The present invention relates to a power supply circuit for plasma generation applying an alternating high voltage between electrodes, a plasma generating apparatus generating a plasma by discharge based on said power supply circuit, a plasma processing apparatus producing an object substance from an object to be processed and performing surface treatment, sterilization, disinfection, washing, reforming, wettability improvement, and cutting etc. of said object to be processed, and their produced objects.
In this kind of plasma generating apparatus due to electric discharge, the commercial frequency voltage or the high frequency voltage is raised up with high frequency transformer, so that the plasma is generated by applying its raised voltage between the opposed electrodes.
For example, in a plasma surface processing apparatus shown in Japanese Patent Laid-Open No. 2001-297898 of the following Patent Document 1, the plasma generating apparatus is disclosed in
Said plasma generating apparatus is applied to a plasma surface treatment device of object to be processed. However, since the possible range of plasma treatment is restricted essentially in the surface treatment device by single electrode pair, a plurality of plasma surface treatment devices are required to perform the treatment more in depth and more effectively. However, a method that a plurality of plasma surface treatment devices are employed increases in cost and a problem that the scale of treatment device becomes larger occurs. As one of countermeasure of this problem, there are methods that the power supplying circuit portion such as power supply circuit and high frequency transformer in the plasma generating apparatus is used in common, and the electric power is supplied to plural pairs of electrode, so that it is considered that the device generating the wider and larger plasma can be developed with small size and low cost.
For example, when the electric discharge occurs between electrode 111 and common electrode 112, the electric discharge of condenser 114 advances with it. By this electric discharge, the electrical potential A of one output end of the secondary coil 102 to which condenser 114 was connected falls to several tens to 10 V, so that voltage drop occurs. As a result of this voltage drop, since the charged electricity of condenser 115 at side of another one electrode 113 flows to the electrode 111 and is lost, there was a problem that the electric discharge between electrode 111 and common electrode 112 is not induced.
[Patent Document 1] Japanese Patent Laid-Open No. 2001-297898
<Problems to be Solved by the Invention>
In view of the problems described above, one purpose of the present invention is to provide a power supply circuit for plasma generation and a plasma generating apparatus which can obtain a large quantity of generated plasma smoothly without jumboizing the apparatus. In addition, another purpose of the present invention is to provide a plasma processing apparatus which can treat a large quantity of object to be processed due to plasma with low cost by using of said plasma generating apparatus. Further purpose of the present invention is to provide a desired object such as powder and layered object through treating of object to be processed by using of said plasma processing apparatus.
<Means to Solve the Problems>
The present invention is proposed to solve said problems, and the first form of the present invention is a power supply circuit for plasma generation by which said plasma is generated due to discharge occurred between discharge generating electrodes composed of first and second electrodes by applying an alternating high voltage to said discharge generating electrodes, and said power supply circuit for plasma generation comprises: said discharge generating electrodes composed of two or more first electrodes and one or more second electrodes; and an alternating high voltage generating circuit to generate said alternating high voltage applied between said first and second electrodes of said discharge generating electrodes; wherein a condenser (a capacitor) and a coil (an inductor) are connected in series between said first electrode and one output end of said alternating high voltage generating circuit.
The second form of the present invention is the power supply circuit for plasma generation according to said first form, wherein said alternating high voltage generating circuit includes a high frequency transformer, two or more output circuits brunched in parallel from one end side of a secondary side coil of said high frequency transformer are connected to said first electrodes, each of said output circuits is formed by a series connection of said condenser and said coil, and said second electrode is connected to another end side of said secondary side coil.
The third form of the present invention is the power supply circuit for plasma generation according to said first form, wherein said alternating high voltage generating circuit includes a high frequency transformer, a plurality of secondary side coils are arranged at a secondary side of said high frequency transformer, one or more output circuits brunched in parallel from one end side of each secondary side coil are connected to said first electrodes, each of said output circuits is formed by a series connection of said condenser and said coil, and said second electrode is connected to another end side of said secondary side coil.
The fourth form of the present invention is a plasma generating apparatus by which said plasma is generated due to discharge occurred between discharge generating electrodes composed of first and second electrodes by applying an alternating high voltage to said discharge generating electrodes, and said plasma generating apparatus comprises: said discharge generating electrodes composed of two or more first electrodes and one or more second electrodes; and an alternating high voltage generating circuit to generate said alternating high voltage applied between said first and second electrodes of said discharge generating electrodes; wherein a condenser (a capacitor) and a coil (an inductor) are connected in series between said first electrode and one output end of said alternating high voltage generating circuit.
