Power source supplying circuit and method comprising a constant-voltage control arrangement

Information

  • Patent Grant
  • 6194873
  • Patent Number
    6,194,873
  • Date Filed
    Wednesday, January 26, 2000
    24 years ago
  • Date Issued
    Tuesday, February 27, 2001
    23 years ago
Abstract
In a power source supplying circuit for supplying a load with an external power source voltage supplied from an external power source terminal thereof, a backflow check diode and a current limiting resistor are disposed in a side of the external power source terminal out of a charging control transistor. The power source supplying circuit further comprises a constant voltage control circuit for controlling the charging control transistor and a battery voltage monitoring feedback resistor connected to the load.
Description




BACKGROUND OF THE INVENTION




This invention relates to a power source supplying circuit and a power source supplying method and, more particularly, to a power source supplying circuit and a power source supplying method which are capable of supplying a constant voltage to a load although variation of a load current is large.




As is well known in the art, power source supplying circuits of the type described are classified into two types, namely, first and second types in the manner which will presently be described. Specifically, the first type of the power source supplying circuits are a type where there is no charging circuit while the second type of the power source supplying circuits are a type comprising a charging control circuit. At first, the first type will be described. The second type will be later in the following.




In the manner which will later be described in conjunction with

FIG. 1

, a conventional power source supplying circuit of the first type has an external input/output connector power supply terminal, an external input/output connector ground terminal, a battery connection power source terminal, and a battery connection ground terminal. The battery connection power source terminal is connected to a portable radio apparatus serving as a load. A backflow check diode is disposed between the external input/output connector power source terminal and the battery connection power source terminal. Specifically, the backflow check diode has an anode electrode connected to the external input/output connector power source terminal and a cathode electrode connected to the battery connection power source terminal. As described above, the first type of the conventional power source supplying circuit does not carry out a power source control.




In the manner which will later be described in conjunction with

FIG. 2

, it is impossible for the conventional power source supplying circuit of the first type to supply the portable radio apparatus with a stable voltage. This is because a supply voltage drops by one corresponding to a voltage drop caused by a load current.




In the manner which will later be described in conjunction with

FIG. 3

, a conventional power source supplying circuit of the second type has not only the external input/output connector power supply terminal, the external input/output connector ground terminal, the battery connection power source terminal, and the battery connection ground terminal but also a battery connection battery presence or absence detection terminal. A charging control transistor is disposed between the external input/output connector power source terminal and the backflow check diode. A current limiting resistor is disposed between the backflow check diode and the battery connection power source terminal. Specifically, the charging control transistor consists of a P-channel metal oxide semiconductor field effect transistor (MOSFET). The P-channel MOSFET has a source electrode connected to the external input/output connector power source terminal and a drain electrode connected to the anode electrode of the backflow check diode. The cathode electrode of the backflow check diode is connected to an end of the current limiting resistor which has another end connected to the battery connection power source terminal.




The conventional power source supply circuit of the second type further comprises a current detection circuit for detecting a current flowing in the current limiting resistor and a charging control circuit. The charging control circuit is supplied with a current detected signal and a battery presence and absence detected signal from the current detection circuit and the battery connection batter presence and absence detection terminal, respectively. Responsive to the current detected signal and the battery presence and absence detected signal, the charging control circuit controls the charging control transistor. The charging control circuit supplies a control signal to a control terminal (gate electrode) of the charging control transistor.




In the manner which will later be described in conjunction with

FIG. 4

, inasmuch as the backflow check diode and the current limiting resistor serves as a voltage drop arrangement. As a result, it is difficult for the conventional power source supplying circuit of the second type to supply the portable radio apparatus (the load) with a stable voltage.




In addition, various prior arts related to this invention are already known. By way of example, Japanese Utility Model Registration No. 2,571,356 or JP-Y2571356 discloses an absolute displacement measurement equipment comprising a power source voltage control circuit. In the power source voltage control circuit described in JP-Y 2571356, a voltage supplied from a solar cell is supplied to an EEPROM acting as a load via a first backflow check diode and two paths. A first path supplies the load with the voltage through a small-capacity capacitor for stabilizing a power source voltage. A second path supplies the load with the voltage through a constant current circuit, a charging circuit, a large-capacity capacitor, and a second backflow check diode. In addition, the power source voltage control circuit is provided with a voltage detection circuit for detecting a voltage between both ends of the large-capacity capacitor to produce a voltage detected signal which is supplied to the load and the charging circuit.




