The present invention, in some embodiments thereof, relates to a contact clip for a printed circuit board (hereafter referred to as “PCB”) and, more particularly, but not exclusively, to a contact for connection to a power supply for surface installation of a PCB with reduced stress on the PCB.
U.S. Pat. No. 6,722,916 to Buccinna et al. discloses an electronic component that includes a PCB having first and second battery contacts. A battery clip having a bottom portion is connected to the first battery contact. The battery clip also includes a top portion spaced from the PCB with a tab extending from the top portion in a downward direction toward PCB. A coin cell battery is arranged between the battery clip and the second battery contact. The present invention battery clip biases the battery into engagement with the second battery contacts with the tab. The second battery contacts may be provided by a solder bump or a printed circuit preferably arranged in a criss-cross waffle shaped pattern. The battery clip is secured to the first battery contacts preferably by applying a solder paste that is heated to electrically join the battery clip to the first battery contacts.
U.S. Pat. No. 7,501,587 to English discloses clips that may be compatible with surface mount technology. The clips may be surface mountable to a substrate for allowing repeated releasable attachment and detachment of a shielding structure thereto. In one exemplary embodiment, a clip generally includes a base member having generally opposed first and second side edge portions. Two or more arms extend generally upwardly in a first direction from the base member. The clip also includes a generally flat pick-up surface configured to enable the clip to be picked up by a head associated with pick-and-place equipment.
U.S. Pat. No. 7,488,181 to Van Haaster discloses contacts that may be compatible with surface mount technology. The contacts may be surface mountable for establishing an electrical pathway (e.g., electrical grounding contact, etc.) from at least one electrically-conductive surface on the substrate to another electrically-conductive surface (e.g., EMI shield, battery contact, etc.). In one exemplary embodiment, a contact generally includes a resilient dielectric core member. At least one outer electrically-conductive layer is electrocoated onto the resilient dielectric core member. A solderable electrically-conductive base member may be coupled to the resilient core member and/or the outer electrically-conductive layer. The base member may be in electrical contact with the outer electrically-conductive layer.
U.S. Pat. No. 7,034,223 to Fan discloses a PCB mounting apparatus including a supporting plate defining a number of through holes, a number of standoffs engaging in the through holes, and a number of grounding members attached to the standoffs. The standoff each includes a head having a holding portion, a flange a post, and a base. The grounding member each includes a first ring supported on the flange, a second ring supported on the base, and a band connecting therebetween. The PCB defines a number of fixing apertures. The combined standoff and grounding member is disposed in the through hole. The PCB is placed upon the supporting plate with the fixing apertures engaging the holding portions of the standoffs and contacts the first rings of the grounding members. The standoffs and the grounding members are made of conductive materials.
According to an aspect of some embodiments of the present invention there is provided method of mounting a PCB to a power supply including pushing the PCB into position on a mounting, and simultaneously engaging mechanically a PCB-to-power-contact connected to the PCB to a PCB contact connected to the mounting and electrically connecting the PCB-to-power-contact to the PCB contact.
According to some embodiments of the invention, the engaging includes forming a friction contact between the PCB-to-power-contact and the PCB contact.
According to some embodiments of the invention, the engaging includes clasping a rail from opposite sides.
According to some embodiments of the invention, the engaging includes sliding the rail between two fingers, wherein the two fingers are mounted parallel to a direction of the pushing.
According to some embodiments of the invention, the sliding includes elastically deforming the fingers to admit the rail between the fingers.
According to some embodiments of the invention, a first force between at least one of the fingers and the rail is at least partially balanced by a second of the forces between at least a second of the fingers and the rail.
According to some embodiments of the invention, the net force on the rail is less than a tenth of the sum of the magnitudes of individual forces on the rail.
According to some embodiments of the invention, the method may further include directing the PCB to the position with a guide.
According to some embodiments of the invention, the method may further include fixing a location of the PCB contact with respect to the mounting.
According to some embodiments of the invention, the method may further include locating a power supply terminal separate from the fixing of the PCB contact.
According to some embodiments of the invention, the method may further include joining the PCB contact to the power supply terminal with an adaptor element.
According to some embodiments of the invention, the pushing is in a direction substantially perpendicular to a plane of the PCB.
