The present invention relates to a power shutoff device, particularly, to a connector-type power shutoff device which is installed between a power source and a load.
Generally, if a power source circuit which supplies power to a load includes a connector, by separating the connector, the load may be separated from the power source so that the load may be checked or maintained safely. However, when the power is cut off by detaching the connector, due to the load, an arc is produced between connector terminals of a plug connector and a receiving connector which are separated, thereby damaging the connector terminals or the like. Thus, in the operation of separating the fitted connector, two steps are performed in which a time lag is included. That is, a power shutoff device is proposed for which an action to make the connector shifted from a fitted state to a detached state is detected, a relay contact which is installed in the power source circuit is opened by the detection signal to cut off the power, and then the connector becomes detachable (for example, a patent document 1).
In the power shutoff device disclosed in the above patent document, an operation lever is rotatably and pivotally supported by the plug connector of the connector which is installed in the power source circuit, the operation lever is connected to the receiving connector, and the operation lever is rotated between a first position where the receiving connector and the plug connector are separated and a second position where the receiving connector and the plug connector are fitted. To detect the operation of separating the connector, the operation lever is formed to be slidable at the second position of the operation lever where the connector is fitted in a direction which is different from the direction that the operation lever is fitted, and a fitting detecting connector, which is formed of a fitting detecting plug connector and a fitting detecting receiving connector which are fitted to each other at a third position to which the operation lever slides, is provided on the operation lever and the receiving connector.
Therefore, when the fitting detecting connector is fitted, a fitting detecting signal becomes ON, a relay of a control circuit of the power source circuit is ON, and power is supplied to the load through the connector of the power source circuit. On the contrary, because when the operation lever slides from the third position to the second position to shift to the operation of separating the connector, the fitting detecting connector which was fitted is separated, the fitting detecting signal of the fitting detecting connector becomes OFF, the relay of the control circuit of the power source circuit is OFF, and the power supply to the load is cut off even if the connector of the power source circuit is fitted. Thereby, the arc which is produced when the connector of the power source circuit is separated can be surely prevented even if the connector is separated when the operation lever is rotated from the second position to the first position.
On the other hand, when the connector of the power source circuit is engaged, there is no problem like that the arc is produced when the connector is separated, but connector terminals of the power source circuit may be damaged because a rush current flows due to the load when the connecting terminals are connected. For this point, according to the power shutoff device of the above document 1, because the connector of the power source circuit is fitted without voltage at the second position of the operation lever where the fitting detecting connector is not fitted, that is, at a position where a relay contact of the power source circuit is opened, the connector terminals can be prevented from being damaged by the rush current of the load.
[Patent document 1] Japan Patent Publication No. 2003-100383
According to one aspect of the present invention, there is provided a power shutoff device comprising:
The power shutoff device may be configured such that: the housing of the receiving connector is fixed to an electrical junction box with fixing means through a flange which is formed on an outer peripheral surface of the housing of the receiving connector; an annular waterproof packing which is positioned closer to the housing than the fixing means at a surface of the flange facing the electrical junction box is clamped; a cover cylindrical part is formed on an outer circumferential edge of a housing of the plug connector to cover an upper end circumferential edge of the housing of the receiving connector; a waterproof packing is installed between the cover cylindrical part and the upper end circumferential edge of the housing of the receiving connector; and a waterproof packing is installed to the inner peripheral surface or the outer peripheral surface of the pipe body of one of the fitting detecting receiving connector and the fitting detecting plug connector.
The power shutoff device described in the patent document 1 may be further downsized. That is, since the fitting detecting receiving connector is provided along the outer side of the side surface in the longitudinal direction of the housing which accommodates the receiving connector, and the fitting detecting plug connector which is fitted to the fitting detecting receiving connector is provided at the side of the operation lever, the width in the lateral direction of the power shutoff device is increased. A waterproof structure is not considered in the power shutoff device described in the patent document 1.
It is therefore one advantageous aspect of the present invention to downsize the connector-type power shutoff device which is installed between a power source and a load.
