The present invention relates to a device installed on a boat that is integrated with a boat autopilot and allows a boat operator to automatically override an autopilot function and turn the boat at a rate and direction that is approximately proportional to the rate and direction of a steering device such as a steering wheel. More particularly, for example, if the operator of the boat turns the steering wheel at a consistent rate of 90 degrees per second, the turn rate of the boat will be a consistent 10 degrees per second regardless of the speed of the boat. When the steering wheel motion is stopped, a heading reference is sent to an autopilot controller and the autopilot will maintain the course that was set when the steering wheel motion is stopped.
Autopilots and automatic means of steering boats and ships have been available for many decades. The prior art concentrated on maintaining the steerage of the boat on a constant course or from point to point. Modern autopilots rely on a secondary means to change the course of the vessel. This secondary means either involves changing the course setpoint and allowing the boat autopilot to reestablish the correct course or, in the case of large vessels, a selectable steering radius can be used to determine the radius of the yaw. Other methods include dodge functions and offset functions that operate in a similar manner. Additionally, when a course change is entered into the autopilot controller, the yaw rates associated with autopilots are normally preset in the parameters of the controller.
Hedstrom, et al., U.S. Pat. No. 4,069,784, Current U.S. Class 114/144E, issued Jan. 24, 1978, provides a method and device for setting preprogrammed and predetermined radius of yaw curvature. Such a device is important in large vessels operating in constricted areas where vessels may have the restricted ability to maneuver; however, this patent does readily apply to smaller vessels. This patent does not give the operator the ability to correct the radius easily under normal circumstances.
Sing, et al., U.S. Pat. No. 5,235,927, Current Class 114/144E, issued Aug. 17, 1993 provides the ability to override an autopilot by mechanically overriding the autopilot controller. This allows the operator to change course while the operator is turning the steering wheel, but when the operator releases the wheel, the vessel will return to the original course unless the operator resets the course to a new bearing. The operator is continually fighting against the actions of the rudder and the autopilot during this turning motion. The turning action of this patent does not facilitate a smooth predetermined turning radius.
Watabe, et al., U.S. Pat. No. 6,843,195, Current Class 114/144E issued Jan. 18, 2005 provides a means to change the steering rate of the boat with an outboard motor such that the steering rate at low speeds is substantially higher than the steering rate at high speeds. This is could be important from the standpoint that the steering rate at higher speeds is significantly higher for a given rudder angle. This invention incorporates this function by default for all types of steering devices including outboard motors, rudders, and jet nozzles. The steering rate of the boat is a function of how fast the steering wheel is turned and is relatively independent upon the method of turning the boat or the speed of the boat throughout the range of normal operation.
Johnson, et al., U.S. Pat. No. 5,034,895, Current Class 701/224 issued Jul. 23, 1991 integrates a special function autopilot with a device that includes a rate of turn mode when the operator also selects a specific rate of turn for a maneuver. This invention is primarily intended for large ships and is not practical for smaller boats. It does not provide a means for the operator to adjust the boat turning rate based upon the rate of turn of the steering device.
It is the object of the present invention to provide a means for the operator of the boat to easily control the steering of the boat. This device is used in conjunction with an existing autopilot of prior art design. The purpose of the autopilot portion of this invention is to maintain the course of the boat when the steering wheel, or other steering device, is not being operated. When the steering wheel is operated, the autopilot portion of the present invention is disabled and the steering rate portion of the present invention is enabled. This is accomplished by converting the rate and direction of turning of the steering wheel, or other steering device, into a boat steering action that can turn the boat at a rate and direction that is relatively proportional to the rate and direction that the steering wheel is being turned.
An operator simply needs to turn the steering wheel in the desired direction. The rate of speed that the operator turns the steering wheel determines the rate of speed that the boat will turn regardless of the other factors that affect the boat turning rate. At the moment the operator ceases to turn the steering wheel, a heading setpoint will be set and the autopilot of prior art design will steer the boat on the previously described heading setpoint.