According to some embodiments of the invention, after the engaging, the PCB-to-power-contact resists disconnection from the PCB contact without requiring an external force.
According to some embodiments of the invention, after the engaging, the PCB-to-power-contact resists disconnection from the PCB contact.
According to some embodiments of the invention, after the engaging, the electrical connecting remains stable without stressing the PCB.
According to an aspect of some embodiments of the present invention there is provided a system for mounting a PCB to a power supply including: a PCB contact positioned on a mounting for the PCB, a PCB-to-power-contact positioned on the PCB, and a friction contact mechanically engaging and electrically connecting the PCB-to-power-contact to the PCB contact without requiring an external force from the PCB.
According to some embodiments of the invention, wherein the friction contact includes at least two fingers extending perpendicular to a plane of the PCB, the fingers configured for sliding onto opposite sides of a rail.
According to some embodiments of the invention, in an unstressed state the fingers are positioned on opposite sides of a gap and wherein the gap is configured for sliding a rail into the gap, elastically deforming the fingers to grasp opposite sides of the rail.
According to some embodiments of the invention, during the mechanical engaging, the at least two fingers are elastically stressed by the rail in opposing directions by forces from the rail that at least partially counter balance each other, the net force being less than the sum of the magnitudes individual forces.
According to some embodiments of the invention, the stresses on the fingers are in a direction substantially parallel to a plane of the PCB.
According to some embodiments of the invention, during the mechanical engaging, the at least two fingers are elastically stressed by the rail in opposing directions by forces from the rail that at least partially counter balance each other, the net force being less than a tenth of the sum of the magnitudes individual forces.
According to some embodiments of the invention, the system may further include: a guide positioned on the mounting, the guide configured to direct the positioning prior to the engaging of the friction contact.
According to some embodiments of the invention, a position of the PCB contact is fixed with respect to the mounting.
According to some embodiments of the invention, the system may further include: a power supply terminal and wherein a position of the power supply terminal is fixed separately from the fixing of the PCB.
According to some embodiments of the invention, the system may further include: an adaptor element joining the PCB contact to the power supply terminal.
According to some embodiments of the invention, the friction contact is configured for the engaging in response to pushing in a direction substantially perpendicular to a plane of the PCB.
According to some embodiments of the invention, after the engaging, the PCB-to-power-contact resists disconnection from the PCB contact without requiring an external force.
According to some embodiments of the invention a power supply contact is mountable on a base of a device having a geometry for receiving a power supply and for surface installation of a PCB. The power supply contact includes a base plate mountable on the base of the device, a rail extends upwardly from the base plate, a power supply terminal and an adaptor connecting the rail to the power supply terminal. The rail is in electrical contact with the PCB and the power supply terminal is in electrical contact with the power supply when the PCB and the power supply are installed in the device.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
The present invention, in some embodiments thereof, relates to a contact clip for a printed circuit board and, more particularly, but not exclusively, to a contact for connection to a power supply for surface installation of a printed circuit board with reduced stress on the PCB.
An aspect of some embodiments of the current invention relates to a modular system for mounting a PCB to a device. Modularity may optionally allow replacement of one or more parts without changing the PCB. In this way, it may be possible to change for example the geometry of the device and/or the type of batteries keeping the same PCB and/or PCB contact structure. This may be useful for medical devices where any minor change may require extensive testing and approval of each part that has been changed.
In some embodiments an adaptor element, for example a battery contact, may interconnect between a PCB and an interchangeable part, for example a power supply. For example, a single PCB may be used in multiple models of medical infusers. Optionally different models may include different power supplies. In some embodiments of an infuser, a power supply may be exchanged for a power supply having a different geometry by changing the geometry of the infuser housing to fit the new power supply while keeping the mounting area for the PCB unchanged. Optionally the geometry of the battery contacts may be adjusted to connect between the changed power supply and the unchanged PCB. Optionally, mounting of the PCB may by simple surface mounting without requiring an extra step for connecting the power supply (for example soldering and/or insertion of a plug in a socket). This may optionally facilitate uniform automated assembly of a device containing the PCB.
In some embodiments, a PCB may be mounted by z-assembly. For example the PCB may be mounted from a disconnected state to a connected state by a single vertical push onto a mounting. Power contacts may be optionally be connected by simple z-mounting (for example by pushing the PCB linearly into place). Optionally once connected the power contacts may resist disengagement.
