This invention relates generally to the power source field, and more specifically to an improved power source and method of managing a power source.
High-density battery packs have the energy density required for transportation applications but may fail catastrophically, unexpectedly, and fatally if poorly managed. Current battery packs provide either acceptable energy density (lithium ion or lithium polymer) or safety features (nickel metal hydride, lead acid), but not both. Existing solutions to this problem use traditional methods of protection and isolation. For example, some automotive battery packs use an assortment of mechanical, thermal, and electrical techniques to isolate faulty cell groups (e.g. thermal fuses and heavy packaging or physical firewalls). These techniques are typically used, however, with large groups of cells, so a fault significantly depletes the available pack power. In order to achieve the necessary safety and driving range for battery packs in transportation applications, it is desired to provide the energy density of a lithium ion or lithium polymer battery pack with the safety of older battery chemistries. Thus, there is a need in the battery protection field to create an improved power source and method of managing a power source.
The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
In the abstract, as shown in
As shown in
The cells 102 of the preferred embodiment function to store energy. Preferably, each cell 102 is a conventional battery designed for use in small-scale applications like mobile phones and laptop computers. In a first version, the cells 102 are a lithium ion cell of type number 18650, which have the following specification: Nominal Voltage is 3.6-3.7 V, Shape is cylindrical, Diameter is 18 mm, Length is 65 mm, and Capacity is 2400-2600 mAh. These cells, which are lightweight and have a high energy density, are generally used in laptop computers. In a second version, the cells 102 are a lithium ion cell of type number 26700 (which have the following specifications: Shape is cylindrical, and Diameter is 26 mm, Length is 70 mm). With minimal or no modifications, the cells may be of greater (or lower) capacity and/or of greater (or lower) voltage. The cells 102, in fact, may be of any suitable composition, of any suitable shape, and of any suitable performance specification. The battery module 100 preferably contains 1-7 cells 102. The cells 102 of the battery module 100 are preferably arranged in a parallel electrical structure, but may alternatively be any other electrical structure suitable to provide adequate voltage levels to the device.
As shown in
As shown in
The battery protection circuits 104 are preferably conventional battery protection circuits. Preferably, the fault conditions in the battery protection circuits 104 have at least one threshold for cell operating conditions. The thresholds are preferably programmed into the module, but may alternatively be defined by hardware in the module. The programmed threshold may also be adjusted during the operation of the module. The thresholds may also exist in more than one layer. For example, a software threshold either at the pack-unit level or the integration level may be used concurrently with a hardware threshold in the module level. With multiple threshold, the software threshold may be a lower value such that the hardware threshold acts as a backup threshold. In other words, the hardware threshold functions to define the fault conditions when the software malfunctions or is not available. The programmed threshold, at the pack-unit level and/or integration level, is preferably adjustable during the operation of the module. The battery protection circuit 104 preferably communicates battery module parameters, such as voltage, current, temperature, and pressure, to at least one processing unit 202, across a serial data bus 212. Additionally, the battery protection circuit 104 preferably identifies and communicates its physical, thermal, and electrical proximity to other battery protection circuits 104. This proximity identification preferably uses a number or set of numbers to indicate location within the larger battery pack and physical, thermal, and electrical proximity to neighboring cells and battery protection circuits 104. This identification, which is preferably unique to each battery protection circuit 104, preferably divides the pack into proximate zones. The battery protection circuit 104 also preferably receives physical, thermal, and electrical conditions from neighboring protection circuits 104 of neighboring modules. This information preferably facilitates the battery protection circuit 104 in determining safe to operate conditions based upon the performance of neighboring modules.
As shown in
As shown in
The battery modules 100 are preferably arranged in series within the battery pack-unit 200. This provides a high voltage level to the device that is relatively minimally affected by the disconnection of battery modules 100 from the battery pack-unit 200. However, the battery modules 100 may also be arranged in any other electrical arrangement suitable to powering the device.
The processing unit 202 functions to store parameter data in memory, correlate parameters to failure, and manage module connection states. The processing unit 202 also preferably functions to manage temperature regulation of the modules within pack-unit 200. The processing unit 202 preferably includes a processor and a memory unit, and communication circuitry to connect to an external interface 222 (via a suitable connection such as RS-232, USB, or IEEE-1394) as well as the internal data bus 212.