The fifth form of the present invention is the plasma generating apparatus according to said fourth form, wherein said alternating high voltage generating circuit includes a high frequency transformer, two or more output circuits brunched in parallel from one end side of a secondary side coil of said high frequency transformer are connected to said first electrodes, each of said output circuits is formed by a series connection of said condenser and said coil, and said second electrode is connected to another end side of said secondary side coil.
The sixth form of the present invention is the plasma generating apparatus according to said fourth form, wherein said alternating high voltage generating circuit includes a high frequency transformer, a plurality of secondary side coils are arranged at a secondary side of said high frequency transformer, one or more output circuits brunched in parallel from one end side of each secondary side coil are connected to said first electrodes, each of said output circuits is formed by a series connection of said condenser and said coil, and said second electrode is connected to another end side of said secondary side coil.
The seventh form of the present invention is the plasma generating apparatus according to said fourth, fifth or sixth form, wherein either one electrode of said first electrode or said second electrode has a geometry surrounding the other electrode, and a tip end portion of said one electrode is formed into a nozzle shape for emitting said plasma generated between said electrodes.
The eighth form of the present invention is the plasma generating apparatus according to said fourth, fifth or sixth form, wherein said first electrode and said second electrode are facing, so that said plasma generated between said electrodes is emitted from an open end side of said electrodes.
The ninth form of the present invention is the plasma generating apparatus according to any of said fourth to eighth forms, wherein said plasma generating apparatus further includes a fluid supplying means to supply a fluid into a generation area of said plasma generated between said electrodes.
The tenth form of the present invention is the plasma generating apparatus according to any of said fourth to ninth forms, wherein each of said electrode pairs is arranged in a predetermined direction.
The eleventh form of the present invention is a plasma processing apparatus including the plasma generating apparatus according to any of said fourth to tenth forms, wherein an object to be processed is irradiated with said plasma generated between said electrodes.
The twelfth form of the present invention is a plasma processing apparatus including said plasma generating apparatus according to any of said fourth to tenth forms, wherein said plasma processing apparatus is a device irradiating an object to be processed with said plasma generated between said electrodes, and each of said electrodes is arranged so that emitting directions of said plasma generated between said electrodes are facing each other.
The 13th form of the present invention is a plasma processing apparatus including said plasma generating apparatus according to any of said fourth to tenth forms, wherein said plasma processing apparatus is a device irradiating an object to be processed with said plasma generated between said electrodes, and each of said electrodes is arranged so that emitting positions of said plasma generated between said electrodes are formed in a spiral.
The 14th form of the present invention is a plasma processing apparatus including said plasma generating apparatus according to any of said fourth to tenth forms, wherein said plasma processing apparatus is a device irradiating an object to be processed with said plasma generated between said electrodes, and an aggregate of said electrodes is formed in a bundle by assembling emitting portions of said plasma generated between said electrodes.
The 15th form of the present invention is a plasma processing apparatus including the plasma generating apparatus according to any of said fourth to tenth forms, wherein said plasma processing apparatus is a device irradiating an object to be processed with said plasma generated between said electrodes, and said plasma processing apparatus further includes an adjusting means for adjusting an irradiating distance to said object to be processed irradiated with said plasma emitted from between said electrodes.
The 16th form of the present invention is a plasma processing apparatus including the plasma generating apparatus according to any of said fourth to tenth forms, wherein said plasma processing apparatus is a device irradiating an object to be processed with said plasma generated between said electrodes, and said plasma processing apparatus further includes an adjusting means for adjusting a direction irradiating said object to be processed with said plasma emitted from each space between said electrodes.
The 17th form of the present invention is the plasma processing apparatus according to any of said eleventh to 14th forms, wherein said plasma processing apparatus further includes a passageway of object to be processed distributing said object to be processed in vicinity of each of said electrodes.
The 18th form of the present invention is the plasma processing apparatus according to said 14th form, wherein said plasma processing apparatus further includes a passageway of object to be processed distributing said object to be processed to the center of said aggregate of said electrodes.
The 19th form of the present invention is a plasma processed object produced by use of the plasma processing apparatus according to any of said eleventh to 18th forms, wherein said plasma processed object is produced by plasma processing of said object to be processed.
