The present invention relates to a powered sliding device for use of a vehicle sliding door, and in particular, it relates to a housing accommodating movable parts and electrical equipment of the sliding device.
A conventional typical powered sliding device comprises a wire drum connected to a sliding door through a wire cable, a motor for rotating the wire drum, a clutch mechanism provided between the wire drum and the motor, and a sensor for detecting a rotation of the wire drum. The signal from the sensor is used for finding a moving velocity of the sliding door and the like.
The sensor and the wire drum are provided in the same space within a housing of the sliding device. This is because the sensor needs to directly detect the rotation of the wire drum. If the sensor is designed so as to detect the rotation of the motor, the sensor is unable to detect the movement of the sliding door when the clutch mechanism is in an uncoupled state.
The housing is designed in such a way that dust and rainwater do not enter the interior as little as possible. However, the inside of the housing is communicated with the outside of the housing through the wire cable which connects the sliding door and the wire drum. When a wire cable is wound up by the rotation of the wire drum, the dust and rainwater adhered on the wire cable easily enter into the inside of the housing, thereby giving damages to the electrical equipment such as the sensor and the like.
Therefore, the object of the present invention is to provide an improved housing of the powered sliding device for use of the vehicle sliding door.
One embodiment of the present invention will be described with reference to the drawings. A mechanical constitution of a powered sliding device 10 of the present invention as shown in FIGS. 1 to 12 is the same as the mechanical structure previously proposed by the present applicant (refer Japanese Patent Application Laid-Open No. 2002-201858, U.S. 2002/0088180A1, GB2371333A, DE10164363A1).
One end sides of two wire cables 18 and 19 are coupled to the wire drum 16. Other end side of the first cable 18 is coupled to a bracket 21 of the sliding door 11 via a front side pulley 20 which is pivotally attached to the vehicle body 13. Similarly, other end side of the second cable 19 is coupled to the bracket 21 via a rear side pulley 22 pivotally attached to the vehicle body 13. When the wire drum 16 is rotated clockwise, the first cable is rewound as well as the second wire cable 19 is derived, so that the sliding door 11 is slid in the closing direction. When the wire drum 16 is rotated counterclockwise, the sliding door 11 is slid in the opening direction.
A tension case 23 with tension springs (not shown) is fixed on the base plate 12 by screws, and a predetermined tension is applied to each of the cables 18 and 19.
As shown in
A drum shaft 26 of the wire drum 16 is rotatably attached with an output gear 27, a motor plate 28 and a sleeve 29, respectively. The output gear 27 is coupled to the motor 14 via the reduction mechanism 15. The output gear 27 and the motor plate 28 are integrally coupled by coupling pins 30 as one piece. Hence, in
The clutch plate 31 has, on outer edge portions thereof, boss portions 35, 36 shown by the cross section in
The guide slots 43, 44 are bilaterally symmetrical as shown in
Although the details will be described later, for example, when the motor 14 is rotated in the closing direction, the motor plate 28 rotates clockwise in
On the inner surface of the wire drum 16, plural projections 59 projecting toward the drum shaft 26 are formed at uniform intervals. At the tips of the clutch arms 37, 38, clutch pawls 60, 61 projecting in the direction apart from the drum shaft 26 are respectively formed. One sides of the clutch pawls 60, 61 are respectively formed into coupling faces 62, 63 substantially parallel with the radial direction of the drum shaft 26. On the other sides of the clutch pawls 60, 61, brake dents 64, 65 are respectively formed.
The operation switch 69 has an open position for rotating the motor 14 in the opening direction, a close position for rotating the motor 14 in the closing direction and a neutral position. When the operation switch 69 is pushed, the controller 66 slides the sliding door 11 toward the closed position or the open position by the power of the motor 14.
The motor switch 70 is preferably arranged in the vicinity of a driver seat of the vehicle body 13, and the motor switch 70 has an open position for rotating the motor 14 in the opening direction, a close position for rotating the motor 14 in the closing direction and a neutral position. When the motor switch 70 is operated, the powered sliding device 10 is activated, and when the motor switch 70 is turned off, the powered sliding device 10 is stopped. Accordingly, it is possible to stop the sliding door 11 at a desired semi-open position between a full-closed position and a full-open position by the operation of the motor switch 70. This is convenient in the case that a driver does not wish to open the sliding door 11 widely due to strong wind and/or strong rain.
