The subject matter disclosed herein relates to a monitor and, more particularly, to an online power supply condition monitor.
During normal operations of electronic equipment, power supplies convert and condition source power to a signal that is useful and protective for the supplied electronic system. However, undetected degradation of power supplies can result in catastrophic failure that can be damaging to the supplied system and other source connected electronic systems. Thus, current technology for detecting degradation of power supplies relates to systems and methods for detecting degradation (prior to functional failure) of power supplies and for predicting remaining useful life prior to functional and catastrophic failures. Such systems and methods generally operate within a testing environment but do not address degradation detection within an operational environment.
According to one aspect of the invention, a method for monitoring a health state of electronic equipment is provided and includes capturing data of an operation of the electronic equipment over a sampling range of predefined length, storing captured data in a storage unit and characterizing a behavior of the operation of the electronic equipment based on an analysis of stored captured data in an event a predefined time has expired or the storage unit has reached maximum capacity.
In accordance with additional or alternative embodiments, the capturing includes collecting current and voltage samples at an input and an output of a power supply of the electronic equipment.
In accordance with additional or alternative embodiments, the capturing includes data sampling.
In accordance with additional or alternative embodiments, the capturing is conducted by sensors embedded in the electronic equipment.
In accordance with additional or alternative embodiments, the capturing is conducted by sensors disposed externally with respect to the electronic equipment.
In accordance with additional or alternative embodiments, the electronic equipment includes a power converter.
In accordance with additional or alternative embodiments, the method further includes deferring the characterizing until the predefined time expires or the storage unit reaches the maximum capacity.
In accordance with additional or alternative embodiments, the characterizing includes characterizing a behavior of input versus output power in the electrical equipment.
According to another aspect of the invention, a method for monitoring a health state of electronic equipment of a rotorcraft is provided. The method includes capturing current and voltage samples from an input power and an output power of a power converter of the electronic equipment over a sampling range of predefined length, storing data reflective of the captured current and voltage samples in a storage unit having a maximum capacity, deferring a characterization of the stored data until a predefined time expires or the storage unit reaches the maximum capacity and characterizing a behavior of the input power and the output power based on an analysis of the stored data in an event the predefined time has expired or the storage unit has reached the maximum capacity.
In accordance with additional or alternative embodiments, the capturing is conducted by one or both of sensors embedded in the power converter and sensors disposed externally with respect to the power converter.
According to another aspect of the invention, a rotorcraft is provided and includes an airframe on which main and auxiliary rotors are operably disposed to be drivable to rotate relative to the airframe to generate lift and thrust, electronic equipment disposed about the airframe, an electronic power supply disposed to provide electric power to the electronic equipment and a power supply control system coupled to the electronic power supply to control a provision of the electric power to the electronic equipment. The power supply control system includes a processing system to execute the methods for monitoring a health state of electronic equipment.
In accordance with additional or alternative embodiments, the power supply control system includes a power converter.
In accordance with additional or alternative embodiments, the processing system is embedded in the power converter.
In accordance with additional or alternative embodiments, the processing system is disposed externally with respect to the power converter.
In accordance with additional or alternative embodiments, the processing system includes a health and usage monitoring system (HUMS).
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
As will be described below, detection of power supply degradation and prediction of remaining useful life prior to functional and catastrophic failures is provided by a system and method of continuous monitoring within an operational environment that overcomes sampling, processing and data management challenges. The system and method provide for aperiodic current and voltage samples to be collected at an input and an output of a monitored power supply, provide input to an embedded processor connected to sensors and include an intelligent data measurement scheme that controls measurement collection to ensure that a sufficient operational range is captured, that minimizes required processing power and optimizes data sampled to available storage and that characterizes the behavior of the input power versus the output power. The system and method further maintain a history to support trend analysis and prediction.
With reference to
The main rotor assembly 5 includes a first or upper rotor 50 and a second or lower rotor 51. The upper rotor 50 includes a rotor shaft 501, a hub 502 and blades 503 extending radially outwardly from the hub 502. The rotor shaft 501 and the hub 502 are rotatable in a first direction about rotational axis RA, which is defined through the airframe 2, to drive rotations of the blades 503 about the rotational axis RA in the first direction. The lower rotor 51 includes a rotor shaft 511, a hub 512 and blades 513 extending radially outwardly from the hub 512. The rotor shaft 511 and the hub 512 are rotatable in a second direction about the rotational axis RA, which is opposite the first direction, to drive rotations of the blades 513 about the rotational axis RA in the second direction. The auxiliary propulsor 6 has a similar structure with an axis of rotation that is generally aligned with a longitudinal axis of the tail portion 4.