The data bus 212 functions to transmit parameter measurements from the battery modules 100 to the processing unit 202, and preferably also functions to carry module connection management data from the processing unit 202 to the battery modules 100. The data bus 212 is preferably a serial data bus connecting the battery modules 100 and the processing unit 202. The data bus 212 preferably allows data and control signals to flow from the battery modules 100 to the processing unit 202 as well as from the processing unit 202 back to the battery modules 100. The processing unit 202 preferably transmits commands over the data bus 212 to the battery modules 100, switching the battery modules 100 in or out of the pack controlled by the processing unit 202. Preferably, the signals from the processing unit 202 will take a higher priority than any internal control circuitry in the battery modules 100, allowing the processing unit 202 to override the internal circuitry of the battery modules.
The processing unit 202 also preferably evaluates real time operation data from a plurality of battery modules 100 and determines optimal pack-unit operation. For example, temperature readings from a certain location within the battery pack-unit 200 may be higher than those from another location. To compensate for this, the processing unit 202 may send control signals through data bus 212 to preferably minimize power draw from the high temperature region until temperature throughout battery pack-unit 200 normalizes. To maintain power output of the pack-unit 200 when the output of one or more of the battery modules 100 is limited, the power output from other normally operating battery modules 100 in the pack-unit 200 may be increased. Location of the battery module 100 within the pack-unit 200 may be used to determine the re-balancing of power output. Alternatively, the processing unit 202 may communicate with an external temperature regulating system through battery protection units 104 and send control signals through data bus 212 to change the state of the temperature regulation through the high temperature region. However, the processing unit 202 may also communicate directly with an external temperature regulating system to regulate temperature in a high temperature region. Additionally, the processing unit 202 preferably evaluates real time operation data with historical data from the battery modules 100. This facilitates the prediction of abnormal battery module 100 behavior based upon historical performance data of each particular module and the location of the battery module 100 within battery pack-unit 200. For example, operational temperatures from battery modules 100 located in a certain location of battery pack-unit 200 may be consistently higher than those in other locations. Processing unit 202 may detect this pattern and signal for maintenance. Additionally, the processing unit 202 may detect the tendency for certain battery modules 200 to operate under normal conditions at higher temperatures. In response to this pattern, the processing unit 202 may increase the pre-programmed temperature fault threshold for these particular battery modules 100. This dynamic adjustment of the programmed thresholds allows the pack-unit 200 to adapt to manufacturing and operation variations in the battery cells 102. The processing unit 202 may also detect operating conditions that are similar to those seen prior to catastrophic failure and may disconnect those battery modules 100 in danger of failure, preventing catastrophic failure from affecting the battery pack-unit 200. Additionally, the processing unit 202 may detect battery modules 100 whose operating conditions do not improve with re-balancing of power output or any other failure prevention adjustments and may disconnect these battery modules 100 from the pack-unit 200 to prevent failure. The processing unit 202 may also be pre-programmed to expect certain patterns in the performance of a battery module 100. The historical data stored in processing unit 202 is preferably available for diagnostics during maintenance of the battery pack-unit 200.
The processing unit 202 also preferably evaluates real time operation data from the neighbors of each battery module 100. In the case of a non-operational battery module 100, the processing unit 202 preferably evaluates the real time operation data from all neighboring battery modules 100 to determine whether the neighboring battery modules 100 exhibit failure characteristics. “Neighboring battery modules” 100 preferably means directly adjacent, but my additionally include battery modules within a particular distance, along a particular electrical connection, or any other suitable parameter. In the case of an operational battery module 100, the processing unit 202 preferably evaluates the real time operation data from all neighboring battery modules 100 to determine whether the neighboring battery modules exhibit characteristics that may harm the current battery module 100, for example, increased pressure and/or high temperature. Additionally, the processing unit 202 preferably evaluates real time operation data with historical data from the neighboring battery modules 100. This facilitates the prediction of adverse effects between neighboring battery modules 100. For example, the processing unit 202 may notice that certain trends in operation data (high rate of temperature increase, consistently low levels of power output, etc.) have a stronger effect on neighboring battery modules 100. Examining historical operation data of neighboring battery modules 100 may also facilitate distinguishing battery modules 100 that may have better performance if grouped together.
The processing unit 202 also preferably controls current and power output of the battery pack-unit 200 based upon operating conditions measured within the battery pack-unit 200 and the power requirements of the device powered by the power source. For example, if all battery modules 100 are in healthy condition, the processing unit 202 preferably allows maximum current and power output. However, if one, some, or all of the battery modules are under non-optimal operating conditions, the processing unit 202 preferably limits current and power output.