<Effects of the Invention>
According to the first form of the present invention, since the LC series circuit in which the condenser of capacitance C and the coil of inductance L are connected in series is arranged between one output of said alternating high voltage generating circuit and said first electrode, the voltage drop of second side output of high frequency transformer is suppressed by means of said coil even when the electric discharge occurred in electrode pair of either one and its electric discharge advanced in said electrode pair. As the voltage applied to other discharge generating electrode is maintained by the suppressive operation of voltage drop due to said LC series circuit, plural electric discharges occur certainly and simultaneously. Therefore, in the power supply circuit for plasma generation of this form, since the alternating high voltage generating circuit is used in common for said plural pairs of discharge generating electrode, it can make plural pairs of electrode discharge simultaneously without making jumboize an apparatus and as a result, a large quantity of generated plasma can be obtained smoothly. In addition, low price of the plasma generating apparatus mounting the plural pairs of electrode can be realized by means of common use of the alternating high voltage generating circuit against said plural pairs of discharge generating electrode.
The alternating high voltage of the present invention includes the continuous alternating voltage, the intermittent alternating voltage, and even the pulse-shaped voltage. This pulse-shaped voltage may be both polarity, positive polarity or negative polarity. In addition, the pulse-shaped voltage may be continuous repetitive pulse, or permittent repetitive pulse. Furthermore, in the case of both polarity, the wave height values of positive wave and negative wave do not need to be same. The alternating high voltage may be also the superposed wave of direct current voltage component with alternating current voltage or pulse-shaped voltage. In other words, the alternating high voltage may be also the voltage in which high voltage and low voltage or ground voltage repeat, or the voltage in which high voltage and its reverse polarity high voltage repeat. In the case of voltage which oscillates in positive and negative, it does not interfere that wave height values of positive and negative are different.
According to the second form of the present invention, there is provided the power supply circuit for plasma generation, wherein said alternating high voltage generating circuit includes a high frequency transformer, two or more output circuits brunched in parallel from one end side of a secondary side coil of said high frequency transformer are connected to said first electrodes, each of said output circuits is formed by a series connection of said condenser and said coil, and said second electrode is connected to another end side of said secondary side coil. Since two or more output circuits for electric discharge can be connected to one secondary side coil, the generation of a large quantity of plasma can be controlled by one secondary side coil, so that circuit constitution becomes easy and circuit cost can be reduced. In addition, the high frequency transformer of the present invention may be also called the pulse transformer.
According to the third form of the present invention, there is provided the power supply circuit for plasma generation, wherein said alternating high voltage generating circuit includes a high frequency transformer, a plurality of secondary side coils are arranged at a secondary side of said high frequency transformer, one or more output circuits brunched in parallel from one end side of each secondary side coil are connected to said first electrodes, each of said output circuits is formed by a series connection of said condenser and said coil, and said second electrode is connected to another end side of said secondary side coil. Since a plurality of secondary side coils are disposed, the number of output circuit for electric discharge can be increased and decreased freely, and it gets possible to set the number of discharge electrode at a desired number. Therefore, by only increasing the number of second side coil by means of one high frequency transformer, it gets possible to perform the electric discharge with a large scale, and gets easy to generate a large quantity of plasma.
According to the fourth form of the present invention, the coil plays the voltage maintenance operation same as the first form, and it gets possible to make plural discharge electrodes discharge simultaneously. Since condenser is only connected in series to coil, the cost does not become higher even if the number of discharge increases, and it is advantageous in that plasma generating apparatus can be composed with low cost. In addition, because plural discharge electrode can be disposed in an arbitrary form, the generated plasma shape can be adjusted freely.
According to the fifth form of the present invention, since two or more output circuits for electric discharge can be connected to one secondary side coil in the secondary side of one high frequency transformer same as the second form, the number of discharge electrode can be adjusted freely by only one secondary side coil, and it is advantageous in that plasma can be generated with simple and cheap circuit constitution.
According to the sixth form of the present invention, since plural secondary side coils are arranged in the secondary side of one high frequency transformer, the number of the output circuit for electric discharge can be increased and decreased freely, and it gets possible to set the number of discharge electrode at a desired number. Therefore, by only increasing the number of secondary side coil by means of one high frequency transformer, it gets possible to perform the electric discharge with a large scale, and gets easy to generate a large quantity of plasma.
