Embodiments of the present invention relate to gasless inverter generators or power stations that are connectible to a gas generator and, more particularly, to a system for increasing power output available to an electrical load by connecting a power station to a gas inverter generator.
Generators or generator systems are useful as mobile or backup power sources. Generator systems may include traditional or gas generators powered by fossil fuels, such as, for example, gasoline, liquefied petroleum gas (LPG), or natural gas (NG), or gasless inverter generators/inverter power stations powered by battery systems. These generator systems can provide power in locations without access to the utility grid or when natural disasters, extreme weather events, or other conditions result in a power outage.
Gas generators are used in a wide variety of applications. Typically, a gas generator includes a single driving engine directly coupled to an electrical power generator, such as, for example, an alternator, through a common shaft. Once a user starts a gas generator, a fuel and air mixture flows to combustion chambers of cylinders within the engine. Spark plugs ignite the fuel and air mixture in each combustion chamber, producing an explosion within the cylinders. The explosive forces within the combustion chambers thrust pistons within corresponding engine cylinders into a reciprocating motion. The engine crankshaft converts the reciprocating motion of the pistons into rotational motion to drive the alternator, which then generates alternating current (“AC”) power. Gas generators may also include a converter or rectifier to convert the AC power from the alternator into direct current (“DC”) power and an inverter to convert the DC power back into AC power. The AC power output by the inverter is generally of a higher quality than the AC power output by the alternator because the inverter filters its AC power output to provide increased stability and reliability. Gas generators with inverters are often called gas inverter generators.
Gasless inverter power stations are also used in a wide variety of applications. Typically, gasless inverter power stations include battery systems that can store electrical energy for later use via batteries connected in series or in parallel to expand capacity in terms of voltage and/or current. Gasless inverter power stations also include an inverter to convert DC power from their battery systems into AC power. Users of these power stations can charge the battery systems with energy from various sources such as, for example, the utility grid using a converter or rectifier that changes AC power into DC power. Alternatively, such users may elect to charge their battery systems with energy from carbon-free renewable energy sources, the use of which generally reduces dependence on fossil fuels and lowers energy bills. As an example, solar panels can charge battery systems to provide a renewable source of stored energy independent from the utility grid, which is convenient for many mobile and off-grid applications.
Portable gasless inverter power stations and portable gas generators generally have a size that allows them to be easily transported. However, the size of a gasless inverter power station and a gas generator can limit the available power output. Some electrical loads require a power output that is higher than an available power rating of smaller gasless inverter power stations and gas generators. Unfortunately, larger gasless inverter power stations and gas generators that could power such electrical loads are typically more expensive and can be harder to transport.
A consumer may desire to own both a portable gasless inverter power station and a portable gas inverter generator to utilize the benefits of each device, depending on the circumstances. For example, a consumer may typically use a portable gas generator, but additionally own a gasless inverter power station for safe use indoors. However, ownership of both a portable gasless inverter power station and a portable gas generator, by itself, would not allow a consumer to power an electrical load requiring a power output higher than a power rating of either device, but lower than a combined power rating of the two devices.
Therefore, it would be desirable to provide a power station that is powered by a battery system and that can be electrically connected to a gas generator to increase the power or energy capacity available to a load.
Embodiments of the present invention relate to a power station connectable to a gas generator to increase the power output available to an electrical load.
In accordance with one aspect of the invention, a power station and gas generator assembly includes an inverter power station, a gas generator, and a linking module electrically couplable to the inverter power station and the gas generator to provide a combined power output therefrom.
In accordance with another aspect of the invention, a power station and gas inverter assembly includes a power station having a battery system and an inverter electrically coupled to the battery system. The power station and gas inverter assembly includes a gas inverter generator and a linking module electrically couplable to the power station and the gas inverter generator to combine power received therefrom into a combined power output. The linking module is configured to provide the combined power output with an increased current output in comparison to a current of the power received from the power station and a current of the power received from the gas inverter generator and with a voltage output equal to a voltage of the power received from the power station and the gas inverter generator.
In accordance with yet another aspect of the invention, a power station and gas generator assembly includes an inverter power station configured to provide a first AC power output at an AC voltage and a first AC current at or below a first AC current rating, a gas inverter generator configured to provide a second AC power output at the AC voltage and a second AC current at or below a second AC current rating, and a linking kit. The linking kit is configured to electrically connect to the inverter power station to receive the first AC power output therefrom, electrically connect to the gas inverter generator to receive the second AC power output therefrom, combine the first and second AC power outputs into a third AC power output at the AC voltage and a third AC current that is a combination of the first and second AC currents, and provide the third AC power output to a load at the AC voltage and the third AC current at or below a third AC current rating that is a combination of the first and second AC current ratings.
