The present invention relates to a power strip device, and more particularly to a power strip device that is controlled according to a wireless transmission technology.
With increasing development of high technology industries, computers become essential electronic apparatuses in our daily lives. For example, computers can be employed for work or amusement purposes. For a purpose of performing specialized functions, a computer system may also include one or more peripheral devices linked to the host computer. Examples of the peripheral devices include speakers, printers, monitors, scanners or other electronic load products. Usually, the power cords of the host computer and the various peripheral devices are plugged in a multi-outlet power strip device. Since multiple electronic load products are simultaneously plugged in the power outlets of the power strip device, overloading will be a safety problem with the multi-outlet power strip device.
Referring to
For complying with safety regulations of operating computers, when the computer is powered off, the user needs to manually switch the manual power switch 100 into an open state to interrupt the electricity flowing from the utility power source to the power strip device 10. Since the electricity flowing from the utility power source to the power strip device 10 is interrupted, the hazards resulting from sparking of electric wires are reduced and power consumption is avoided. On the other hand, if the computer users forget to switch the manual power switch 100 into the open state, many load products are still running to consume power and thus the life of these load products may be shortened.
Therefore, there is a need of providing an improved power strip device so as to obviate the drawbacks encountered from the prior art.
It is an object of the present invention to provide a power strip device for use with a computer system.
Another object of the present invention provides a power strip device that is controlled according to a wireless transmission technology.
In accordance with an aspect of the present invention, there is provided a power strip device. The power strip device is communicated with a host computer. A wireless signal emitter is connected the host computer for emitting a wireless signal. The power strip device includes a power plug, a wireless signal receiver, at least one automatic power outlet and a control circuit. The power plug is connected to a utility power source. The wireless signal receiver is used for receiving the wireless signal. The automatic power outlet is used for delivering electricity to an electronic load product connected thereto. The control circuit is connected to the wireless signal receiver and the automatic power outlet for controlling on/off statuses of the electronic load product that is connected to the automatic power outlet. If the wireless signal is received by the wireless signal receiver, the automatic power outlet is enabled to deliver electricity to the electronic load product under control of the control circuit. If no wireless signal is received by the wireless signal receiver, the automatic power outlet is disenabled to stop delivering electricity to the electronic load product under control of the control circuit.
In an embodiment, the control circuit includes a control unit, a transistor and a relay. If the wireless signal is received by the wireless signal receiver, the transistor is turned on under control of the control unit such that the relay is closed and the electronic load product that is connected to the automatic power outlet is powered on. If no wireless signal is received by the wireless signal receiver, the transistor is turned off under control of the control unit such that the relay is opened and the electronic load product that is connected to the automatic power outlet is powered off.
In an embodiment, the power strip device further includes a surge protective circuit for protecting the electronic load product that is connected to the power strip device.
In an embodiment, the electronic load product is a computer peripheral device selected from a group consisting of a printer, a monitor, a scanner and a speaker.
In an embodiment, the power strip device further includes a manual power outlet and a manual power switch. The manual power outlet is connected to an additional electronic load product. The manual power switch is manually switched to selectively enable or disenable the manual power outlet so as to power on or off the additional electronic load product.
In an embodiment, the additional electronic load product is an office machine selected from a group consisting of a desk lamp and a faxing machine.
In an embodiment, the wireless signal is a radio frequency signal, a Bluetooth signal or an infrared signal.
In an embodiment, the wireless signal is built in the host computer.
In an embodiment, the wireless signal is inserted into a USB (Universal Series Bus) port of the host computer.
In an embodiment, the control unit determines whether the automatic power outlet is enabled or disenabled according to a predetermined disenabling delay time.
In an embodiment, the automatic power outlet is disenabled if no wireless signal has been received by the wireless signal receiver for a period greater than the disenabling delay time.
In an embodiment, the automatic power outlet is kept enabled to continuously deliver the electricity to the electronic load product if the wireless signal has been received within the disenabling delay time.
In an embodiment, the host computer is a desktop computer.
In an embodiment, the host computer is a notebook computer.
In accordance with another aspect of the present invention, there is provided a method for controlling a power strip device to deliver electricity to an electronic load product that is connected to the power strip device. Firstly, a wireless signal emitter is connected with a host computer. Next, a wireless signal emitted from the wireless signal emitter is detected. If the wireless signal is received by the wireless signal receiver, the automatic power outlet is enabled to deliver electricity to the electronic load product. If no wireless signal is received by the wireless signal receiver, the automatic power outlet is disenabled to stop delivering electricity to the electronic load product.
In an embodiment, the electronic load product is a computer peripheral device selected from a group consisting of a printer, a monitor, a scanner and a speaker.
In an embodiment, the wireless signal is a radio frequency signal, a Bluetooth signal or an infrared signal.
In an embodiment, the method further includes a step of determining whether the automatic power outlet is enabled or disenabled according to a predetermined disenabling delay time.
In an embodiment, the automatic power outlet is disenabled if no wireless signal has been received by the wireless signal receiver for a period greater than the disenabling delay time.