In some embodiments, of a modular system, the battery cavity may be separate from the PCB contacts. For example, the power supply may include a battery cavity and battery terminals. The battery terminals may be in electrical connection with PCB contacts. The location of the terminals may be controlled for example by the shape of the battery cavity while the location of the PCB contacts may be fixed by a PCB contact guide.
An aspect of some embodiments of the current invention relates to a quick power connector for mounting a printed circuit board to a device. The quick connector may simplify disconnection of the PCB for proper disposal and/or recycling.
An aspect of some embodiments of the current invention relates to compression contacts and/or friction contacts that may connect between a PCB and a power supply when the PCB is dropped into place on a mount. For example, when a PCB is placed on a mounting metal clips may contact a mounting rail. When the PCB is pushed into place the clips may optionally slide onto the rail and/or clasp the rail from opposite sides. Optionally the contact in itself may supply an interface and/or a stable connection and/or an electrical interconnection between the PCB and a power supply. Grasping forces may optionally make a friction and/or pressure contact that remains in contact with the rail without requiring a constant force from the PCB. The grasping forces may optionally make a friction and/or pressure contact that once connected resists disconnection from the rail without requiring an external force, for example from the PCB. The forces of clasping may be balanced on opposite sides of the rail without requiring a constant counter force from the PCB or the rail. When the PCB is placed on the mounting it may be guided by guide members. For example in some embodiments the force needed to engage the clip to a rail may range between 0.01 and 10 N. The engagement force of each clip may be added to the force to push the PCB into place. For example in some embodiments once connected the clip may resist a disengagement force ranging between 0.05 and 1.0 N. The disengagement force of each clip may be added to the force required to disengage the PCB from its mount. Optionally the force to push the PCB into place and/or the disengagement force may be perpendicular to the plane and the PCB. Optionally the force to push the PCB into place and/or the disengagement force may be in the direction of insertion of the PCB. Optionally the force to push the PCB into place and/or the disengagement force may be perpendicular to a PCB mount.
For example in some embodiments as a PCB is lowered into place via z-assembly, the contacts may interconnect. For example, a clip may have fingers directed parallel to the direction of insertion of the PCB and/or perpendicular to the plane of the PCB. Optionally the fingers may have a gap into which a rail penetrates, as the PCB is pushed into place. The width of gap may range, for example, between 0.3 to 1.0 mm. For example in some embodiments the length of fingers may range between 1 and 4 mm. For example in some embodiments the length of the clip may range between 1 and 10 mm. For example in some embodiments the width of the clip may range between 0.5 and 2.0 mm. For example in some embodiments the thickness of the rail grasped by the clip may range between 0.05 and 0.5 mm.
In some embodiments, the contacts of the current invention may reduce stress on a PCB and/or on mounts used to hold a PCB. For example, the current invention may avoid use of a spring contact that pushes against a contact plate requiring a counter force from the PCB mountings. In some cases, such forces from spring mounts on the PCB may cause mounting pins and/or the PCB to deform over time. Such deformations may in some cases reduce reliability.
For example the PCB contacts may include a clip and a corresponding rail. The contact between the PCB and the power supply may be made by the clip grasping the rail from two sides without stressing the PCB. Alternatively or additionally, the contact between the PCB and the power supply may use a clip that grasps the PCB locally. In some embodiments, the clip may balance stresses locally without requiring counter forces from the PCB mountings. Suitable clip contacts may include for example S1711 and/or S1721 shielding clips available from Harwin Inc., 7B Raymond Avenue, Unit 11, Salem, N.H. 03079, USA. Specifications are published as the S1711 and/or S1721 Customer Information Sheet which are incorporated herein by reference.
In some embodiment power supply clips and/or respective contacts may extend between the base and the PCB. A PCB mount may be configured to extend between the base and the PCB while the PCB is adjacent to the base. Optionally, the guide may direct the PCB into position before the power supply clips reach the contacts.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Referring now to the drawings,
In some embodiment, a power supply terminal may be installed 101 into the base of the device. Optionally, guides for directing engagement of a PCB contact may be fixed 102 in a PCB mounting (for example the PCB mounting may include a section of the base having a PCB positioning guide and/or a PCB contact guide for directing 105 placement of the PCB and/or fixing 102 a location of a PCB contact). In some embodiments, the terminal supports and/or the PCB positioning guides and/or the PCB contact locators may optionally be separate and/or independent from each other. In some embodiments, the terminal supports and/or the PCB positioning guides and/or the PCB contact locator may optionally be located in a specified relative geometry. The PCB mounts may optionally be long enough that they direct 105 positioning of the PCB while it is adjacent to the mounting base before PCB-to-power-contacts on the PCB reach the PCB contacts on the mounting.