Consequently, an operator of the boat does not need to have the detailed knowledge of the effect of rudder movement on the boat with respect to the size of the rudder, the size and weight of the boat, the position of the rudder, and the speed of the boat. Nor does the operator need to be aware of the steering compensations that are normally necessary to enter and exit a turn.
Additional circuits determine if the controlling circuits are operating in a consistent manner that would indicate that the boat is being operated in a normal forward direction and is not stationary, operating in an abnormally slow manner, or operating in reverse.
If the controlling circuits are not operated in a consistent manner, the boat is considered to be operating in an abnormal mode and the steering mode defaults to a direct steering mode whereby turning the steering wheel directly turns the rudder as if there is a direct connection between the steering wheel and the rudder.
Listed numerically below with reference to the drawings are terms used to describe features of this invention. These terms and numbers assigned to them designate the same features throughout this description:
Listed in alphabetical order below are the terms and definitions used in the description and drawings below with reference to other terms and drawings used to describe features of this invention. These terms and definitions designate the same features throughout this description:
Referring to
Referring to
As shown in
As shown in the basic block diagram in
There are two basic modes of operation for the device that is controlled by the central control unit 104. The first basic mode is the automatic mode which includes the autopilot steering mode and the steering rate mode. The second basic mode is the direct steering mode and is used provide a standard method of steering.
The automatic mode of steering provides two modes of operation. The autopilot steering mode provides a means to maintain the boat course and is a well documented prior art. The steering rate mode controls the rate of steering when the steering device means 102 is being used.
Referring to
Referring to
When the steering mode selector 114 senses that the steering rate signal 121 has decreased to approximately zero, the steering mode selector 114 provides the momentary heading set signal 137 to close the momentary heading set contact 110 to allow the heading signal 101 to be set into the heading set signal 111 to be the heading reference for the autopilot controller 112. Additionally, the steering mode selector 114 enables the autopilot controller 112 by means of the autopilot controller mode signal 139.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In an alternative embodiment, referring to
In an alternative embodiment, referring to
Referring to
Referring to
Referring to
While the invention has been described with reference to several illustrative embodiments, these descriptions are not intended to be construed in a limited sense. Various modifications in combination with other embodiments of the invention will be apparent to persons skilled in the art upon reference to the description. For example, other type of steering devices and heading sensing devices are in common practice. Although the preferred embodiment has shown the device integrated with a hydraulic system, electric actuators are also frequently used throughout industry. The present invention may be manufactured with any combination of heading sensing devices, steering device means, or rudder actuation devices.
Number | Name | Date | Kind |
---|---|---|---|
4038528 | Fowler | Jul 1977 | A |
4069784 | Hedstrom et al. | Jan 1978 | A |
4074648 | Reid et al. | Feb 1978 | A |
4336594 | Masuzawa et al. | Jun 1982 | A |
4413215 | Cavil et al. | Nov 1983 | A |
4542464 | Kramer | Sep 1985 | A |
4681055 | Cyr | Jul 1987 | A |
4747359 | Ueno | May 1988 | A |
4749926 | Ontolchik | Jun 1988 | A |
4799163 | Wesner | Jan 1989 | A |
4811679 | Masuzawa et al. | Mar 1989 | A |
5107424 | Bird et al. | Apr 1992 | A |
5179905 | Hossfield et al. | Jan 1993 | A |
5235927 | Singh et al. | Aug 1993 | A |
5313397 | Singh et al. | May 1994 | A |
5331558 | Hossfield et al. | Jul 1994 | A |
5406488 | Booth | Apr 1995 | A |
5523951 | Kriesgman et al. | Jun 1996 | A |
5747950 | Friedrichsen et al. | May 1998 | A |
6678589 | Robertson et al. | Jan 2004 | B2 |
6843195 | Watabe et al. | Jan 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20060278152 A1 | Dec 2006 | US |