In an embodiment, the automatic power outlet is kept enabled to continuously deliver the electricity to the electronic load product if the wireless signal has been received within the disenabling delay time.
The above objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
For overcoming the above described drawbacks resulting from the prior art, the present invention provides an improved power strip device for use with a computer system.
Please refer to
On the other hand, if the user intends to temporarily leave the notebook computer or power off the notebook computer 20, the wireless signal emitter 201 may be pulled out of the USB port of the notebook computer 20. Alternatively, when the notebook computer 20 is power off or operated in a hibernation mode, the operation of the wireless signal emitter 201 is stopped. Under this circumstance, the wireless signal receiver 212 will no longer receive the wireless signals WS. If no wireless signal WS is received, the control circuit 214 connected to the wireless signal receiver 212 and the automatic power outlets 213 will disenable the automatic power outlets 213 so as to stop delivering electricity to the computer peripheral devices. In other words, since no wireless signal WS is received, the control unit 2141 of the control circuit 214 will turn off the transistor 2142 and thus open the relay 2143. As a consequence, the automatic power outlets 213 are disenabled to stop flowing electricity to the computer peripheral devices that are connected thereto and the operations of the computer peripheral devices are interrupted.
As known, the procedure of emitting the wireless signal by the wireless signal emitter may consume energy. For reducing power consumption, the wireless signals WS are intermittently issued by wireless signal emitter 201 one by one after a certain time interval or periodically issued in a cycle of several seconds. That is, the wireless signals WS are not continuously emitted in order to reduce power consumption.
Furthermore, the wireless signal receiver 212 has a predetermined disenabling delay time. According to the disenabling delay time, the control unit 214 will determine whether the automatic power outlets 213 need to be enabled or disenabled. For example, if no wireless signal WS has been received by the wireless signal receiver 212 for a period greater than the disenabling delay time, the control unit 214 will disenable the automatic power outlets 213 at the termination of the disenabling delay time, thereby stopping delivering electricity to the computer peripheral devices. On the other hand, if no wireless signal WS has been received by the wireless signal receiver 212 for a period smaller than the disenabling delay time but then received by the wireless signal receiver 212 again, the automatic power outlets 213 are kept enabled so as to continuously deliver the electricity to the computer peripheral devices. Since the wireless signal emitter 201 is possibly detached from the USB port of the notebook computer 20 if the wireless signal emitter 201 is occasionally touched, the predetermined disenabling delay time offers a buffer time for inserting the wireless signal emitter 201 into the USB port of the notebook computer 20 again. In some embodiments, the predetermined disenabling delay time is for example several seconds. It is of course that the predetermined disenabling delay time can be adjusted via an application program.
Please refer to
In the above embodiments, the automatic power outlets of the power strip device of the present invention are selectively enabled or disenabled by detecting whether the wireless signal is received or not. When the computer host is powered on and the wireless signal emitter begins to emit a wireless signal, the automatic power outlets 213 are enabled and thus the computer peripheral devices such as printers, scanners, speakers or monitors (in a case that the host computer is a desktop computer) are automatically turned on. Whereas, when the host computer is powered off or the wireless signal emitter is pulled out of the host computer, the automatic power outlets 213 are disenabled and thus the computer peripheral devices are automatically powered off. In other words, the user needs not to power off all of the computer peripheral devices because the power strip device stops delivering electricity to the computer peripheral devices when the host computer is powered off or the wireless signal emitter is pulled out of the host computer. Moreover, since the power strip device of the present invention is controlled according to a wireless transmission technology, no wire linkage between the power strip device and the host computer is necessary and the troublesome procedure of arranging the wire is omitted.
In the above embodiments, the wireless signals WS is transmitted from the wireless signal emitter 201 to the wireless signal receiver 212 according to a wireless transmission technology. The wireless signals WS is for example a RF (Radio Frequency) signal, a Bluetooth signal or an infrared signal. Corresponding to the wireless signals WS, the wireless transmission technology includes a RF transmission technology, a Bluetooth transmission technology or an infrared transmission technology. The embodiments are illustrated by referring to the external wireless signal emitter. Nevertheless, the wireless signal emitter may be built in the notebook computer.
From the above description, the power strip device of the present invention comprises multiple automatic power outlets and multiple manual power outlets. The manual power outlets are enabled or disenabled by controlling the manual power switches. The automatic power outlets are enabled or disenabled according to wireless transmission control. Depending on the practical situations, the automatic power outlets and the manual power outlets are separately or simultaneously used. In accordance to a key feature of the present invention, the user may simply withdraw the wireless signal emitter to stop transmitting electricity to the electronic load products that are connected to the automatic power outlets if the user intends to temporarily leave the notebook computer. In other words, since the transmission of electricity is automatically stopped, the user needs not to power off all of the electronic load products of the computer system in order to avoid additional power consumption. Moreover, the computer system is easily operated and complies with the requirements of power consumption and environment protection.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
097132037 | Aug 2008 | TW | national |