According to the seventh form of the present invention, there is provided the plasma generating apparatus, wherein either one electrode of said first electrode or said second electrode has a geometry surrounding the other electrode, and a tip end portion of said one electrode is formed into a nozzle shape for emitting said plasma generated between said electrodes. For example, when a plurality of plasma output portions of coaxial cylinder type are arranged, it becomes possible to irradiate a large quantity of plasma jet. By common use of said alternating high voltage generating circuit, such a composed plasma generating apparatus can be realized cheaply without jumboizing of apparatus.
According to the eighth form of the present invention, as the first electrode and second electrode face each other and the plasma generated between said electrodes is output from the open end side, a large quantity of plasma can be generated in a arbitrary form. For example, if each of electrode pair is disposed on a plane, the planar plasma can be emitted, or if each of electrode pair is disposed three-dimensionally, the solid-shaped plasma can be output in large quantities. By common use of said alternating high voltage generating circuit, such a composed plasma generating apparatus can be realized cheaply without jumboizing of apparatus.
According to the ninth form of the present invention, since the fluid supplying means is disposed to supply a fluid in generation area of the plasma occurred between the electrodes, the plasma is blown on the object to be processed and the generated plasma can be utilized efficiently when a gas flow such as air is generated and flowed to said generation area of plasma by said fluid supplying means. In this case, since the flowed gas can be changed to plasma, the plasma of an arbitrary gas can be irradiated for object to be processed. Said fluid may be a liquid such as water. When the electrodes are dipped in the liquid, it becomes possible to change an arbitrary liquid to plasma by supplying the liquid between the electrodes. As said supplying means, gas blower etc. can be used in gas, and pump, screw, propeller etc. can be used in liquid. In addition, when powder or liquid as the object to be processed is mixed in the fluid, said object to be processed can be transported and supplied in said plasma generation area.
According to the tenth form of the present invention, as each of said electrode pair is arranged in the predetermined direction, for example plural output portions outputting the plasma in a planar shape or three-dimensionally can be disposed, so that it becomes possible to realize the composite plasma generating apparatus which can irradiate the plasma in a planar shape or three-dimensionally. When the large planar second electrode is disposed and a plurality of small planar first electrodes are arranged to face said second electrode, the gap-shaped large plasma can be formed in their gaps. In this case, dielectric can be arranged at the opposed aspect side of electrodes. In addition, when a container is assumed to be the second electrode and plural rod-shaped first electrodes are coaxially disposed in this container, the plasma which spread through the whole container can be generated.
According to the eleventh form of the present invention, since the plasma processing apparatus which emits the plasma generated by each of said electrode pair to object to be processed is provided, a large quantity of plasma emitted simultaneously from plural electrode pairs can be irradiated to said object to be processed, and it gets possible to plasma-process efficiently depending on form or quantity of said object to be processed. In this process, there are contained a wide range of processes such as surface treatment, sterilization, disinfection, washing, reforming, wettability improvement, cutting and production of purpose substance from object to be processed.
According to the twelfth form of the present invention, the plasma processing apparatus includes said plasma generating apparatus according to any of said fourth to tenth forms, and the emitting directions of said plasma generated between said electrodes are facing each other. When the object to be processed was introduced into a plasma processing region formed from plasma generated by each electrode pair, a large quantity of generated plasma is irradiated once, and it gets possible to improve the processing ability. For example, when plural electrode pairs are arranged radially and the plasma is irradiated to the central region, the plasma density of said central region increases rapidly. Next, when the raw material gas being the object to be processed is introduced into said plasma, the purpose powder can be produced efficiently. In addition, if the object to be processed of arbitrary shape is passed in this central region, the plasma can process the circumferential surface of object to be processed simultaneously, so that it is carried out effectively the treatment such as layering and reforming of surface.
According to the thirteenth form of the present invention, since each of said electrode pairs is disposed so as that the output positions of plasma generated by each of said electrode pairs are displaced in a spiral, it can be realized the plasma processing apparatus in which the plasma processing region composed of generated plasma due to each of said electrode pairs is spread three-dimensionally. This spiral state includes the case that plasma emitted by each electrode pair is excentric from center point, so that plasma stream circles in the plasma processing region, and in this case the object to be processed such as raw material gas gets possible to be processed uniformly. Additionally, if the plasma is emitted angularly upwardly in the excentric state, said plasma circling flow rises spirally, so that large capacity of said plasma processing region can be realized and a large quantity of processing for the object to be processed is enabled.