These and other advantages and features of the present invention will be more readily understood from the following detailed description and the accompanying drawings.
The drawings illustrate embodiments presently contemplated for carrying out the invention.
In the drawings:
The operating environment of the invention is described herein with respect to portable power stations and portable gas inverter generators. However, those skilled in the art will appreciate that the invention is equally applicable for use with nonportable power stations and nonportable gas inverter generators. While the invention is described with respect to a portable battery-operated power station having an inverter that converts DC power to AC power, embodiments of the invention are equally applicable for use with battery-operated power stations having a DC-to-DC power converter. Further, while the invention is described with respect to a portable gas inverter generator to generate a desired form of AC power, embodiments of the invention are equally applicable to gas generators that provide AC power but do not include inverters.
Referring to
The power station 20 typically includes an onboard battery system 36 including one or more batteries (not shown in
The power station 20 is shown with a control panel 46 located on a front sidewall 48 of the power station 20. The control panel 46 controls operation of the power station 20 and connects to one or more electrical devices powered by the power station 20. The control panel 46 includes one or more power output receptacles 50 (for example, sockets) that receive electrical connections (for example, plugs) from the electrical devices. The power output receptacles 50 are generally powered by the onboard battery system 36 via the control system 38. The one or more power output receptacles 50 are shown as a plurality of DC power output receptacles 52 and a plurality of AC power output receptacles 54, with the inverter 42 providing AC power to the AC power output receptacles 54.
The control panel 46 includes a power button 56 to turn on and off the power station 20. The power station 20 is turned on/off by the power button 56 when pressed and held for a short period of time. When the power station 20 is on, the power button 56 can also turn the AC power output receptacles 54 on/off when pressed without being held. The control panel 46 may include a display 58, also referred to as a user display panel, to show operating characteristics of the power station 20. The display 58 is typically an automatic display 58 displaying one or more items of information that the control system 38 automatically stores and updates without user input and will be referenced as the automatic display 58 below. However, in some embodiments, the display 58 may also display one or more items of information that control system 38 does not automatically update or may be configured in a manner that requires a manual input from a user for all information updates. In some embodiments, the power button 56 illuminates the automatic display 58 each time it is pressed. The automatic display 58 can display a battery level of the power station 20 to a person using the power station 20. Herein, the battery level of the power station 20 is also referred to as the energy level, charge level, or state of charge of the power station 20. The automatic display 58 may display the battery level in terms of percentages. As such, the battery level is also referenced herein as a percent battery level. The battery level of the onboard battery system 36 may correspond to the battery voltage.
The control system 38 is programmed to determine a THD associated with the AC power from the inverter 42 and to operate the automatic display 58 to indicate the THD to an operator. The automatic display 58 may indicate whether the THD is above a level that could damage sensitive electronic components powered by the inverter 42. High THD is generally caused by a high load on the AC power output receptacles 54 and/or by a low battery level powering the inverter 42. As the battery level drops, the AC power output can be too high for the inverter 42 to simulate a pure sine wave. In various embodiments, the battery level of the onboard battery system 36 corresponds to a voltage output from the battery. Thus, the THD may be determined based on power and voltage output from the power station 20.
The control system 38 may determine the power and voltage output from the power station 20 via measured voltage, current, and/or power values from one or more voltage, current, and/or power sensors (not shown) on the power station 20. Depending on the type of sensor used, the control system 38 may either utilize measured values from the sensors directly or calculate values based on the measured values. Thereafter, the control system 38 may determine the battery level based on the voltage of the onboard battery system 36 and calculate the percent battery level of the onboard battery system 36 at a point in time based on the determined battery level and the battery level capacity of the onboard battery system 36. The THD can therefore be reduced by unplugging one or more AC devices from the power station 20 and/or by charging the onboard battery system 36. If the power output is lower, the inverter 42 will be able to simulate a pure sine wave (for example, a waveform with a low THD) at a lower battery level and for a longer period of time prior to the onboard battery system 36 being recharged.