However, in the manner as the conventional power source supplying circuit of the first type, it is impossible for JP-Y2571356 to supply the load with a stable voltage caused by a voltage drop in the backflow check diode.




In addition, Japanese Unexamined Patent Publication of Tokkai No. Show 64-30, 430 or JP-A 1-030430 discloses a power source circuit which is capable of preventing overcurrent even when a capacitor with large capacitance is employed, by providing a resistor for limiting charging current of capacitor, a bypass diode and a diode for preventing reverse charging of capacitor. The power source circuit disclosed in JP-A 1-030430 comprises a series circuit, a capacitor, and a bypass diode. The series circuit is connected between a DC power source and a load. The series circuit consists of a backflow check diode, a current limiting resistor, and a back-charging check diode. The capacitor is connected between a ground and a connection point of the current limiting resistor and the back-charging check diode. The capacitor supplies the load with an electric power on instantaneously breaking of the DC power source and on decreasing of a voltage. The bypass diode is in parallel connected to the series circuit. The bypass diode supplies the load with the electric power when the DC power source is normal or when the capacitor is initially charged.




With this structure, even when the capacity of the capacitor is increased, initial charging current of the capacitor is limited by the current limiting resistor. Consequently, overcurrent does not flow into the backflow check diode and voltage drop of the DC power source due to overload causes no bad influence onto the load. Inasmuch as the current limiting resistor is inserted, long time is required until charging voltage of the capacitor increases to a level for enabling operation of the load during initial charging stage. Consequently, the bypass diode is connected to supply power normally from the DC power source through the bypass diode to the load.




However, it is difficult for JP-A 1-030430 to supply the load with a stable voltage because of voltage drop in the backflow check diode, the current limiting resistor, the back-charging check diode.




Furthermore, Japanese Unexamined Patent Publication of Tokkai No. Hei 8-317,571 or JP-A 8-317571 discloses a charge circuit for a secondary battery, which prevents the reverse flow of a current from a battery to the side of a charge circuit, and also shortens the charge time by enabling the accurate measurement of battery voltage, and further does not deteriorate the battery due to overcharge. In the charge circuit for the secondary battery disclosed in JP-A 8-317571, a reverse flow preventive (backflow check) diode is inserted between a secondary battery and a charge current control circuit which controls the charge current to be supplied to the secondary battery, on the basis of the output of a voltage detecting circuit for detecting the terminal voltage of the secondary battery. An FET is inserted between the secondary battery and the voltage detection circuit. A switch control circuit performs the control to put the FET in current-conduction state when the power source for charge is turned on and to put it in no current-conduction state when the power source for charge is turned off.




The above-mentioned JP-A 8-317571 may disclose the invention related to the charge circuit for the secondary battery. If the battery regards as a load in JP-A8-317571, it is difficult to supply the load (the battery) with a stable voltage because of voltage drop in the reverse flow preventive (backflow check) diode.




In addition, Japanese Unexamined Patent Publication of Tokkai No. Hei 10-243,553 or JP-A 10-243553 discloses a battery-driven electronic equipment and a control method therefor, which are capable of miniaturizing an external power supply with a function of charging an internal battery maintained, by controlling a charging circuit according to the presence or absence of connection with the external power supply and the state of the operation of electronic equipment. In the battery-driven electronic equipment disclosed in JP-A 10-243553, a system-off signal generated by a power switch is supplied to a power supply control circuit. The power supply control circuit sends a control signal to a constant voltage control circuit. The constant voltage control circuit turns off a constant voltage circuit (charging circuit), and a system is thereby turned off. Thereafter, the power supply control circuit sends a control signal to a charge control circuit, and the charge control circuit turns off the charging circuit to charge a battery. Thereby, an external power supply of small capacity can be used with a charging function maintained, and thus the external power supply can be miniaturized in electronic equipment.