According to the 14th form of the present invention, since the aggregate of each electrode pair in which the output portions of plasma generated by each electrode pair gather in the shape of bundle is formed, it can be realized the plasma processing apparatus by which said aggregate can output a large quantity of plasma in a bundle. Namely, when the electrode pair is composed in the shape of cylindrical electrode, the plasma jet emitted by each electrode pair becomes a bundle so that large plasma jet flow is emitted. If the object to be processed is processed by this large area plasma jet flow, the plasma process can be effectively performed according to the shape and quantity of the object to be processed. In the case of that the electrode pair is not the shape of cylindrical electrode, when the electrode pairs are accumulated or disposed radially and plural groups of said electrode pairs are bundled, the large capacity plasma stream can be formed so that the efficient processing of object to be processed can be realized by said large capacity plasma stream.
According to the 15th form of the present invention, since the adjusting means for adjusting the irradiating distance to said object to be processed irradiated with said plasma emitted from between said electrodes is arranged, the processing efficiency for object to be processed can be adjusted freely by adjusting the irradiating distance. When the object to be processed is raw material gas, the production efficiency of object can be adjusted ideally by adjusting the plasma irradiation efficiency for the raw material gas. In addition, when the object to be processed is solid material, it gets possible to increase the efficiency to layer by adjusting the surface treatment of solid material.
According to the 16th form of the present invention, the irradiation direction to the object to be processed of plasma emitted from electrode pair can be controlled and adjusted freely. For example, when the electrodes are radially arranged in the cylindrical reaction portion, by changing the irradiation direction of plasma freely, the reaction efficiency to generate the object powder can be adjusted ideally for the raw material gas fed to said cylindrical reaction portion. In addition, when the object to be processed is solid object, the processing state of said solid object surface can be changeably adjusted and the optimum design can be realized according to the purpose of plasma process.
According to the 17th form of the present invention, since the passageway of object to be processed feeding the objects to be processed is disposed in the vicinity of each electrode pair, the object to be processed such as fuel gas, catalyst and powder is brought to contact with the generated plasma through said passageway of object to be processed, and the generation efficiency of object can be adjusted. Said passageway of object to be processed can feed not only fluid such as gas and liquid but also solid object. Therefore, even if the object to be processed comprises any kind of form such as gas, liquid and solid, by means of designing the passageway of object to be processed appropriately, it gets possible to realize the plasma processing suitably.
According to the 18th form of the present invention, in said 13th form, since the passageway of object to be processed feeding said object to be processed is disposed in the central portion of the aggregate of each electrode pair, the object to be processed can be fed into a large quantity of plasma generated in a bundle by said aggregate, and the processing efficiency can be improved through effectively contacting with the generated plasma.
The plasma processing apparatus of said 11th to 18th form can be applied to the process such as shape transformation, pelletization, chamfering, surface roughening and projection removal of solid material like toner, glass, ceramics, metal, semiconductor, plastic, rubber and elastomer.
According to the 19th form of the present invention, by using the plasma processing material of any of said 7th to 14th forms, the predetermined plasma processed object can be produced through plasma processing of said object to be processed. By way of example only, through plasma processing, it can be produced the plasma processed object given the surface processing such as surface reforming, wettability improvement, cleaning, etching, resist stripping, painting, printing, print preprocessing, coating, evaporation, application, layer preprocessing, seal, sealing, joining, adhesion preprocessing, oxidization-resisting reinforcement, and reduction-resisting reinforcement. Moreover, it can be provided the object of solid with the surface membrane such as metal membrane, electroconductive • insulative • semiconductive ceramics membrane (oxide membrane, nitride membrane, carbide membrane etc: for example, aluminium oxide membrane, silicon oxide membrane, zinc oxide membrane, ITO (indium tin oxide membrane), ATO (antimony tin oxide membrane), dielectric membrane (barium titanate etc.), piezoelectric substance (PZT, AlN, ZnO etc.), magnetic substance membrane), superconductor membrane, diamondlike carbon membrane (called DLC, amorphous carbon membrane, or diamond-like carbon membrane), polymer • resin • plastic membrane, and fluoride membrane. In addition, it can be provided the object performed processing such as effluent gas processing of NOx or SOx, sterilization, pasteurization, washing, deodorization, waste oil disposal, polluted thing disposal of dioxin, and ozone disposal. Furthermore, it can be produced the carbon system nanopartide synthesized by plasma processing as object such as carbon nanotube, carbon nanocoil, carbon nanotwist, carbon nanohorn, and fullerene, and can be also produced the functional particle as object such as titanium oxide, barium titanate, lithium manganate, lithium cobalt oxide, lithium nickel oxide, zinc oxide and silicon oxide.
