1. Field of the Invention
Exemplary aspects of the present invention relate to a manually operated walk-in system of a powered vehicle seat.
2. Description of the Related Art
Seats of a vehicle such as an automobile may be provided with a reclining mechanism that allows the seat back to pivot at a base portion thereof. These seats may also be provided with a sliding mechanism that allows the seat to travel in the fore-aft direction of the vehicle. Both the reclining mechanism and the sliding mechanism may be operated using individual manual levers, typically located on the vehicle seat. Also the reclining mechanism and the sliding mechanism may be replaced by a powered actuator that performs the sliding and reclining functions without additional effort from the user. Seats equipped with these features are typically called power seats or power assisted seats.
Seats may also include a walk-in feature that assists the egress and ingress of the vehicle. Typically, the walk-in feature allows one to more easily enter a space behind the seat by moving the seat forward and by rotating the seatback forward. Therefore, the walk-in feature has a recliner function and/or a slide function. These walk-in functions can be powered or manually actuated.
When the walk-in function is not in use, the sliding mechanism is locked in order to prevent the seat from traveling in the fore-aft direction of the vehicle. The sliding mechanism is locked by the connection between a lock lever fixed to the vehicle and a lead screw nut fixed to the seat. In some designs, interdigitated teeth are used to connect the lock lever to the lead screw. In the interdigitated teeth designs, recesses in the lead screw nut correspond to raised teeth from the lock lever, whereby the teeth of the lock lever occupy the recesses in the lead screw nut and prevent motion in the fore-aft direction. If the teeth are retracted from the recesses in the lead screw nut, then motion in the fore-aft direction is allowed. U.S. Pat. No. 5,516,071 illustrates a conventional walk-in mechanism.
One challenge with the interdigitated teeth design is that during a crash, extreme force on the teeth may cause the teeth bend resulting in the failure of the lock and the seat sliding the fore-aft direction. A second challenge is that the interdigitated teeth design occupies significant space due to the way in which the lock lever teeth are retracted from the recesses in the lead screw nut.
A seat including a seat back, a walk-in lever that releases the seat back so that the seat back may rotate, a slide mechanism having an upper rail and lower rail, a connection device between the seat back and a slide mechanism that releases the slide mechanism, a lock lever that rotates in response to rotation of the seat back, and a lock lever that rotates in response to rotation of the seat back. The lock lever is configured to be in direct contact with the lower rail such that forward force on the seat is transferred directly from the lock lever to the lower rail at the point of contact between the lock lever and the lower rail.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views. Further, as used herein, the words “a,” “an” and the like generally carry a meaning of “one or more,” unless stated otherwise.
The figures depict various aspects of a power seat with a manual walk-in feature. (also referred to as a quick walk-in). Here a vehicle refers to a land vehicle exemplified by an automobile. However, the present disclosure is also applicable to any similar type vehicle, such as but not limited to, a sport utility vehicle, a pickup truck, a commercial vehicle, a boat an airplane or the like.
The respective legs 14 and 15 of Cable A extend to the inner and outer power recliners 2. The legs 14 and 15 of the cable A are arranged so that the operation of the walk-in lever 7 will effect actuation simultaneously at each of the inner and outer power recliners 2.
When the cable A is pulled a sufficient amount by the walk-in lever 7, the power recliner 2 releases its manual walk-in system. Thereafter, the seat back 4 is able to rotate forward to operate a walk-in procedure. A spring bias is provided which urges the seat back 4 forward once the manual walk-in system is released by the movement of the cable A.
As the seat back 4 rotates forward after the manual recline walk-in is released, Cable B is arranged so that the forward rotation of the seat back 4 causes cable B to move in response. At one end cable B is connected to a wire clamp 17 that is connected to a lock lever 18. Cable B is an example of a connection device, but other means such as a linkage, lever, chain, or the like may also be used.