Inasmuch as a voltage is supplied to the system from the external power supply through the constant voltage circuit in JP-A 10-243553, a predetermined voltage may be supplied to the system. However, in a case where there is a voltage drop arrangement such as a backflow check diode, a current limiting resistor, or the like, JP-A 10-243553 never discloses a concrete embodiment regarding how to supply a constant voltage.




Japanese Unexamined Patent Publication of Tokkai No. Hei 9-130,981 or JP-A 9-130981 discloses a charge control device which is capable of always holding charged voltage of a battery at a charge stop voltage. In the charge control device disclosed in JP-A 9-130981, when voltage of a battery decreases to set a mobile terminal such as a portable telephone set, a portable radio terminal, or the like to a charger for charging, a microcomputer turns on first and second changeover switches and turns off a third changeover switch, so that a charge current is supplied to the battery and the mobile terminal, that is, a portable device control circuit through a protecting diode by an external control circuit. When completion of charging is detected by the microcomputer, it turns off the first and the second changeover switches also turns on the third changeover switch, the current by the external input voltage is supplied only to the mobile terminal, that is, the portable device control circuit, so as to suppress consumption of the battery.




In the above-mentioned JP-A 9-130981, the microcomputer merely carries out a constant voltage charging control operation to the battery by controlling turning on and off of the first through the third changeover switches. In other words, JP-A 9-130981 never describes regarding how to hold a voltage constant in a case where a load current of a load varies.




In addition, Japanese Unexamined Patent Publication of Tokkai No. Hei 9-190,231 or JP-A 9-190231 discloses a power source device which is capable of outputting highly precise voltage. According to JP-A 9-190-231, the power source device comprises a voltage control circuit of a shunt regulator system that is connected to a power supply circuit through a resistor. The voltage control circuit is connected in parallel with a load.




However, a load variation is not taken into account at all in the above-mentioned JP-A 9-190231 in the similar manner as JP-A9-130981. That is, JP-A 9-190231 never discloses nor teaches regarding how to hold a voltage constant in a case where a load current of the load varies.




SUMMARY OF THE INVENTION




It is therefore an object of this invention to provide a power source supplying circuit and a power source supplying method, which is capable of always supplying a load with a constant stable voltage although a load current drastically varies.




Other objects of this invention will become clear as the description proceeds.




According to a first aspect of this invention, a power source supplying circuit supplies a load with an external power source voltage supplied from an external power source terminal thereof. The power source supplying circuit comprises a backflow check diode, a current limiting resistor, and a charging control transistor. The backflow check diode and the current limiting resistor are disposed in a side of the external power source terminal out of the charging control transistor. The power source supplying circuit further comprises a current detection circuit connected between both ends of the current limiting resistor. The current detection circuit detects a current flowing the current limiting resistor on the basis of a potential difference between the both ends of the current limiting resistor to produce a current detected signal. Connected to the current detection circuit and supplied with a battery presence or absence detected signal, a charging control circuit controls the charging control transistor in response to the current detected signal and the battery presence and absence detected signal. A feedback resistor has an end connected to said load. Connected to another end of the feedback resistor, a constant-voltage control circuit controls the charging control transistor so as to make a voltage supplied to the load a constant voltage, thereby always supplying a constant stable voltage to the load although a load current of the load varies.




According to a second aspect of this invention, a power source supplying method supplies a load with an external power source voltage supplied from an external power source terminal. The power source supplying method comprises the steps of applying the external power source voltage through a backflow check diode and a current limiting resistor, of controlling, using constant-voltage control means, a dropped voltage to which the external power source voltage is dropped by the backflow check diode and the current limiting resistor so as to make the dropped voltage a constant voltage, and of supplying the constant voltage to the load, thereby always supplying the load with a constant stable voltage although a load current of the load varies.




According to a third aspect of this invention, a power source supplying circuit supplies a load through a backflow check diode with a voltage supplied from an external power source terminal. The power source supplying circuit comprises a constant-voltage control arrangement disposed between the backflow check diode and the load, thereby always supplying the load with a constant stable voltage although a load current of the load varies.