The embodiments of the power supply circuit for plasma generation, the plasma generating apparatus and the plasma processing apparatus of the present invention are described in detail according to the accompanying drawings as follows.
In the plasma generating apparatus configured above, when the electric discharge occurs between electrode 1 and common electrode 3, the discharge occurs at condenser 4 of electrode 1 side. The electric discharge phenomenon of this time is shown as the wave pattern model diagram of
As described above, according to the plasma generating apparatus constituted above, the plasma generation by two electrode pairs can be performed smoothly by means of single alternating high voltage generating circuit. Therefore, the plasma generating apparatus suitable for a large quantity of plasma generation can be composed cheaply without jumboizing.
By means of insertion of LC series circuit, the plasma can be smoothly generated same as the embodiment of
Though the examples of two pairs and four pairs of electrode pair are shown in
In the plasma generating apparatus of said constitution, the plasma generation due to four electrode pairs can be performed smoothly by means of single alternating high voltage generating circuit comprising power supply circuit 58 and high frequency transformer 55, the plasma generating apparatus suitable for a large quantity of plasma generation can be composed cheaply without jumboizing by using of four pairs of electrode pair. Besides, since the electrodes 40 to 43 are connected in common to second coil 57 side, the power supply constitution of secondary coil 57 side can be simplified, so that this technique is contributed to reduction in cost, still more.
Next, an embodiment of the plasma surface treatment apparatus which applys the present invention to plasma surface treatment of powder such as toner material is explained.
In
The powder plasma processing apparatus constructed above comprises 12 electrode pairs in total, and by interposing LC series circuit composed of condenser C1 and coil L1 at each electrode 86a side, the discharge in each electrode pair is smoothly generated same as the embodiment of
Furthermore, an embodiment of the present invention suitable for surface processing is explained.
The plasma processing apparatus of the present invention can be applied to the process such as shape transformation, pelletization, chamfering, surface roughening and projection removal of solid material like toner, glass, ceramics, metal, semiconductor, plastic, rubber and elastomer.
In addition, the plasma processing apparatus of the present invention can produce the object given the surface processing such as surface reforming, wettability improvement, cleaning, etching, resist stripping, painting, printing, print preprocessing, coating, evaporation, application, layer preprocessing, seal, sealing, joining, adhesion preprocessing, oxidization-resisting reinforcement, and reduction-resisting reinforcement. Moreover, the plasma processing apparatus of the present invention can provide the object of solid with the surface membrane such as metal membrane, electroconductive • insulative • semiconductive ceramics membrane (oxide membrane, nitride membrane, carbide membrane etc: for example, aluminium oxide membrane, silicon oxide membrane, zinc oxide membrane, ITO (indium tin oxide membrane), ATO (antimony tin oxide membrane), dielectric membrane (barium titanate etc.), piezoelectric substance (PZT, AIN, ZnO etc.), magnetic substance membrane), superconductor membrane, diamondlike carbon membrane (called DLC, amorphous carbon membrane, or diamond-like carbon membrane), polymer • resin • plastic membrane, and fluoride membrane. Furthermore, the plasma processing apparatus of the present invention can provide the object performed processing such as effluent gas processing of NOx or SOx, sterilization, pasteurization, washing, deodorization, waste oil disposal, polluted thing disposal of dioxin, and ozone disposal. Additionally, it can produce the carbon system nanoparticle synthesized by plasma processing as object such as carbon nanotube, carbon nanocoil, carbon nanotwist, carbon nanohorn, and fullerene, and can also produce the functional particle as object such as titanium oxide, barium titanate, lithium manganate, lithium cobalt oxide, lithium nickel oxide, zinc oxide and silicon oxide.