The control system 38 may be programmed with a THD shield 60 to automatically shut off AC power output from the AC power output receptacles 54 when the THD is above a predetermined level (for example, 5%). The THD shield 60 of the control system 38 may automatically shut off AC power output when the onboard battery system 36 has a battery level below a predetermined battery level, which can indicate that the THD is above a predetermined THD level. In various embodiments, at full AC load (for example, 1,600 Watts (1,600 W)), the THD will rise above 5% at less than 20-25% battery level remaining, and at low loads (for example, 100 W), the THD will not rise above 5% until the onboard battery system 36 is basically dead. Since a charged or partially charged battery might have low THD even at full load, the THD shield 60 could be configured to determine that the battery level of the onboard battery system 36 is lower than a predetermined battery level prior to determining if the THD requires shutting off AC power output. In various embodiments, the predetermined battery level is approximately 30% of a battery level of the onboard battery system 36 when the onboard battery system 36 is at 100% battery level or fully charged and the predetermined THD level is approximately 5%. The DC power output receptacles 52 can remain powered even if the AC power output receptacles 54 are shut off by the THD shield 60.
An overload reset button 62, also referred to as a THD shield button 62, can be pressed to re-energize the DC and AC power output receptacles 52, 54 if they have been shut off due to an electrical fault. The overload reset/THD shield button 62 may also provide a user input control to selectively enable the THD shield 60 while the automatic display 58 indicates whether the THD shield 60 is enabled or disabled. In various embodiments, a user may press the overload reset/THD shield button 62 once to re-energize both AC power output receptacles 54 and DC power output receptacles 52 after an overload fault and five times in three seconds to turn the THD shield 60 on or off. When the THD shield 60 is on and the THD rises above a predetermined level, also referred to as a THD fault level, the control system 38 shuts off AC power output to prevent damage to sensitive electronics. A user may press the overload reset/THD shield button 62 to restore AC power to the AC power output receptacles 54 following a THD shutoff. An LED light 64 that can illuminate a work area in front of the power station 20 is positioned above the control panel 46 adjacent the overload reset button 62 and an LED light button 66 that turns on the LED light 64.
In various embodiments, to restore AC output after the control system 38 shuts off power according to the THD shield 60, a user should charge the power station 20 (if possible), lower the AC running watts by unplugging one or more electrical devices, and press the overload reset button 62 to re-energize the AC power output receptacles 54. In various embodiments, to prevent control system 38 from shutting off power due to the THD shield 60, a user should maintain a high battery level in the onboard battery system 36, charge the power station 20 during use, unplug high current draw AC appliances to lower the AC running watts when the battery falls to near 30% charge capacity, and/or turn off the THD shield 60. In various embodiments, to turn the THD shield 60 off, a user should lower the AC running watts by unplugging one or more devices to limit increasing THD levels as the battery level depletes and press the THD shield button 62 five times within three seconds. When the THD shield 60 is disabled, the control system 38 will not shut off AC power output when the THD rises above the predetermined level. A user should monitor sensitive devices for abnormal operation and disconnect as necessary.
Referring now to
The AC and DC charging modules 70, 72 have respective AC and DC power inlet receptacles 78, 80 each coupled to the onboard battery system 36 to recharge the power station 20. The AC charging module 70 may include a rectifier (not shown in
Referring now to
The control panel 46 is shown with a plurality of DC power output receptacles 52 that are powered by the onboard battery system 36 and/or any connected expansion batteries (not shown in
The control panel 46 is also shown with a plurality of AC power output receptacles 54 that are powered by the onboard battery system 36 and/or any expansion batteries (not shown in
Referring now to
In various embodiments of the invention, the linking module 210 includes a housing 101 that has a generally rectangular shape with a front end 103, a back end 105, a right side 107, and a left side 109. A handle 111 is positioned at the back end 105 of the housing 101, and a hinged door 113 is positioned at the right side 107 of the housing 101. The linking module 210 is shown with the hinged door 113 in an open position to expose an interior compartment 115 in the housing 101 and with first and second pairs of connection cables 117, 119 extending out of the interior compartment 115. The pairs of connection cables 117, 119 are couplable to the linking module connection ports 90 of one power station 20 or gas generator (not shown in
The linking module 210 may include a plurality of feet 127 extending downward from a bottom surface 129 of the housing 101 to secure the linking module 210 in a stacked configuration with a power station 20 or to raise the housing 101 slightly off of the floor or ground. Arc-shaped cutouts 131 are shown extending across the bottom surface 129 of the housing 101 in a direction from the front end 103 to the back end 105 of the linking module 210 and extending through the feet 127. In various embodiments, the linking module 210 stacks on a power station 20 with the arc-shaped cutouts 131 sitting securely on the oval-shaped carrying handles 34 (
The linking module 210 may also include power station mounts 133 on an upper surface 135 thereof to receive and secure the plurality of feet 32 (
Referring now to
The gas generator 51 includes an internal combustion engine 65 operatively connected to an alternator 67 in a conventional manner. The engine 65 includes pistons (not shown in
The gas generator 51 may be a dual fuel generator 51 with the engine 65 designed to use different fuels from either a first fuel source 69 or a second fuel source (not shown in
The gas generator 51 typically includes a control system 73 positioned within the housing 53. The control system 73 may include a converter (not shown in
In various embodiments, the gas generator 51 operates without the inverter 75 to provide AC power to electrical devices. However, in embodiments where the gas generator 51 includes the inverter 75, the gas generator 51 may be called a gas inverter generator 51. The gas inverter generator 51 can operate at slower revolutions per minute (RPMs) while maintaining output power and frequency when compared to a gas generator without an inverter. Operating at slower RPMs can increase fuel efficiency and reduce engine noise. The inverter 75 can also maintain voltage and frequency output even if an electrical load on the gas inverter generator 51 causes the speed of the engine 65 to fall. The inverter 75 may provide single or three phase AC power at 50 Hz or 60 Hz, for example.