According to a fourth aspect of this invention, a power source supplying method supplies a load with an external power source voltage supplied from an external power source terminal. The power source supplying method comprises the steps of applying the external power source voltage through a backflow check diode, of controlling, using a constant-voltage control arrangement, a dropped voltage to which the external power source voltage is dropped by the backflow check diode so as to make the dropped voltage a constant voltage, and of supplying the constant voltage to the load, thereby always supplying the load with a constant stable voltage although a load current of the load varies.











BRIEF DESCRIPTION OF THE DRAWING





FIG. 1

is a block diagram of a conventional power source supplying circuit of a first type;





FIG. 2

shows a timing chart for use in describing operation of the power source supplying circuit illustrated in

FIG. 1

;





FIG. 3

is a block diagram of a conventional power source supplying circuit of a second type;





FIG. 4

shows a timing chart for use in describing operation of the power source supplying circuit illustrated in

FIG. 3

;





FIG. 5

is a block diagram of a power source supplying circuit according to a first embodiment of this invention;





FIG. 6

shows a timing chart for use in describing operation of the power source supplying circuit illustrated in

FIG. 5

; and





FIG. 7

is a block diagram of a power source supplying circuit according to a second embodiment of this invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 1

, a conventional power source supplying circuit


10


′ of a first type will be described at first in order to facilitate an understanding of the present invention. The illustrated power source supplying circuit


10


′ comprises an external input/output connector


11


and a battery connection terminal


12


. The external input/output connector


11


is connected to an external power supply


20


while the battery connection terminal


12


is connected to a battery unit


30


including a battery


31


.




The external input/output connector


11


has an external input/output connector power supply terminal


11




a


and an external input/output connector ground terminal


11




b


which is grounded. The battery connection terminal


12


has a battery connection power source terminal


12




a


and a battery connection ground terminal


12




b


which is grounded.




The power source supplying circuit


10


′ is connected to a portable radio apparatus


40


serving as a load. Specifically, the portable radio apparatus


40


is connected to the battery connection power source terminal


12




a


. The power source supplying circuit


10


′ comprises a backflow check diode


13


which is disposed between the external input/output connector power source terminal


11




a


and the battery connection power source terminal


12




a


. Specifically, the backflow check diode


13


has an anode electrode


13




a


connected to the external input/output connector power source terminal


11




a


and a cathode electrode


13




b


connected to the battery connection power source terminal


12




a


. As described above, the first type of the conventional power source supplying circuit


10


′ does not carry out a power source control.




Referring now to

FIG. 2

in addition to

FIG. 1

, the description will proceed to operation of the conventional power source supplying circuit


10


′.

FIG. 2

illustrates a waveform of a voltage supplied to the portable radio apparatus


40


. In

FIG. 2

, the abscissa represents a time instant t and the ordinate represents the voltage V.

FIG. 2

illustrates an example where a first load current occurs at a first time instant t


1


, the first load current is released a second time instant t


2


, a second load current occurs at a third time instant t


3


, the second load current is released at a fourth time instant t


4


, a third load current occurs at a fifth time instant t


5


, and the third load current is released at a sixth time instant t


6


. In the manner which is described above, the portable radio apparatus


40


repeats occurrence and release of the load current.




It will be assumed that an external power source voltage is applied to the external input/output connector power source terminal


11




a


and the portable radio apparatus


40


connected to the battery connection power source terminal


12




a


carries out transmission and reception to flow the load current of several hundreds of milliamperes. In this event, a voltage in the battery connection power source terminal


12




a


drops than the external power source voltage caused by a forward voltage V


f


of the backflow check diode


13


. That is, the backflow check diode


13


serves as a voltage drop arrangement. Accordingly, as illustrated in

FIG. 2

, the load current flows during a time duration from the first time instant t


1


of occurrence of the first load current to the second time instant t


2


of release of the first load current, during a time duration from the third time instant t


3


of occurrence of the second load current to the fourth time instant t


4


of release of the second load current, and during a time duration from the fifth time instant t


5


of occurrence of the third load current to the sixth time t


6


of release of the third load current. As a result, it is impossible for the conventional power source supplying circuit


10


′ of the first type to supply the portable radio apparatus


40


with a stable voltage, as mentioned in the preamble of the instant specification. This is because a supply voltage drops by a part corresponding to a voltage drop Vd


B


caused by the load current.