One embodiment of the connector-type power shutoff device of the present invention is described as follows with reference to
Furthermore, the operation lever 5 is provided to be slidable in the longitudinal direction of the plug connector 4 which is a direction perpendicular to the fitting direction at the second position where the receiving connector 3 and the plug connector 4 are fitted. On the other hand, the fitting detecting connector 8 which detects the fitting state of the receiving connector 3 and the plug connector 4 includes the fitting detecting receiving connector 6 which is provided on a minor axis side surface of the receiving connector 3 and the fitting detecting plug connector 7 which is supported by the distal end part of the operation lever 5. When the operation lever 5 slides in an arrow C direction as shown in the figure at the second position, the fitting detecting plug connector 7 can be fitted/separated to/from the receiving connector 6.
The power shutoff device 1 of the present embodiment, for example, is used to be installed in a power source circuit 10 which supplies power to a load 9 as shown in
Next, with reference to
The operation lever 5 has a pair of flat leg parts 51 which sandwich the side surfaces in the longitudinal direction of the plug connector 4 and an operation part 52 which is formed to connect the upper end parts of the leg parts 51. The pair of leg parts 51 are formed with the guiding grooves 53 which extend in the longitudinal direction of the operation lever 5, and a pair of shafts 50 which are formed to protrude from the two side surfaces of the cover cylindrical part 43 at the upper part of the plug connector 4 are inserted into the guiding grooves 53. Thereby, the operation lever 5, as shown by the arrow B in
Supporting arms 55 are provided to protrude to the back surface side of the operating part 52 of the operation lever 5, that is, the lower surface side when the operation lever 5 is rotated and the top surface of the operation lever 5 is at a position (the second position) to be generally parallel to the top surface of the plug connector 4. The fitting detecting plug connector 7 is attached to the supporting arms 55. The direction in which the fitting detecting plug connector 7 is attached, as shown in
With reference to
On the other hand, the fitting detecting receiving connector 6 is formed with a pipe body 61 which has a rectangular section and which penetrates and protrudes from a side wall on the short side (short axis) of the housing 30 of the receiving connector 3, and a pair of fitting detecting terminals 62 which are accommodated in the pipe body 61. The dimension of the inner surface of the pipe body 61 is formed according to the dimension of the outer surface of the pipe body 72 of the fitting detecting plug connector 7 which is the fitting counterpart of the pipe body 61. Lead lines of a signal wiring 63 which are insulatively coated are connected to the pair of fitting detecting terminals 62, respectively. The signal wiring 63 is drawn out from the bottom part of the housing 30, and is connected to a relay of the power source circuit which is provided inside the electrical junction box (not shown in the figure) via a signal line connector 64. Even if there are two pairs of female terminals 33 which are the main terminals, the fitting detecting connector 8 which is formed of the fitting detecting receiving connector 6 and the fitting detecting plug connector 7 only have to output one fitting detection signal. When, if necessary, the two pairs of female terminals 33 are interlocked with different relay contacts, two pairs of the fitting detecting terminals (two circuits) of the fitting detecting receiving connector 6 are provided, and accordingly, two pairs of conductive members of the fitting detecting plug connector 7 are provided.
The receiving connector 3 which is formed in this way is fixed to an electrical junction box (not shown in the figure) by fixing means such as bolts which are inserted into bolt holes 66 of a flange 65 which is formed to protrude from the outer peripheral surface of the lower part of the housing 30. Metal color rings 66a are fitted in the bolt holes 66. A waterproof packing 68 is installed in a groove 67 which is positioned at the housing 30 side of the bolt holes 66 and is formed to surround a lower part 30a of the housing 30 at the bottom surface of the flange 65.
Operation steps of the power shutoff device 1 of the present embodiment constructed in this way are described with reference to
Next, as shown in
As described above, according to the present embodiment, since the fitting detecting plug connector 7 is provided at the distal end part of the operation lever 5, and the fitting detecting receiving connector 6 is provided in the pipe body 61 which penetrates and protrudes from a side wall on the short side (short axis) of the housing 30 of the receiving connector 3, the width in the lateral direction of the power shutoff device 1 is significantly reduced. That is, since the fitting detecting receiving connector 6 and the fitting detecting plug connector 7 are provided at the end part in the longitudinal direction of the receiving connector 3 and the operation lever 5, the width of the power shutoff device 1 is reduced and the power shutoff device 1 can be downsized.