The gas generator 51 is shown in
The AC power output receptacles 85 may include NEMA 5-15R ports 89 used to supply electrical power for operation of 120V AC, 15 A, single phase, 60 Hz electrical loads. However, the AC power output receptacles 85 may provide power from the inverter 75 at any suitable current (for example, any integer or half-integer value from 2.5 A to 30 A) and voltage (for example, any integer value from 110V to 120V AC or any integer value from 220V-250V AC). The DC power output receptacles 83 may include 12V DC outlets 91, USB ports 93, or any of the DC power output receptacles 52 of the power station 20. The control panel 77 also includes linking module connection ports 90 that are used to electrically couple the gas generator 51 to the linking module 210.
The control panel 77 includes a power button 95 to turn on and off the gas generator 51. The control panel 77 may include a display 97, also referred to as a user display panel 97, to show operation characteristics of the gas generator 51. The control system 73 may be programmed to determine a THD associated with the AC power from the inverter 75 and to operate the display 97 to automatically indicate the THD to an operator. The display 97 may indicate whether the THD is above a level that could damage sensitive electronic components powered by the inverter 75.
The power station 20 may be configured to provide a first AC power output at an AC voltage and a first AC current at or below a first AC current rating of the power station 20, and the gas generator 51 may be configured to provide a second AC power output at the AC voltage and a second AC current at or below a second AC current rating of the gas generator 51. The power station 20 may include a power output receptacle 147 configured to provide the first AC power output, and the gas generator 51 may include a power output receptacle 149 configured to provide the second AC power output.
In various embodiments of the invention, the linking module 210 may be a parallel link 210 capable of providing an AC power output that combines the AC power outputs from the power station 20 and the gas generator 51 in parallel. In other embodiments of the invention, the linking module 210 may be a series link capable of providing an AC power output that combines the AC power outputs from the power station 20 and the gas generator 51 in series. The power output receptacle 147 of the power station 20 may include a pair of linking module connection ports 90, and the power output receptacle 149 of the gas generator 51 may include a pair of linking kit connection ports 90, with the power output receptacles 147, 149 each coupled to one of the first and second pairs of connection cables 117, 119. In other embodiments of the invention, the AC power output receptacles 147, 149 of the power station 20 and the gas generator 51 may include the AC power output receptacles 54, 85 which may be configured to power the linking module 210 or an external electrical device (not shown in
In various embodiments, the linking module 210 connects the power station 20 and the gas generator 51 in parallel and therefore the linking module connection ports 90 may be respective pairs of parallel AC power output receptacles 151, 153. That is, the power station 20 may include a first pair of parallel AC power output receptacles 151, and the gas generator 51 may include a second pair of parallel AC power output receptacles 153. Each pair of parallel cables 117, 119 are electrically connectable to the first and second pairs of parallel AC power output receptacles 151, 153 and configured to electrically connect to one of the first and second pairs of parallel AC power output receptacles 151, 153 at a time to receive the first AC power output or the second AC power output. In
The linking module 210 may be configured to electrically connect to the power station 20 to receive the first AC power output therefrom, electrically connect to the gas inverter generator 51 to receive the second AC power output therefrom, and combine the first and second AC power outputs into a third AC power output at the AC voltage and a third AC current that is a combination of the first and second AC currents. The linking module 210 may also be configured to provide the third AC power output to an electrical load (not shown in
In various embodiments, the linking module 210 includes one or more power output receptacles 159, 161 configured to provide the third AC power output, and the third AC current rating may be an AC current rating of the power output receptacles 159, 161. For example, the linking module 210 may include at least one AC power output receptacle 159, 161 configured to provide a third AC power output at the AC voltage and a third AC current that is a combination of the first and second AC currents of the power station 20 and the gas generator 51 and that does not exceed a third AC current rating of the linking module 210, the third AC current rating being higher than each of the first and second AC current ratings. The at least one AC power output receptacle 159, 161 of the linking module 210 may have a voltage rating equal to a voltage rating of the at least one power output receptacle 147, 149 of the power station 20 and the gas generator 51. In various embodiments, the one or more power output receptacles 159, 161 of the linking module 210 includes a 120V AC, 30 A RV receptacle (or a NEMA TT-30R receptacle) 163 and a 120V AC, 30 A locking receptacle (or a NEMA L5-30R receptacle) 165.