Referring to

FIG. 3

, a conventional power source supplying circuit


10


″ of a second type will be described in order to facilitate an understanding of the present invention. The illustrated power source supplying circuit


10


″ comprises the external input/output connector


11


and a battery connection terminal


12


A. The external input/output connector


11


is connected to the external power supply


20


while the battery connection terminal


12


A is connected to a battery unit


30


A including a battery


31


.




The battery connection terminal


12


A has not only the battery connection power source terminal


12




a


and the battery connection ground terminal


12




b


but also a battery connection battery presence or absence detection terminal


12




c


. The battery connection battery presence or absence detection terminal


12




c


is supplied with a battery presence or absence detected signal from the battery unit


30


A.




The power source supplying circuit


10


″ comprises not only the backflow check diode


13


but also a charging control transistor


14


and a current limiting resistor


15


. The charging control transistor


14


is disposed between the external input/output connector power source terminal


11




a


and the backflow check diode


13


. The current limiting resistor


15


is disposed between the backflow check diode


13


and the battery connection power source terminal


12




a


. Specifically, the charging control transistor


14


consists of a P-channel metal oxide semiconductor field effect transistor (MOSFET). The P-channel MOSFET


14


has a source electrode


14




a


connected to the external input/output connector power source terminal


11




a


and a drain electrode


14




b


connected to the anode electrode


13




a


of the backflow check diode


13


. The cathode electrode


13




b


of the backflow check diode


13


is connected to an end


15




a


of the current limiting resistor


15


which has another end


15




b


connected to the battery connection power source terminal


12




a.






The conventional power source supplying circuit


10


″ of the second type further comprises a current detection circuit


16


for detecting a current flowing in the current limiting resistor


15


and a charging control circuit


17


. The charging control circuit


17


is supplied with a current detected signal and the battery presence and absence detected signal from the current detection circuit


16


and the battery connection battery presence and absence detection terminal


12




c


, respectively. Responsive to the current detected signal and the battery presence and absence detected signal, the charging control circuit


17


controls the charging control transistor


14


. The charging control circuit


17


supplies a control signal to a control terminal (gate electrode)


14




c


of the charging control transistor


14


.




Referring now to

FIG. 4

in addition to

FIG. 3

, the description will proceed to operation of the conventional power source supplying circuit


10


″.

FIG. 4

illustrates a waveform of a voltage supplied to the portable radio apparatus


40


. In

FIG. 4

, the abscissa represents a time instant t and the ordinate represents the voltage V. In the manner which is described in conjunction with

FIG. 2

,

FIG. 4

illustrates an example where the portable radio apparatus


40


repeats occurrence and release of the load current.




It will be presumed that the external power source voltage is applied to the external input/output connector power source terminal


11




a


in a case where the battery presence and absence detected signal supplied from the battery connection battery presence and absence detection terminal


12




c


indicates an absence of connection of the battery


31


. In this event, the charging control transistor


14


is constant-voltage controlled by the charging control circuit


17


. That is, the drain electrode


14




b


of the charging control transistor


14


produces a constant-voltage controlled voltage.




Inasmuch as the backflow check diode


13


and the current limiting resistor


15


are disposed between the charging control transistor


14


and the batter connection power source terminal


12




a


, the constant-voltage controlled voltage is supplied to the battery connection power source terminal


12




a


through the backflow check diode


13


and the current limiting resistor


15


. Under the circumstances, it will be assumed that portable radio apparatus


40


connected to the battery connection power source terminal


12




a


carries out transmission and reception to flow the load current of several hundreds of milliamperes. In this event, a voltage in the battery connection power source terminal


12




a


drops than the constant-voltage controlled voltage due to a voltage drop caused by the forward voltage V


f


of the backflow check diode


13


and the current limiting resistor


15


. That is, a combination of the backflow check diode


13


and the current limiting resistor


15


acts as a voltage drop arrangement.