According to the present embodiment, when the housing 30 of the receiving connector 3 is directly attached to the electrical junction box which accommodates the waterproof power source circuit and the control circuit which has the relay contact, the housing 30 of the receiving connector 3 is fixed to the electrical junction box with fixing means such as bolts through the flange 65 which is formed on the outer peripheral surface of the lower part of the housing 30 of the receiving connector 3, and the waterproof packing 68 which is positioned closer to the lower part 30a of the housing 30 than the fixing means at the surface of the flange 65 that faces the electrical junction box is clamped. Therefore, the plurality of female terminals which are provided inside the receiving connector 3, the electric wire drawn out part which is drawn out from the electrical junction box side and which is connected to the female terminals, and the signal wiring 63 drawn out part which is drawn out from the electrical junction box side and which is connected to the pair of female terminals 62 which are the fitting detecting terminals of the fitting detecting connector 8 can be collectively waterproofed.
Furthermore, the cover cylindrical part 43 is formed on the outer circumferential edge of the upper part of the housing 41 of the plug connector 4 to cover the upper end circumferential edge of the housing 30 of the receiving connector 3, and the waterproof packing 43 is installed between the cover cylindrical part 43 and the upper end circumferential edge of the housing 30 of the receiving connector 3. Therefore, the housings of the receiving connector 3 and the plug connector 4 of the connector 2 can be formed into a waterproof structure.
Furthermore, the waterproof packing 75 is installed to the inner peripheral surface or the outer peripheral surface of the pipe body of one of the fitting detecting receiving connector 6 and the fitting detecting plug connector 7 to waterproof the space between the pipe bodies. Accordingly, water can be prevented from invading into the pipe body of the fitting detecting connector 8. Thus, according to the present embodiment, the power shutoff device 1 can be waterproofed by a simple waterproof structure without being upsized.
Thus, according to the present invention, since the fitting detecting plug connector is provided at the distal end part of the operation lever, and the fitting detecting receiving connector is provided in a pipe body which penetrates and protrudes from a side wall in the lateral direction of the receiving connector housing, the width in the lateral direction of the power shutoff device is nearly the same as the width in the same direction of the receiving connector and the plug connector, and the power shutoff device can be downsized.
According to the power shutoff device of the present invention, a waterproof function can be included by a simple waterproof structure, which is particularly described as follows. It is preferred that when the housing of the receiving connector is directly attached to an electrical junction box which accommodates the waterproof power source circuit and the control circuit which has the relay contact, the housing of the receiving connector is fixed to the electrical junction box with fixing means such as bolts through a flange which is formed on the outer peripheral surface of the housing of the receiving connector, and an annular waterproof packing which is positioned closer to the housing than the fixing means at the surface of the flange that faces the electrical junction box is clamped. Thereby, the plurality of main terminals which are provided inside the receiving connector, the electric wire drawn out part which is drawn out from the electrical junction box side and which is connected to the main terminals, and the drawn out part of fitting detecting signal wiring which is drawn out from the electrical junction box side and which is connected to the fitting detecting terminals of the fitting detecting connector can be collectively formed as s waterproof structure.
Furthermore, it is preferred that a cover cylindrical part is formed on the outer circumferential edge of the housing of the plug connector to cover the upper end circumferential edge of the housing of the receiving connector, and a waterproof packing is installed between the cover cylindrical part and the upper end circumferential edge of the housing of the receiving connector. Thereby, the housings of the receiving connector and the plug connector of the connector can be formed into a waterproof structure.
Furthermore, it is preferred that a waterproof packing is installed to the inner peripheral surface or the outer peripheral surface of the pipe body of one of the fitting detecting receiving connector and the fitting detecting plug connector to waterproof the space between the pipe bodies. Accordingly, the fitting detecting connector itself can be waterproofed. Thus, only by using the simple waterproof structures, the power shutoff device can be waterproofed without being upsized.
According to the present invention, the connector-type power shutoff device which is installed between a power source and a load can be downsized.
Number | Date | Country | Kind |
---|---|---|---|
2013-013190 | Jan 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8915749 | Ikeda et al. | Dec 2014 | B2 |
20060040535 | Koshy et al. | Feb 2006 | A1 |
20130126205 | Henmi | May 2013 | A1 |
20130224974 | Furuya et al. | Aug 2013 | A1 |
20130228429 | Henmi | Sep 2013 | A1 |
20140213087 | Furuya et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2003-100383 | Apr 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20140213087 A1 | Jul 2014 | US |