In various embodiments, the power station 20 includes a ground terminal 167, and the gas generator 51 includes a ground terminal 169. The linking module 210 may also include a first ground wire 171 electrically connectable to the ground terminals 167, 169 of the power station 20 and the gas generator 51 and configured to electrically connect to one of the ground terminals 167, 169 at a time. The linking module 210 may further include a second ground wire 173 electrically connectable to the first and second ground terminals 167, 169 and configured to electrically connect to one of the first and second ground terminals 167, 169 at a time. In
Referring now to
As explained above, the control system 38 of the power station 20 is electrically coupled to the onboard battery system 36 and the external battery port 68 and may include a converter (not shown in
Each expansion battery 146, 148 may be paired to the power station 20 so that the control system 38 of the power station 20 can operate the expansion batteries 146, 148. Each expansion battery 146, 148 can be paired by connecting the expansion battery 146, 148 directly to the power station 20 and enabling a pairing feature on the power station 20. According to various embodiments of the invention, a user of the power station 20 may pair the expansion batteries 146, 148 to the power station 20 by performing a series of steps separately for each expansion battery 146, 148. Below is an example in which expansion battery 146 is paired to the power station 20.
In a first step, the user pairing the expansion battery 146 turns on the power station 20 and unplugs all electrical devices therefrom including any additional expansion batteries already connected and/or paired to the power station 20. In a second step, the user connects the expansion battery 146 being paired by connecting its connection cable 150 to the external battery port 68 of the power station 20. In a third step, the user holds down the overload reset button 62 (
In order to pair additional expansion batteries (for example, the expansion battery 148) to the power station 20, the user must disconnect the paired expansion battery 146 and repeat steps one through four above. Once the expansion batteries 146, 148 are paired to the power station 20, the expansion batteries 146, 148 will remain paired to the power station 20 until they are manually unpaired. In various embodiments, unpairing the expansion batteries 146, 148 may be performed by powering down or shutting down the expansion batteries 146, 148, by repeating steps one through four above, or by either method.
Pairing the expansion batteries 146, 148 allows the control system 38 of the power station 20 to discharge the battery system 36, 112 with the highest battery level before discharging the remaining batteries. In various embodiments, the battery level corresponds to a battery voltage and only the battery system or systems 36, 112 with the highest voltage will discharge until the voltage drops to approximately the same voltage level of the battery system or systems 36, 112 with the next highest battery voltage. That is, additional non-discharging battery systems 36, 112 will begin to discharge simultaneously with discharging battery systems 36, 112 when the voltages of the discharging battery systems 36, 112 approximate the voltages of the non-discharging battery systems 36, 112. In various embodiments, the voltages are approximate when the voltage levels or battery levels are within a specific percentage of each other such as, for example, 1%, 2%, 3%, 4%, or 5%. However, in various embodiments, the voltages may be approximate when the voltage levels or battery levels are within a specific voltage level of the each other such as 1V or 2V, as non-limiting examples.
For example, the battery system 36, 112 with the highest battery level among the expansion batteries 146, 148 and the power station 20 could discharge first until the battery level is similar to the battery system 36, 112 that had the second highest battery level. The two battery systems 36, 112 will then discharge simultaneously to the level of the third highest battery level. Once all remaining battery levels are similar, each battery system 36, 112 will discharge simultaneously or at the same rate. Thus, the battery systems 112 of the expansion batteries 146, 148 may only begin discharging if their battery levels are equal to or greater than the battery level of the battery system 36 of the power station 20.