Accordingly, as illustrated in

FIG. 4

, the load current flows during a time duration from the first time instant t


1


of occurrence of the first load current to the second time instant t


2


of release of the first load current, during a time duration from the third time instant t


3


of occurrence of the second load current to the fourth time instant t


4


of release of the second load current, and during a time duration from the fifth time instant t


5


of occurrence of the third load current to the sixth time t


6


of release of the third load current. As a result, a voltage drop Vd


C


caused by the load current increases as compared with the voltage drop Vd


B


illustrated in FIG.


2


and it is impossible for the conventional power source supplying circuit


10


″ of the second type to supply the portable radio apparatus


40


with a stable voltage, as also mentioned in the preamble of the instant specification.




Referring to

FIG. 5

, the description will proceed to a power source supplying circuit


10


according to a first embodiment of this invention. The power source supplying circuit


10


is similar in structure and operation to the conventional power source supplying circuit


10


″ of the second type illustrated in

FIG. 3

except that the backflow check diode


13


, the charging control transistor


14


, and the current limiting resistor


15


are disposed in a state different from those illustrated in

FIG. 3

as will later become clear and the power source supplying circuit


10


further comprises a constant-voltage control circuit


18


and a battery voltage monitoring feedback resistor


19


. A combination of the charging control transistor


14


, the battery voltage monitoring feedback resistor


19


, and the constant-voltage control circuit


18


serves as a constant voltage control arrangement for holding the voltage of the battery connection power source terminal


12




a


constant.




More specifically, the backflow check diode


13


and the current limiting resistor


15


are disposed at a side of the external input/output connector power source terminal


11




a


out of the charging control transistor


14


while the backflow diode


13


and the current limiting resistor


15


are disposed to a side of the battery connection power source terminal


12




a


out of the charging control transistor


14


in the conventional power source supplying circuit


10


″ of the second type illustrated in FIG.


3


.




That is, the external input/output connector power source terminal


11




a


is connected to the anode electrode


13




a


of the backflow check diode


13


. The cathode electrode


13




b


of the backflow check diode


13


is connected to an end


15




a


of the current limiting resistor


15


. The current limiting resistor


15


has another end connected to the source electrode


14




a


of the P-channel MOSFET serving as the charging control transistor


14


. The charging control transistor


14


is for control a constant voltage. The both ends


15




a


and


15




b


of the current limiting resistor


15


are connected to the current detection circuit


16


. The current detection circuit


16


detects a charging current flowing the current limiting resistor


15


on the basis of a potential difference between the both ends


15




a


and


15




b


of the current limiting resistor


15


. The drain electrode of the charging control transistor


14


is connected to the battery connection power source terminal


12




a


, the portable radio apparatus


40


, and an end of the battery voltage monitoring feedback resistor


19


. The battery voltage monitoring feedback resistor


19


has another end connected to the constant-voltage control circuit


18


. The constant-voltage control circuit


18


monitors the voltage of the battery connection power source terminal


12




a


through the battery voltage monitoring feedback resistor


19


. The charging control circuit


17


is supplied with the battery presence or absence detected signal and the current detected signal from the battery connection battery presence or absence detection terminal


12




c


and the current detection circuit


16


, respectively. The charging control circuit


17


controls not only the constant-voltage control circuit


18


but also the charging control transistor


14


. The constant-voltage control circuit


18


controls the charging control transistor


14


.




Now, the description will proceed to operation of the power source supplying circuit


10


illustrate in FIG.


5


.




It will be assumed that the charging control circuit


17


detects that the battery presence or absence detected signal supplied to the battery connection battery presence or absence detection terminal


12




c


indicates no connection of the battery


31


. In this event, the external power source voltage applied to the external input/output connector power source terminal


11




a


passes through the backflow check diode


13


and the current limiting resistor


15


, is controlled in the constant voltage by the charging control transistor


14


, and then is supplied to the battery connection power source terminal


12




a


. Under the circumstances, the voltage in the battery connection power source terminal


12




a


is monitored in the constant-voltage control circuit


18


through the battery voltage monitoring feedback resistor


19


. The constant-voltage control circuit


18


controls the charging control transistor


14


so as to hold or make the battery connection power source terminal


12




a


a constant voltage.