In some embodiments an adapter element may join 103 the PCB contacts to the power supply terminals. For example, the terminals may be installed 101 into the base with a terminals support (for example a battery cavity) and/or the PCB contacts may be precisely fixed 102 in their location (for example on the PCB mounting) by a PCB contact guide and/or the PCB contact may be joined 103 to the terminal by a flexible conductive metal ribbon.
In some embodiments installing 101 power terminals and/or fixing 102 PCB contacts and/or joining 103 the contacts to the terminals may be performed simultaneously. For example, a single piece battery contact (for example the contacts 220, 220′ of
In some embodiments, the PCB contact may be secured 111 to the PCB mounting. For example, the PCB locator includes a mounting pin; the battery contacts may be secured 111 by hot melting the mounting pins.
In some embodiments, after the PCB contacts are in place, the PCB may be installed simply by positioning 104 the PCB adjacent to the mounting. When the PCB is positioned 104 next to the mounting it may optionally engage a PCB guide. The PCB guide may, for example, direct 105 the PCB into its correct position on the mounting. Optionally, gentle push 106 may engage the PCB-to-power-contact to on the PCB to the PCB contact on the PCB mounting.
In some embodiments, mounting may be simple vertical lowing of the PCB onto the base. Optionally mounting may not require complex motions and/or action (for example tilting and/or translating the PCB, and/or soldering contacts and/or plugging in cords). For example, the PCB guide may include a mounting pin. Optionally during positioning 104 the mounting pin may optionally enter holes in the PCB and direct 105 the PCB while it is being pushed 106 into position on the mounting. Optionally, pushing 106 the PCB onto the mounting may engage a PCB-to-power-contact installed on the PCB to a PCB contact on the mounting thereby electrically connecting 107 the PCB to the power supply. For example, PCB-to-power-contact may include a clip and the PCB contact may include a rail. The clip may, optionally, slide onto and/or grasp the PCB contacts. Alternatively or additionally, PCB contact may include a clip that grasps a rail on the PCB.
In some embodiments a test circuit may be included in the PCB. The test circuit may be used to test 108 whether the PCB is in good electrical connection with the PCB contacts.
In some embodiments the PCB may be secured 109 into the base. For example if the PCB mounts are mounting pins, the PCB may be secured 109 by hot melting the mounting pins.
In some embodiments, once the PCB has been mounted, various components may be connected 110 to the surface of the PCB. For example, there may be contacts for an electric motor and/or a rotation sensor for the motor and/or other sensors and/or power supply contacts.
Referring now to further drawings,
In some embodiments, positive and negative battery connectors 220, 220′ respectively, may be lowered into place on a plastic base 230. For example a negative terminal 228 may be supported by a negative terminal support 236 and/or a positive terminal 228′ may be supported by a positive terminal support 236′.
In some embodiments, battery terminal 228 may have multiple redundant fingers, each independently contacting the battery. If one of the fingers is blocked (for example by corrosion and/or dirt), the other finger may supply contact and/or electrical connection.
In some embodiments, PCB connectors may include a rail 226 and a base plate 222. Optionally the base plate 222 may be mounted to the base 230 using guides 232. Guides 232 may optionally pass through holes 224 in the base plate 222 to hold the rail 226 in precise locations for connecting to the PCB. The battery terminals 228, 228′ may optionally be electrically joined to the rails 226, 226′ via a thin metal ribbons 225, 225′. The metal ribbons 225, 225′ may optionally be flexible. Flexibility of the ribbons 225, 225′ may optionally facilitate the guides 232 fixing of the rails 226 in their proper location separately from the supporting of the terminals 228, 228′. Flexibility may optionally facilitate fixing of the rails 226 in their proper location regardless of small imprecision and/or movements in the location of the terminals 228, 228′. Connection between the terminals 228, 228′ and the PCB connecting the rails 226 may optionally be formed by an adaptor element according to the particular geometry of a device, for example the base 230. For example, an adapter element may include a conducting ribbon that is adapted to the base geometry. For example, the ribbon 225 is straight while the ribbon 225′ is bent.