In a preferred embodiment, the pack-unit 200 further includes an external interface 222. The external interface 222 functions to communicate (through either a display and/or a data port) the cell performance data from the processing unit 202. The external interface 222 is preferably connected to the processing unit 202 via IEEE 1394, but may be connected to the processing unit 202 via RS-232, IEEE 1284, Ethernet, Wireless, Bluetooth, USB, or any other suitable communication protocol.
As shown in
The pack-units 200 in the system 300 of the preferred embodiment are preferably arranged in a combination parallel and series electrical structure. The pack-units 200 are preferably split into two in-series electrical structures, each preferably with the same number of pack-units 200. These two series electrical structures are then arranged in parallel and an electrical bridge bypass 314 is included in between each neighboring parallel battery pack, as shown in
The CPU 302 preferably functions to control current and power output from the system 300 based upon device power requirements and the state of the system 300. The CPU 302 also preferably functions to communicate with pack-units 200 through data bus 312. Data representative of the status of modules 100 within pack unit 200 are preferably communicated to the CPU 302. Preferably, data representative of the voltage, current, temperature, and/or pressure of the modules 100 within pack-unit 200 are communicated to the CPU 302. Alternatively, data representing the overall state of pack-unit 200 may be communicated to the CPU 302. For example, data representing the number of modules 100 that are in operation in pack-unit 200, the equivalent current and power output of pack-unit 200, the overall temperature of pack-unit 200, and/or the overall pressure of pack-unit 200, may be communicated to the CPU 302. The data communicated to the CPU 302 from each of the pack-units 200 are preferably compared to pre-programmed operable thresholds for each set of data to determine overall health of the pack-unit 200. For example, one such threshold may indicate the maximum number of inoperable modules that can be within any one pack-unit at one time; another such threshold may indicate the maximum length of time for which a battery parameter such as voltage, current, or temperature may be at a certain level, indicating the inability of the pack-unit 200 to restore safe operating conditions for the cells 102 contained within, or yet another such threshold may indicate a maximum overall pressure within pack-unit 200. Other indicators of pack-unit 200 or battery module 100 health may be changes in the frequency of occurrences in which a battery parameter such as voltage, current, or temperature may be at a certain level, indicating potential failure. The lack of improvement of operation conditions despite modulation of operational parameters of pack-unit 200 or battery module 100 may also indicate potential failure. These thresholds are preferably adjusted during the operation of the system to adapt to variations in the performance of a pack-unit 200.
The CPU 302 preferably sends signals to each pack-unit 200 through the data bus 312 to retrieve operation data and to analyze pack-unit 200 to determine whether to disconnect or reconnect pack-unit 200 from/to the system 300, or to adjust power output of the pack-unit 200. Alternatively, each pack-unit 200 in the system 300 may also be capable of detecting internal operating conditions and disconnecting and connecting itself to the system 300. In the event the CPU 302 detects a pack-unit 200 that is operating at conditions that are deemed unhealthy by the CPU 302, the CPU 302 preferably electrically isolates said pack-unit 200 from the system 300. With the combination parallel and series electrical structure of the battery packs described above, in the event the CPU 302 determines a pack-unit 200 is inoperable, the pack-unit 200 may be isolated by the activation of the electrical bridge bypass 314 to reroute power in the system, as shown in
The data bus 312 of the preferred embodiment functions to transmit operation data from the pack-units 200 to the CPU 302, and preferably also functions to carry pack-unit 200 connection management data from the CPU 302 to the pack-units 200. The data bus 312 is preferably a serial data bus connecting the pack-units 200 and the CPU 302. The data bus 312 preferably allows data and control signals to flow from the pack-units 200 to the CPU 302 as well as from the CPU 302 back to the pack-units 200. The pack-units 200 preferably transmit data over representing the connection state of each individual pack-unit 200 over data bus 312. Alternatively, the CPU 302 may also transmit commands over the data bus 312 to the pack-units 200 to switch the pack-units 200 in or out of the system 300. Preferably, the signals from the CPU 302 will take a higher priority than any internal control circuitry in the pack-units 200 or the battery modules 100, allowing the CPU 302 to override the internal circuitry of the pack-units 200 or the battery modules 100.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/978,684 filed 9 Oct. 1007; U.S. Provisional Application No. 60/978,685 filed 9 Oct. 2007; U.S. Provisional Application No. 61/040,091 filed 27 Mar. 2008; and U.S. Provisional Application No. 61/040,094 filed 27 Mar. 2008. All four provisional applications are incorporated in their entirety by this reference.
Number | Date | Country | |
---|---|---|---|
60978684 | Oct 2007 | US | |
61040091 | Mar 2008 | US | |
61040094 | Mar 2008 | US |