It will presumed that the portable radio apparatus


40


carries out transmission and reception to flow the load current of several hundreds of milliamperes. In this event, the voltage in the battery connection power source terminal


12




a


is about to drop caused by the forward voltage V


f


in the backflow check diode


13


and the current limiting resistor


15


. However, the constant-voltage control circuit


18


monitors the voltage of the battery connection power source terminal


12




a


through the battery voltage monitoring feedback resistor


19


to control the charging control transistor


14


so as to hold the battery connection power source terminal


12




a


the constant voltage. Accordingly, it is possible to hold the voltage of the battery connection power source terminal


12




a


constant although the load current in the battery connection power source terminal


12




a


drastically changes.





FIG. 6

illustrates a transient voltage in the battery connection power source terminal


12




a


in the power source supplying circuit


10


illustrated in FIG.


5


. In

FIG. 6

, the abscissa represents a time instant t and the ordinate represents the voltage V. Transmission and reception of the portable radio apparatus


40


is intermittently carried out by making the portable radio apparatus


40


on-off control to repeat occurrence of a first load current at a first time instant t


1


, release of the first load current at a second time instant t


2


, occurrence of a second load current at a third time instant t


3


, release of the second load current at a fourth time instant t


4


, occurrence of a third load current at a fifth time instant t


5


, release of the third load current at a sixth time instant t


6


, and so on. Although the load current of several hundreds of milliamperes flows in the portable radio apparatus


40


during a time duration from the first time instant t


1


of the occurrence of the first load current to the second time instant t


2


of the release of the first load current, during a time duration from the third time instant t


3


of the occurrence of the second load current to the fourth time instant t


4


of the release of the second load current, and during a time duration from the fifth time instant t


5


of the occurrence of the third load current to the sixth time instant t


6


of the release of the third load current, there is no voltage drop Vd


A


caused by the load current in the battery connection power source terminal


12




a


. As a result, it is possible to hold the voltage of the battery connection power source terminal


12




a


constant although the load current in the battery connection power source terminal


12




a


drastically changes.




Referring to

FIG. 7

, the description will proceed to a power source supplying circuit


10


A according to a second embodiment of this invention. The illustrated power source supplying circuit


10


A exemplifies a circuit with no charging control. The power source supplying circuit


10


A is similar in structure and operation to the conventional power source supplying circuit


10


′ of the first type illustrated in

FIG. 1

except that the power source supplying circuit


10


A further comprises the constant-voltage control circuit


18


, the battery voltage monitoring feedback resistor


19


, and a constant-voltage control transistor


14


A.




The constant-voltage control transistor


14


A is disposed between the backflow check diode


13


and the battery connection power source terminal


12




a


. The constant-voltage control circuit


18


controls the constant-voltage control transistor


14


A. The battery voltage monitoring feedback resistor


19


is for monitoring the voltage in the battery connection power source terminal


12




a


. Accordingly, a constant-voltage control is carries out using a combination of the constant-voltage control transistor


14


A, the battery voltage monitoring feedback resistor


19


, and the constant-voltage control circuit


18


. In the example being illustrated, the constant-voltage control transistor


14


A comprises a P-channel MOSFET. That is, the combination of the constant-voltage control transistor


14


A, the battery voltage monitoring feedback resistor


19


, and the constant-voltage control circuit


18


is operable as a constant-voltage control arrangement for holding the voltage of the battery connection power source terminal


12




a


constant.




With this structure, it is possible to hold the voltage of the battery connection power source terminal


12




a


constant although the load current in the battery connection power source terminal


12




a


drastically changes so that the portable radio apparatus


40


carries out transmission and reception to flow the load current of several hundreds of milliamperes in the battery connection power source terminal


12




a.






While this invention has thus far been described in conjunction with preferred embodiments thereof, it will now be readily possible for those skilled in the art to put this invention into various other manners. For example, a bipolar transistor may be used as the charging control transistor


14


or the constant-voltage control transistor


14


A although the MOSFETs are used as the charging control transistor


14


and the constant-voltage control transistor


14


A in the above-mentioned embodiments.