Movement of the cable B pulls the wire clamp 17 rightward as shown in
Shown in the figures, the lead screw nut 19 is provided a lead screw 23, the nut including a through-hole through which the lead screw 23 penetrates. The lead screw nut includes a recess on a bottom portion thereof, the recess interacting with an edge of the lock lever 18. This recess can be seen for example in
The lock lever 18 includes a cam surface at a first end, this cam surface interacting with the lead screw nut 19. The lock lever 18 includes a through-hole at a second end, which allows the lock lever 18 to rotate around a rail that penetrates the through-hole, the rail extending from connecting rod 21. The lock lever 18 is able to rotate around this rail so that the cam surface can engage and disengage with the recess of the lead screw nut 19.
With the seat 1 at its forward most slide position and the seat back 4 rotated to its forward most position, the walk-in operation is completed. The reverse of the walk-in will be now described.
Movement of the seat back 4 rearward causes the reverse of the movement described above. In particular, the movement of the seat back 4 rearward causes the cable B wire pull lever 16 to move in the opposite direction. This causes the cable B to move leftward toward the original position shown in
The rotating lock lever 18 has several advantages over alternative designs. First, the rotating lock lever design has a low profile under the rail allowing for improved packaging. That is, a distance in the vertical direction below the lower rail is reduced compared to a conventional arrangement. Second, the rotating lock lever design has greater strength than alternative designs because it transfers the load of a forward force directly to the lower rail, as shown in
When the lock lever is in the locked position and force is applied to move the seat toward the forward position, the interface between the lock lever 18 and the lead screw nut 19 at a first contact point 31, shown in
The above walk-in procedure was described with regard to a single lock lever 18 and lead screw nut 19. Both the inner and outer seat tracks (5 and 6) may have the same components including lock levers and lead screw nuts. A connecting rod 21, shown in
When the lock lever is in the locked position, a force pushing the seat in the fore direction is resisted by the normal force at the second contact point 32 between the lock lever and the lead screw nut. This force is transferred to the lower rail either indirectly through the connecting rod to the lower bracket and into the lower rail or directly at the first contact point 31 between the lock lever and the lower rail. For the lead screw, the vertical component of the normal force is transferred to the upper bracket.
Accordingly, the mechanism described in detail above can provide a quick, manual walk-in system for a power seat with a powered slide and recliner function. During the walk-in the seat is able to slide to a forward-most position giving entry to the rear seat as large as possible. The mechanism uses a single manual walk-in lever to release the recliner and then both seat tracks at the same time.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Number | Name | Date | Kind |
---|---|---|---|
5516071 | Miyauchi | May 1996 | A |
5727768 | Sakamoto | Mar 1998 | A |
8393591 | Mizuno et al. | Mar 2013 | B2 |
8967583 | Stoia | Mar 2015 | B2 |
9156377 | Mixon | Oct 2015 | B2 |
20040026974 | Severini et al. | Feb 2004 | A1 |
20070013218 | Kayumi et al. | Jan 2007 | A1 |
20090200849 | Schmale | Aug 2009 | A1 |
20100026070 | Rohee et al. | Feb 2010 | A1 |
20100283302 | Fukuda | Nov 2010 | A1 |
20120223561 | Hurst et al. | Sep 2012 | A1 |
20130193730 | Walter et al. | Aug 2013 | A1 |
20130278033 | Tame et al. | Oct 2013 | A1 |
20140183917 | Becker et al. | Jul 2014 | A1 |
20140232157 | Hoshihara et al. | Aug 2014 | A1 |
20140239690 | Yamada et al. | Aug 2014 | A1 |
20150130242 | Markel | May 2015 | A1 |
Number | Date | Country |
---|---|---|
0 800 952 | Oct 1997 | EP |
Entry |
---|
Extended European Search Report issued Sep. 30, 2015 in Patent Application No. 14199243.8. |
Office Action issued Nov. 9, 2015 in European Patent Application No. 14199243.8. |
Number | Date | Country | |
---|---|---|---|
20150314710 A1 | Nov 2015 | US |