In some embodiments, the ribbon 225 may have a cut out 227 portion. For example, the cut out portion 227 may allow part of the battery support 236 to pass through the ribbon 225. In the exemplary embodiment of
In some embodiments, the battery connectors 220, 220′ are monolithic elements. For example, each connector 220, 220′ may be made of a single piece of metal. Alternatively or additionally, each connector 220, 220′ may be made of multiple components.
Referring now to further drawings,
Referring now to further drawings,
In alternative exemplary embodiment a clip contact may have more or less than four fingers. For example, a clip may have three fingers, for example one finger in the middle and opposing fingers on either side. Optionally, a clip may have five, six or more fingers.
In some embodiments, as the fingers 552 spread, admitting the rail 226 into the gap 553, the fingers 552 are elastically deformed. The fingers 552 may optionally spring back to grasp the rail 226 from two sides, for example as illustrated in
In some embodiments, friction and/or compression forces between the fingers 552 and the rail 226 may resist disconnection. The forces and/or torques produced by the contact between the fingers 552 and the mounting plate 226 may optionally be balanced such that the clip 550 holds to the rail 526 without requiring an external restraining force and/or torque for example from the base 230 and/or the PCB 540 and/or the guides 234 and/or the guides 232 that join them without requiring an external force to hold the clip 550 to the rail 226. For example, opposite fingers 552 may apply forces to the rail in opposite directions. In the example friction between the fingers 552 and the rail 226 may resist disconnection according to the sum of the magnitude of the force between the fingers 552 and the rail 226. The net force and or torque on the base 554 and or the rail 226 may be the vector sum of the forces and/or torques. Opposite forces and torques may have vector forces that substantially nullify each other. For example, in some embodiments the net force may range between half and a tenth of the sum of the force magnitudes. For example, in some embodiments the net force may be less than a tenth the sum of the force magnitudes. Additionally or alternatively, other mounting clips (for example various forms of grounding clips) may be used as contacts between a PCB and a power supply.
Referring now to further drawings,
As illustrated in
FIGS. 9A,B also illustrate that in the exemplary embodiments of FIGS. 4A,B the guide 234 is optionally longer than the combined lengths of corresponding pairs of the rails 226 or 926 and the clips 550 or 950. As the PCB 540 is positioned over the base 230, the guides 234 optionally enter holes 524 before the clip 550, 950 contacts corresponding the rail 226,926. The guide 234 may guide the rails 226, 926 to precisely slide into the gaps 553, 953 of corresponding the clips 550, 950.
Referring now to further drawings,
In some embodiments, a PCB 1040 may include a clip 1050 on a face to be mounted onto a base (for example base 1030). The clip 1050 may include for example the clip 550 as described herein above or various clip contacts known in the art (for example as described in U.S. Pat. No. 7,501,587 and/or U.S. Pat. No. 7,488,181 where are incorporated in their entirety by reference into the specification).
In some embodiments, the clip 1050 may form a connection to a clip contact 1026 included in a power contact 1020. For example the connection may be formed by simply pressing the clip 1050 onto the clip contact 1026. Optionally, the forces between the clip 1050 and the clip contact 1026 may be balanced so that they do not require a counter force and/or torque from the PCB 1040 and/or the power contact 1020. An electrical connection 1025 may be supplied between the clip contact 1026 and a battery terminal 1028. In some embodiments the contact 1020 may include a mounting plate 1022 for mounting to the base 1030.
In some embodiments the base 1030 may include the guides 1032 to position the PCB 1040 and/or the contact 1020 during mounting of the PCB 1040 to the base 1030 and the power contact 1020.
In some embodiments the base 1030 may include a terminal support 1036.
It is expected that during the life of a patent maturing from this application many relevant PCB connectors will be developed and the scope of the terms contacts, clips, rails and connectors is intended to include all such new technologies a priori.
As used herein the term “about” refers to ±5%.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
The term “consisting of” means “including and limited to”.