Referring now to
The control system 38 of the first inverter power station 143 may be configured to determine a number of expansion batteries 146, 148 electrically coupled to the first inverter power station 143, determine a battery level of each expansion battery 146, 148, and calculate a battery level available to the first inverter power station 143 by adding the battery level of each expansion battery 146, 148. The control system 38 of the first inverter power station 143 may be programmed to sense each expansion battery 146, 148 coupled to the first inverter power station 143 by determining which expansion batteries 146, 148 are paired with the first inverter power station 143 and/or communicating with the control system 114 of each paired expansion battery 146, 148. The control system 38 may be programmed to determine the battery level of the battery system 112 of each expansion battery 146, 148 by reading the battery gauge 124 on each expansion battery 146, 148. The control system 38 may be programmed to add together the battery level of each expansion battery 146, 148 by adding together the percent battery level of each expansion battery 146, 148. In an alternative embodiment, the control system 38 may be configured to calculate a battery level available to the first inverter power station 143 by adding together the battery level of the onboard battery system 36 and the battery system 112 of each expansion battery 146, 148 electrically coupled to the first inverter power station 143. The automatic display 58 of the first inverter power station 143 operated by the control system 38 may display the available battery levels of the onboard battery system 36 and the battery systems 112 of the expansion batteries 146, 148.
The battery levels of the battery system 112 of each expansion battery 146, 148 electrically coupled to the first inverter power station 143 may include percent battery levels, and the battery level available to the first inverter power station 143 from battery system 36 and/or battery systems 112 may include a percent battery level relative to a capacity of the battery system 112 of a single expansion battery 146, 148 electrically coupled to the first inverter power station 143. The automatic display 58 may display the available battery level to the first inverter power station 143 as a percentage of a single expansion battery 146, 148 electrically coupled to the first inverter power station 143. That is, the automatic display 58 of the first inverter power station 143 may display that the total percent battery level is higher than 100% when the battery levels of the battery systems 112 of each expansion battery 146, 148 electrically coupled to the first inverter power station 143 have a total value greater than the capacity of the battery system 112 of a single expansion battery 146, 148. The automatic display 58 of the first inverter power station 143 may also display that the total percent battery level is higher than 100% when the battery levels of the battery system 36 of the first inverter power station 143 and each expansion battery 146, 148 electrically coupled to the first inverter power station 143 have a total value greater than the capacity of the battery system 112 of a single expansion battery 146, 148.
The control system 38 may calculate the power output and hours to empty for a particular load and operate the automatic display 58 to display the power output and/or hours to empty. The battery level available to the first inverter power station 143 is typically independent of an electrical load on the first inverter power station 143, but may be dependent on an electrical load on the first inverter power station 143 in some embodiments. Thus, the control system 38 may calculate the combined energy level of expansion batteries 146, 148 coupled to the first inverter power station 143 independent of or dependent on an electrical load on the power output receptacles 50.
As stated above,
Referring now to
The gas inverter generator 204 is shown with an alternator 67 that is driven by an engine 65 to produce AC power. That AC power may be fed to an inverter 75 to convert the AC power into a desired frequency supplied to the linking module 210. In various embodiments of the invention, the frequency of the AC power provided by the inverter 75 to the linking module 210 may match the frequency of the AC power provided by the inverter 42 of the inverter power station 202 to the linking module 210. The gas inverter generator 204 may be a dual fuel generator 204 and, thus, may operate on fuel received from the first fuel source 69 (
The inverter power station 202 and the gas inverter generator 204 may each include one or more linking module connection ports 90 configured to receive connections to the linking module 210. The linking module 210 may be used as a parallel link 210 to couple together the AC power outputs from the linking module connection ports 90 of the inverter power station 202 and the gas inverter generator 204 to increase output current or a series link to couple together the AC power outputs from the linking module connection ports 90 of the inverter power station 202 and the gas inverter generator 204 to increase output voltage. The inverter power station 202 is also shown with an external battery port 68 configured to connect expansion battery 206, a DC power inlet receptacle 80 configured to connect to a DC power source 222 and an AC power inlet receptacle 78 configured to connect to an AC power source 216. The inverter power station 202 may also include DC power output receptacles 52 and AC power output receptacles 54 configured to power electrical devices coupled to the inverter power station 202.
The AC power inlet receptacle 78 couples to the AC power source 216 using an AC cord 218. The AC power source 216 may be a traditional wall outlet 220 coupled to the utility grid. The AC power inlet receptacle 78 may support AC fast charging (for example, at 120V AC, 50 Hz/60 Hz, 4.5 A MAX). The DC power inlet receptacle 80 may include an APP input port 82 configured to couple to the DC power source 222 using an APP cord 224. The DC power source 222 may include one or more solar panels 214. The APP input port 82 may support DC fast charging (for example, at 10V-28V DC, 25 A MAX).