The above-mentioned plasma apparatus was described as an apparatus to generate a pulse arc discharge (generally called a grinding arc) under an atmospheric pressure. However, the power supply circuit of the present invention is available for a barrier discharge occurring in dielectric interposed between electrodes, and to discharge power supply circuit in the present invention (called dielectric discharge or silent discharge) and a vacuum discharge, and it is needless to say that said power supply circuit can be used for various applications such as surface treatment and effluent gas process with the use of said plasma. For example, in the case of barrier discharge, the discharge apparatus in which plural high voltage electrodes are disposed for ground electrode can be driven by one power supply. In addition, even in the case of vacuum discharge, since a vacuum device is assigned as one ground anode and plural high voltage electrodes can be disposed in said vaccum chamber, a large capacity of glow discharge can be occurred, so that it is available for processing of objects such as large-scale object to be processed and board of big area.
It is needless to say that the present invention is not limited to the above-described embodiments; and various modifications and design changes, etc. are included in the scope of the present invention within this limits which do not deviate from the technical spirit of the present invention.
When the first form and the fourth form of the present invention are used, the alternating high voltage generating circuit can be used in common against discharge generating electrodes comprising of two or more first electrodes and one or more second electrode, so that the power supply circuit for plasma generation and the plasma generating apparatus can be cheaply realized and a large quantity of plasma can be smoothly obtained without making jumboize an apparatus.
When the second form and the fifth form of the present invention are used, plural first electrodes can be discharged simultaneously at one secondary side coil by using of the high frequency transformer for alternating high voltage generating circuit, so that the power supply circuit for plasma generation and the plasma generating apparatus can be cheaply realized and a large quantity of generated plasma due to plural electrode pairs can be smoothly obtained without making jumboize an apparatus.
When the third form and the sixth form of the present invention are used, the discharge of n(integer) pairs is possible in said first and second forms, and the plasma of the number of n×m can be generated in the case of secondary side coil of the number of m(integer), so that miniaturization and cost reduction of the power supply unit can be realized.
When the seventh form of the present invention is used, the plural plasma output portions of nozzle shape can be arranged in said first and second forms, so that the composed plasma generating apparatus which can emit a large quantity of plasma can be realized without making jumboize apparatus by common use of said alternating high voltage generating circuit.
When the eighth form of the present invention is used, the plural output portions emitting plasma diffusively in a planar shape can be arranged, so that the composed plasma generating apparatus which can emit a large quantity of plasma can be realized without making jumboize apparatus by common use of said alternating high voltage generating circuit.
When the ninth form of the present invention is used, air flow, for example, can be generated by means of the fluid supplying means, and can be blown to the object to be processed by flowing to said plasma generation area, so that the generation plasma can be efficiently utilized.
When the tenth form of the present invention is used, the plural output portions emitting plasma in a linear shape can be arranged, so that the composed plasma generating apparatus which can irradiate plasma in a linear shape can be realized.
When the eleventh form of the present invention is used, the object to be processed can be irradiated by a large quantity of plasma emitted simultaneously from plural electrode pairs, so that the plasma processing gets possible efficiently depending on the shape and quantity of said object. In this process, there are contained a wide range of processes such as surface treatment, sterilization, disinfection, washing, reforming, wettability improvement, cutting and production of purpose substance from object to be processed.
When the twelfth form of the present invention is used, the object to be processed is introduced into the plasma processing region formed from generation plasma due to said each electrode pair, so that more generation plasma can be irradiated at a time, and the improvement of processing ability can be planned. For example, if plural electrode pairs are disposed radially and the plasma is irradiated in the central region, the plasma density of central region suddenly increases, so that the object powder can be efficiently produced when the raw material gas as object to be processed is introduced into said plasma. In addition, if the object to be processed with arbitrary shape is passed in said central region, the circumferential surface of object can be processed simultaneously by plasma, so that the surface treatment such as layering and reforming is carried out effectively.
When the 13th form of the present invention is used, it can be realized the plasma processing apparatus which can magnify three-dimensionally the plasma processing region formed from generation plasma due to said each electrode pair. This spiral form includes the case that the plasma emitted from each electrode pair deviates from the center point, so that the plasma stream circles in the plasma processing region in this case, and the object to be processed such as raw material gas can be treated uniformly. In addition, in said excentric state, if the plasma is emitted angularly upwardly, said plasma circling stream rises spirally, so that the large capacity of plasma processing region can be realized and a large quantity of processing for object to be processed is enabled.