The blades 503, 513 are pivotable about respective pitch axes PA that run along respective longitudinal lengths of the blades 503, 513. This pitching can include lateral cyclic pitching, longitudinal cyclic pitching and collective pitching. Lateral cyclic pitching varies blade pitch with left and right movements and tends to tilt the rotor disks formed by the blades 503 and 513 to the left and right to induce roll movements. Longitudinal cyclic pitching varies blade pitch with fore and aft movements and tends to tilt the rotor disks forward and back to induce pitch nose up or down movements. Collective pitching refers to collective angle of attack control for the blades 503, 513 to increase/decrease torque.
When driven to rotate by the engine 7 via the transmission 8, the main rotor assembly 5 generates lift and the auxiliary propulsor 6 generates thrust. The pilot (and crew) and the flight computer 10 can cyclically and collectively control the pitching of the blades 503, 513 of at least the main rotor assembly 5 in order to control the flight and navigation of the rotorcraft 1 in accordance with pilot/crew inputted commands and current flight conditions.
The rotorcraft 1 may also include a system of sensors 30. The system of sensors 30 may include a plurality of individual sensors 31 that are respectively disposed about the airframe 2 on rotating or non-rotating frames. That is, the sensors 31 can be disposed on the hubs 502, 512, the blades 503, 513 or on/in the airframe 2.
With reference to
The power supply control system 60 is coupled to the electronic power supply 50 and is configured to control a provision of the electric power to the electronic equipment 40. To this end, the power supply control system 60 includes a processing system 61 that executes the methods described below. With reference to
The power supply control system 60 illustrated in
The power supply control system 60 illustrated in
The monitoring units 604 and 617 used in the embedded and the external embodiments both include sensors to monitor input and output voltages and currents of the power converter 51 where each sensor is used to measure a single electrical quantity. Each sensor includes a transducer to convert either voltage or current to an appropriate electrical signal and a low-pass filter that outputs a signal to an analog-to-digital converter (ADC). The sensors may be a collection of environmental sensors that each acts as a transducer used to measure one or more of the following environmental parameters: temperature, vibration, humidity, radiation and pressure. Each low pass filter is designed to anti-alias the electrical signals measured from the transducer.
The output of each transducer of each sensor is connected to one channel of the ADC. The ADC quantizes all of the sensor values into digital signals and may be connected to a processor 61, which is itself connected a storage unit 62 (see
In any case, with reference to
In accordance with embodiments, the capturing of the data of operation 701 may include collecting current and voltage samples at the input and the output of the power converter 51 by way of the sensors of the monitoring units 604 and 617 at data collection sampling rates below 1 sample/second. In addition, the sampling range of the predefined length may be any sampling range that encompasses an operational range sufficient for the collection of the data. Also, the characterizing of operation 704 may include characterizing a behavior of input versus output power in the power converter 51 as disclosed in U.S. Pat. No. 8,103,463. In accordance with alternative embodiments, however, it is to be understood that the data collection sampling rates may be synchronous or asynchronous and may be accomplished at higher rates, perhaps exceeding the above-noted 1 sample/second.
As described herein, failures of power supplies are usually among the top maintenance drivers for electronic systems. Therefore, detection of an impending failure, prior to loss of functionality, can provide for mission assurance, permit a scheduled versus unscheduled maintenance action, permit increased critical system design flexibility and prevent cascading damage effects due to unmitigated failure of an electronic system. The system and methods described herein achieve these goals while minimizing required processing power and optimizing an amount of data sampled to available storage in the storage unit 62 and thus may be embedded in many new digital power supply systems with little to no design impact.
Although the description provided above relates generally to the rotorcraft 1, it is to be understood that this is merely exemplary and that the features of
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This invention is related to the disclosure of U.S. Pat. No. 8,103,463, which issued on Jan. 24, 2015. The entire disclosures of U.S. Pat. No. 8,103,463 are incorporated herein by reference.
This invention was made with government support under Contract No. W911W6-08-C-0053 awarded by the Army. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/13428 | 1/14/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62133675 | Mar 2015 | US |