The power station 202 may also include a control system 38 including an inverter 42, a processor 226 and memory 228. While the inverter 42 is illustrated as part of the control system 38, the inverter 42 may be controlled by the control system 38 as a separate element therefrom. The processor 226 may be one or more computer processors or microprocessors capable of executing a computer program having instructions including executable code. The executable code may be stored on the memory 228 which may include any suitable non-transitory media that can store executable code for use by the processor 226 to perform the presently disclosed techniques. The memory 228 may be any suitable type of computer-readable media that can store the executable code, data, analysis of the data, or the like. The power station 202 may also include a control panel 46 having an automatic display 58 and a battery gauge 196.
The linking module 210 may be configured to electrically connect to the inverter power station 202 to receive a first AC power output at an AC voltage and a first AC current less than or equal to a first AC current rating and electrically connect to the gas inverter generator 204 to receive a second AC power output at the AC voltage and a second AC current less than or equal to a second AC current rating. The linking module 210 may also be configured to electrically connect the first and second AC power outputs in parallel to combine the first and second AC power outputs into a third AC power output at the AC voltage and a third AC current that is a combination of the first and second AC currents, and provide the third AC power output to an electrical device or load 212.
In various embodiments of the invention, each of the inverter power station 202 and the gas inverter generator 204 include at least one respective power output receptacle 147, 149 configured to provide a respective first and second rated AC power output. More specifically, the linking module 210 may be configured to electrically connect to the inverter power station 202 via a first AC power output receptacle 147 of the inverter power station 202, with the first AC current rating being an AC current rating of the first AC power output receptacle 147. The linking module 210 may be configured to electrically connect to the gas inverter generator 204 via the second AC power output receptable 149 of the gas inverter generator 204, with the second AC current rating being an AC current rating of the second AC power output receptacle 149. In various embodiments, first and second AC power output receptacles 147, 149 have an AC voltage of approximately 120V (within plus or minus 10V, or from 110V to 130V), and the first and second AC current ratings are approximately 15 A (within plus or minus 3 A, or from 12 A to 18 A).
In various embodiments of the invention, the inverter power station 202 and the gas inverter generator 204 of the power station and gas generator assembly 200 may each be configured to provide a first rated AC power output at a first voltage rating and a first current rating. When the linking module 210 electrically connects the inverter power station 202 and the gas inverter generator 204, the power station and gas generator assembly 200 may include a second rated AC power output at the first voltage rating and a second current rating higher than the first current rating. According to various embodiments, when the linking module 210 electrically connects the inverter power station 202 and the gas inverter generator 204, the linking module 210 is capable of providing the second rated AC power output. The linking module 210 may include at least one power output receptacle 159 configured to provide the second rated AC power output. Accordingly, the linking module 210 may include a second rated AC power output at the first voltage rating and a second current rating higher than the first current rating. The linking module 210 may be a parallel link 210 configured to couple the inverter power station 202 and the gas inverter generator 204 in parallel and capable of providing a rated AC power output that combines the rated AC power outputs from the inverter power station 202 and the gas inverter generator 204.
An expansion battery charger or charging module 230 is configured to charge the expansion battery 206. The expansion battery charging module 230 may receive power from the AC power source 216 and/or the DC power source 222 and supply the power to one expansion battery 206 using a power cord 232. The expansion battery charging module 230 includes an AC input port 234, an APP input port 236, and a power DC output port 238. The AC input port 234 is configured to couple to an AC power source such as, for example, the AC power source 216 using the AC cord 218. The APP input port 236 is configured to couple to a DC power source such as, for example, the DC power source 222 using the APP cord 224.
The expansion battery 206 may include a charging module input port 134 that connects to the power output port 238 of the expansion battery charging module 230 using the power cord 232. The expansion battery 206 may also include a pair of battery connection ports 132 that couple to a battery connection port 132 of another expansion battery (not shown in
In various embodiments, the solar panels 214 of the DC power source 222 may be rated between 10V-28V with MC4 or APP connectors and may power the inverter power station 202 or the expansion battery 206 via the expansion battery charging module 230. The solar panels 214 may include APP connectors 240 that can be coupled directly to the APP input ports 82 of the inverter power station 202 or the APP input port 236 of the expansion battery charging module 230. The solar panels 214 may alternatively include MC4 connectors 242 that can be connected to the APP input ports 82, 236 using an MC4 to APP solar charge harness 244. The solar charge harness 244 may have an APP plug connectable to the inverter power station 202 and the expansion battery charging module 230 with MC4 connections such as, for example, three MC4 connections to couple up to three or more solar panels 214 having MC4 connectors 242.