Claims
  • 1. A power source supplying circuit for supplying a load with an external power source voltage supplied from an external power source terminal thereof, said power source supplying circuit comprising a backflow check diode, a current limiting resistor, and a charging control transistor, wherein said backflow check diode and said current limiting resistor are disposed in a side of said external power source terminal out of said charging control transistor, said power source supplying circuit further comprising:a current detection circuit, connected between both ends of said current limiting resistor, for detecting a current flowing said current limiting resistor on the basis of a potential difference between the both ends of said current limiting resistor to produce a current detected signal; a charging control circuit, connected to said current detection circuit and supplied with a battery presence or absence detected signal, for controlling said charging control transistor in response to the current detected signal and the battery presence and absence detected signal; a feedback resistor having an end connected to said load; and a constant-voltage control circuit, connected to another end of said feedback resistor, for controlling said charging control transistor so as to make a voltage supplied to said load a constant voltage, thereby always supplying a constant stable voltage to said load although a load current of said load varies.
  • 2. A power source supplying circuit as claimed in claim 1, wherein said load comprises a radio apparatus.
  • 3. A power source supplying circuit as claimed in claim 1, wherein said charging control transistor consists of a P-channel metal oxide semiconductor field effect transistor having a source electrode connected to an end of said current limiting resistor, a drain electrode connected to said load, and a gate electrode which is connected to said constant-voltage control circuit and said charging control circuit.
  • 4. A method of supplying a load with an external power source voltage supplied from an external power source terminal, said method comprising the steps of:applying the external power source voltage through a backflow check diode and a current limiting resistor; controlling, using constant-voltage control means, a dropped voltage to which the external power source voltage is dropped by said backflow check diode and said current limiting resistor so as to make the dropped voltage a constant voltage; and supplying the constant voltage to said load, thereby always supplying said load with a constant stable voltage although a load current of said load varies.
  • 5. A power source supplying circuit for supplying a load through a backflow check diode with a voltage supplied from an external power source terminal, said power source supplying circuit comprising constant-voltage control means disposed between said backflow check diode and said load, thereby always supplying said load with a constant stable voltage although a load current of said load varies.
  • 6. A power source supplying circuit as claimed in claim 5, wherein said constant-voltage control means comprises:a constant-voltage control transistor having main electrodes which are connected to said backflow check diode and said load, respectively; a feedback resistor having an end connected to said load; and a constant-voltage control circuit, connected to another end of said feedback resistor, for controlling said constant-voltage control transistor so that a voltage supplied to said load becomes a constant voltage.
  • 7. A power source supplying circuit as claimed in claim 6, wherein said constant-voltage control transistor consists of a P-channel metal oxide semiconductor field effect transistor having a source electrode connected to a cathode electrode of said backflow check diode, a drain electrode connected to said load, and a gate electrode connected to said constant-voltage control circuit.
  • 8. A method of supplying a load with an external power source voltage supplied from an external power source terminal, said method comprising the steps of:applying the external power source voltage through a backflow check diode; controlling, using constant-voltage control means, a dropped voltage to which the external power source voltage is dropped by said backflow check diode so as to make the dropped voltage a constant voltage; and supplying the constant voltage to said load, thereby always supplying said load with a constant stable voltage although a load current of said load varies.
Priority Claims (1)
Number Date Country Kind
11-016583 Jan 1999 JP
US Referenced Citations (2)
Number Name Date Kind
5736833 Farris Apr 1998
5909101 Matsumoto et al. Jun 1999
Foreign Referenced Citations (12)
Number Date Country
0280514A1 Aug 1998 EP
1092863 Nov 1967 GB
1365755 Sep 1974 GB
1444164 Jul 1976 GB
2325313 Nov 1998 GB
2334600 Aug 1999 GB
64-30430 Feb 1989 JP
8-317571 Nov 1996 JP
9-130981 May 1997 JP
9-919231 Jul 1997 JP
2571356 Feb 1998 JP
10-243553 Sep 1998 JP