When the 14th form of the present invention is used, it can be realized the plasma processing apparatus which can output a large quantity of plasma in a bundle form by means of aggregate. That is to say, if the electrode pair is composed in the cylindrical electrode shape, the plasma jet emitted from each electrode pair can become in a bundle and the large plasma jet stream can be emitted, so that the promotion of efficiency of plasma processing can be planned when the object to be processed is treated by said large area plasma jet stream. In the case of no cylindrical electrode, the large capacity plasma stream can be formed by electrode pairs of arrangement such as accumulation, radial arrangement and bundling of their plural arrangements, so that the efficient treatment of object to be processed can be realized by said large capacity plasma stream.
When the 15th form of the present invention is used, the processing efficiency for object to be processed can be adjusted freely by regulating the irradiating distance. When the object to be processed is raw material gas, the plasma irradiation efficiency for the raw material gas is adjusted, so that the production efficiency of object can be regulated ideally. In addition, when the object to be processed is solid material, the surface treatment of solid material can be adjusted, so that it becomes possible to increase the efficiency to layer.
When the 16th form of the present invention is used, the irradiation direction of plasma emitted by electrode pair for object to be processed is controlled and adjusted freely. For example, in the case that electrodes are disposed radially in the cylindrical reaction portion, by changing the irradiation direction of plasma freely, it can be adjusted in best way the reaction efficiency which produces the object powder for raw material gas supplied to said cylindrical reaction portion. In addition, when the object to be processed is solid material, the treatment condition of solid material surface can be changed, so that the optimum design can be realized depending on purposes of plasma processing.
When the 17th form of the present invention is used, for example, fuel gas, catalyst and powder etc. can be brought so as to contact with generated plasma through said passageway of object to be processed, so that the production efficiency of object can be adjusted. The passageway of object to be processed can distribute not only fluid such as gas and liquid but also solid material. Therefore, even if the object to be processed has any kind of form such as gas, liquid and solid, by means of designing the passageway of object to be processed appropriately, it gets possible to realize the plasma processing suitably.
When the 18th form of the present invention is used, the object to be processed can be transported through said passageway of object to be processed to a large quantity of plasma output in a bundle by said aggregate, so that improvement of processing efficiency can be planned through effective contact with said generated plasma. The plasma processing apparatus of said 11th to 18th form can be applied to the process such as shape transformation, pelletization, chamfering, surface roughening and projection removal of solid material like toner, glass, ceramics, metal, semiconductor, plastic, rubber and elastomer.
When the 19th form of the present invention is used, by utilizing the plasma processing material of any of said 7th to 14th forms, the predetermined plasma processed object can be produced through plasma processing of said object to be processed. By way of example only, through plasma-processing, it can be produced the object given the surface processing such as surface reforming, wettability improvement, cleaning, etching, resist stripping, painting, printing, print preprocessing, coating, evaporation, application, layer preprocessing, seal, sealing, joining, adhesion preprocessing, oxidization-resisting reinforcement, and reduction-resisting reinforcement. Moreover, it can be provided the object of solid with the surface membrane such as metal membrane, electroconductive • insulative • semiconductive ceramics membrane (oxide membrane, nitride membrane, carbide membrane etc: for example, aluminium oxide membrane, silicon oxide membrane, zinc oxide membrane, ITO (indium tin oxide membrane), ATO (antimony tin oxide membrane), dielectric membrane (barium titanate etc.), piezoelectric substance (PZT, AIN, ZnO etc.), magnetic substance membrane), superconductor membrane, diamondlike carbon membrane (called DLC, amorphous carbon membrane, or diamond-like carbon membrane), polymer • resin • plastic membrane, and fluoride membrane. In addition, it can be provided the object performed processing such as effluent gas processing of NOx or SOx, sterilization, pasteurization, washing, deodorization, waste oil disposal, polluted thing disposal of dioxin, and ozone disposal. Furthermore, it can be produced the carbon system nanoparticle synthesized by plasma processing as object such as carbon nanotube, carbon nanocoil, carbon nanotwist, carbon nanohorn, and fullerene, and can be also produced the functional particle as object such as titanium oxide, barium titanate, lithium manganate, lithium cobalt oxide, lithium nickel oxide, zinc oxide and silicon oxide.
Number | Date | Country | Kind |
---|---|---|---|
2004-102452 | Mar 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/02479 | 2/17/2005 | WO | 9/29/2006 |