The stop switch 71 is used in the case of stopping the sliding door 11, which is slid under the control of the controller 66, at the semi-open position.
Since the detailed operations of the clutch mechanism 25 and the auxiliary brake 17 can be understood by referring to Japanese Patent Application Laid-Open No. 2002-201858, U.S. 2002/0088180A1, GB2371333A, DE10164363A1, the description thereof will be omitted in the present application.
The auxiliary brake 17 of the powered sliding device 10 is accommodated substantially inside the third space 77. A brake gear 80 fixed to one end of a brake shaft 79 of the auxiliary brake 17 is engaged with a ring gear 82 attached to the wire drum 16 through a coupling gear 81. The coupling gear 81 is disposed in a small communication port 83 between the base plate 12 and the partition wall 75, and the third space 77 is isolated from the first space 76 as far as possible. The brake shaft 79 is always coupled with the wire drum 16 without being affected from the clutch mechanism 25 and is rotated faster than the wire drum 16 when the wire drum 16 is rotated. A rotational resistance is applied to the brake shaft 79 so as to control the rotation of the wire drum 16 when the electromagnetic coil of the auxiliary brake 17 is activated.
The other end of the brake shaft 79 projects inside the second space 78 by crossing over the housing body 73. A disc 85 comprising a number of measuring slits 84 is fixed to the other end of the brake shaft 79. The disc 85 is located inside the second space 78. The rotation of the disc 85 is detected by an photo sensor 86 provided inside the second space 78. The controller 66 can perform an arithmetical operation of a rotational speed, a rotational amount and a rotational direction of the wire drum 16 by a signal from the photo sensor 86.
The wire drum 16, the clutch mechanism 25 and the like of the powered sliding device 10 are accommodated substantially inside the first space 76. A central boss portion 87 of the wire drum 16, in which the drum shaft 26 is inserted, projects inside the second space 78. The boss portion 87 is rotatably attached with a cum gear 88. The cum gear 88 receives the rotational movement of the boss portion 87 through planet gears 89, and rotates about 360 degrees when the sliding door 11 moves between the opened position and the closed position. Position switches 91, which detect the position of the cum gear 88 (position of the sliding door) by contacting with a cum portion 90 of the cum gear 88, are provided in the second space 78. The detection signal from the position switches 91 is used for detecting the full-open position and the full-closed position of the sliding door, and the position of the sliding door 11 under sliding by the motive power of the motor 14 is found by a signal from the photo sensor 86.
The outside of the cover plate 72 is attached with a vibration isolating rubber 92 as desired.
The first space 76 of the housing 74 is communicated with the outside of the housing 74 through the wire cables 18, 19 which connects the sliding door 11 and the wire drum 16. Hence, when the wire cables 18, 19 move by the rotation of the wire drum 16, dust and water adhered on the wire cables 18, 19 can easily enter the interior of the first space 76. However, in the present invention, since the electrical equipment such as the photo sensor 86, the position switches 91 and the like which have poor dust and water resistance are disposed in the interior of the second space 78 substantially isolated from the first space 76 by the housing body 73, it can be expected that the electrical equipment are kept in a good condition for long.
The electrical equipment disposed in the interior of the second space 78 can receive repairing and maintenance services more easily by removing the cover plate 72.
Two pieces of the members rotated by the rotation of the wire drum 16, that is, the disc 85 and the cum gear 88 are disposed in such a manner as not to be laid one upon another in an axial direction of the drum shaft 26, and the disc 85 rotates about the brake shaft 79, and the cum gear 88 rotates about the drum shaft 26. When disposed in such a manner, the thickness of the sliding device 10 in the axial direction of the drum shaft 26 can be made thin.
The disc 85 attached to the brake shaft 79 rotates faster than the wire drum 16. Hence, a slow rotation or a limited rotation of the wire drum 16 is favorably reflected on the rotation of the disc 85, so that the photo sensor 86 can accurately detect the rotation of the wire drum 16.
Number | Date | Country | Kind |
---|---|---|---|
2001-288570 | Sep 2001 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP02/09753 | 9/24/2002 | WO |