In some embodiments of the invention, the capacity of the onboard battery system 36 and/or each expansion battery 206 could have an approximate (within plus or minus 5%) capacity of 1600 Wh or 3200 Wh. The onboard battery system 36 and/or the battery system 112 of the expansion battery 206 may have a rated output voltage of approximately 46.8V and a max output voltage of approximately 54.6V-55V, although the battery systems 36, 112 could have any suitable voltage rating such as 12V, 24V, or 48V, as non-limiting examples. The percent battery level of the battery systems 36, 112 may correspond to the battery voltage. As a non-limiting example, 100% battery level could correspond to 55V, and 0% battery level could correspond to 38V. In some embodiments, when the inverter power station 202 operates at full load, it will not reach 5% THD until the voltage drops to 42.57V with 17% battery capacity, and when the inverter power station 202 operates at full load with double the battery capacity, it will not reach 5% THD until the voltage drops to 42.70V with 11% battery capacity. In various embodiments, the inverter power station 202 may provide single phase AC power at 60 Hz with a current rating of approximately 13.3 A at 120V.
One skilled in the art will appreciate that embodiments of the invention may be interfaced to and controlled by a computer readable storage medium having stored thereon a computer program. The computer readable storage medium includes a plurality of components such as one or more of electronic components, hardware components, and/or computer software components. These components may include one or more computer readable storage media that generally stores instructions such as software, firmware and/or assembly language for performing one or more portions of one or more implementations or embodiments of a sequence. These computer readable storage media are generally non-transitory and/or tangible. Examples of such a computer readable storage medium include a recordable data storage medium of a computer and/or storage device. The computer readable storage media may employ, for example, one or more of a magnetic, electrical, optical, biological, and/or atomic data storage medium. Further, such media may take the form of, for example, floppy disks, magnetic tapes, CD-ROMs, DVD-ROMs, hard disk drives, and/or electronic memory. Other forms of non-transitory and/or tangible computer readable storage media not listed may be employed with embodiments of the invention.
A number of such components can be combined or divided in an implementation of a system. Further, such components may include a set and/or series of computer instructions written in or implemented with any of a number of programming languages, as will be appreciated by those skilled in the art. In addition, other forms of computer readable media such as a carrier wave may be employed to embody a computer data signal representing a sequence of instructions that when executed by one or more computers causes the one or more computers to perform one or more portions of one or more implementations or embodiments of a sequence.
Beneficially, embodiments of the invention provide a system for connecting a power station and a gas generator to increase the capacity and/or power available to an electrical load powered by the power station and gas generator. Embodiments of the invention also provide a power station assembly including a linking module or kit connectable to the power station and the gas generator to increase the available power output to the electrical load. The linking module may include a power output receptacle with a rated power output that is higher than a rated power output of power output receptacles of the power station and gas generator.
Therefore, according to one embodiment of the invention, a power station and gas generator assembly includes an inverter power station, a gas generator, and a linking module electrically couplable to the inverter power station and the gas generator to provide a combined power output therefrom.
According to another embodiment of the invention, a power station and gas inverter assembly includes a power station having a battery system and an inverter electrically coupled to the battery system. The power station and gas inverter assembly includes a gas inverter generator and a linking module electrically couplable to the power station and the gas inverter generator to combine power received therefrom into a combined power output. The linking module is configured to provide the combined power output with an increased current output in comparison to a current of the power received from the power station and a current of the power received from the gas inverter generator and with a voltage output equal to a voltage of the power received from the power station and the gas inverter generator.
According to yet another embodiment of the invention, a power station and gas generator assembly includes an inverter power station configured to provide a first AC power output at an AC voltage and a first AC current at or below a first AC current rating, a gas inverter generator configured to provide a second AC power output at the AC voltage and a second AC current at or below a second AC current rating, and a linking kit. The linking kit is configured to electrically connect to the inverter power station to receive the first AC power output therefrom, electrically connect to the gas inverter generator to receive the second AC power output therefrom, combine the first and second AC power outputs into a third AC power output at the AC voltage and a third AC current that is a combination of the first and second AC currents, and provide the third AC power output to a load at the AC voltage and the third AC current at or below a third AC current rating that is a combination of the first and second AC current ratings.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. The singular forms ‘a’, ‘an’, and ‘the’ in the claims include plural reference unless the context clearly dictates otherwise. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description but is only limited by the scope of the appended claims.
The present application is a non-provisional of and claims priority to U.S. Provisional Patent Application Ser. No. 63/378,448, filed Oct. 5, 2022, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63378448 | Oct 2022 | US |