 Jan 2001 EP
1167113 Jan 2002 EP
1026027 Mar 2004 EP
1442923 Aug 2004 EP
1601550 Oct 2012 EP
679410 Apr 1930 FR
2517018 May 1983 FR
2872747 Jan 2006 FR
2882975 Sep 2006 FR
2389066 Dec 2003 GB
2404704 Feb 2005 GB
S62184939 Aug 1987 JP
H08197988 Aug 1996 JP
2010112553 May 2010 JP
2015134513 Jul 2015 JP
2018203208 Dec 2018 JP
20090071616 Jul 2009 KR
101470180 Dec 2014 KR
101501384 Mar 2015 KR
101518647 May 2015 KR
101708126 Feb 2017 KR
WO-8606036 Oct 1986 WO
WO-9709192 Mar 1997 WO
WO-03074209 Sep 2003 WO
WO-2009092946 Jul 2009 WO
WO-2010116125 Oct 2010 WO
WO-2011098161 Aug 2011 WO
WO-2011137989 Nov 2011 WO
WO-2012150050 Nov 2012 WO
WO-2013010888 Jan 2013 WO
WO-2015161714 Oct 2015 WO
WO-2018221977 Dec 2018 WO
Non-Patent Literature Citations (29)
Entry
Office Action regarding German Patent Application No. 102017100934.5, dated Jan. 27, 2021. Translation provided by Witte, Weller & Partner Patentanwälte mbB.
Office Action regarding Korean Patent Application No. 10-2019-7026939, dated Feb. 19, 2021. Translation provided by KORYO IP & Law.
Office Action for U.S. Appl. No. 17/062,931, dated Sep. 9, 2021.
Office Action regarding German Patent Application No. 112019000026.8, dated Sep. 25, 2020. Partial translation provided by Bardehle Pagenberg Partnerschaft mbB.
Office Action regarding Chinese Patent Application No. 202010075280.8 dated Nov. 26, 2021.
International Search Report regarding International Application No. PCT/US2016/048649, dated Nov. 28, 2016.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2016/048649, dated Nov. 28, 2016.
International Search Report regarding International Application No. PCT/US2016/048634, dated Dec. 21, 2016.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2016/048634, dated Dec. 21, 2016.
International Search Report regarding International Application No. PCT/US2019/021870, dated Jun. 25, 2019.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/021870, dated Jun. 25, 2019.
Dicker Jr. et al., “Worms and Worm Gears.” Theory of Machines and Mechanisms, 3rd ed., Oxford University Press, 2003, pp. 306-310.
International Search Report regarding International Application No. PCT/US2020/012857, dated Apr. 29, 2020.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/012857, dated Apr. 29, 2020.
Office Action regarding German Patent Application No. 102020200205.3, dated Aug. 20, 2020. Partial translation provided by Bardehle Pagenberg Partnerschaft mbB.
Office Action regarding German Patent Application No. 102017008036.4, dated Apr. 5, 2018.
Office Action regarding Korean Patent Application No. 10-2017-0114314, dated Sep. 28, 2018.
Office Action regarding Korean Patent Application No. 10-2017-0114314, dated Mar. 27, 2019.
Office Action regarding Chinese Patent Application No. 201710791607.X, dated Aug. 5, 2019.
Office Action regarding Korean Patent Application No. 10-2017-0114314, dated Sep. 9, 2019.
Office Action regarding Chinese Patent Application No. 201710791607.X, dated Apr. 21, 2020.
Office Action regarding German Patent Application No. 102017008036.4, dated Jul. 17, 2020.
Office Action regarding Chinese Patent Application No. 201710791607.X, dated Dec. 22, 2020.
Office Action regarding Chinese Patent Application No. 202010104705.3 dated Feb. 7, 2022.
Notice of Allowance regarding U.S. Appl. No. 17/236,639 dated Apr. 18, 2022.
Office Action regarding German Patent Application No. 1020170080364, dated May 24, 2022.
Office Action regarding Chinese Patent Application No. 2020101047053, dated Jul. 14, 2022.
Office Action regarding German Patent Application No. 1020202002053, dated Sep. 8, 2022.
Non-Final Office Action regarding U.S. Appl. No. 16/787,420 dated Oct. 6, 2022.
Related Publications (1)
Number Date Country
20200215936 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62790245 Jan 2019 US