The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, the description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
This application is a continuation of U.S. patent application Ser. No. 13/873,335, filed Apr. 30, 2013, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1795630 | Wilson | Mar 1931 | A |
2860635 | Wilburn | Nov 1958 | A |
3203269 | Perrine | Aug 1965 | A |
3212685 | Swan et al. | Oct 1965 | A |
3794028 | Mueller et al. | Feb 1974 | A |
3994295 | Wulff | Nov 1976 | A |
4195636 | Behnke | Apr 1980 | A |
4218724 | Kaufman | Aug 1980 | A |
4273122 | Whitney et al. | Jun 1981 | A |
4300554 | Hessberg et al. | Nov 1981 | A |
4403987 | Gottinger | Sep 1983 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4465478 | Sabelman et al. | Aug 1984 | A |
4565543 | Bekkering et al. | Jan 1986 | A |
4585439 | Michel | Apr 1986 | A |
4599082 | Grimard | Jul 1986 | A |
4601702 | Hudson | Jul 1986 | A |
4685903 | Cable et al. | Aug 1987 | A |
4698055 | Sealfon | Oct 1987 | A |
4810215 | Kaneko | Mar 1989 | A |
4850966 | Grau et al. | Jul 1989 | A |
4867743 | Vaillancourt | Sep 1989 | A |
4886499 | Cirelli et al. | Dec 1989 | A |
4919596 | Slate et al. | Apr 1990 | A |
4929241 | Kulli | May 1990 | A |
4950246 | Muller | Aug 1990 | A |
D322671 | Szwarc | Dec 1991 | S |
5109850 | Blanco et al. | May 1992 | A |
5112317 | Michel | May 1992 | A |
5131816 | Brown et al. | Jul 1992 | A |
5190521 | Hubbard et al. | Mar 1993 | A |
5254096 | Rondelet et al. | Oct 1993 | A |
5300045 | Plassche, Jr. | Apr 1994 | A |
5342313 | Campbell et al. | Aug 1994 | A |
5348544 | Sweeney et al. | Sep 1994 | A |
5366498 | Brannan et al. | Nov 1994 | A |
5383865 | Michel | Jan 1995 | A |
5478315 | Brothers et al. | Dec 1995 | A |
5482446 | Williamson et al. | Jan 1996 | A |
5496274 | Graves et al. | Mar 1996 | A |
5501665 | Jhuboo et al. | Mar 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5562686 | Sauer et al. | Oct 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5616132 | Newman | Apr 1997 | A |
5643218 | Lynn et al. | Jul 1997 | A |
5645955 | Maglica | Jul 1997 | A |
5647853 | Feldmann et al. | Jul 1997 | A |
5662678 | Macklin | Sep 1997 | A |
5672160 | Osterlind et al. | Sep 1997 | A |
5690618 | Smith et al. | Nov 1997 | A |
D393314 | Meisner et al. | Apr 1998 | S |
5766186 | Faraz et al. | Jun 1998 | A |
5795675 | Maglica | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5814020 | Gross | Sep 1998 | A |
5836920 | Robertson | Nov 1998 | A |
5848991 | Gross et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858001 | Tsals et al. | Jan 1999 | A |
5858008 | Capaccio | Jan 1999 | A |
5868710 | Battiato et al. | Feb 1999 | A |
5931814 | Alex et al. | Aug 1999 | A |
5941850 | Shah et al. | Aug 1999 | A |
5948392 | Haslwanter et al. | Sep 1999 | A |
5954697 | Srisathapat et al. | Sep 1999 | A |
5957895 | Sage et al. | Sep 1999 | A |
5968011 | Larsen et al. | Oct 1999 | A |
5993423 | Choi | Nov 1999 | A |
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6033245 | Yamkovoy | Mar 2000 | A |
6033377 | Rasmussen et al. | Mar 2000 | A |
6064797 | Crittendon et al. | May 2000 | A |
6074369 | Sage et al. | Jun 2000 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6200289 | Hochman et al. | Mar 2001 | B1 |
6200296 | Dibiasi et al. | Mar 2001 | B1 |
6224569 | Brimhall | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6277095 | Kriesel et al. | Aug 2001 | B1 |
6277098 | Klitmose et al. | Aug 2001 | B1 |
6277099 | Strowe et al. | Aug 2001 | B1 |
6287283 | Ljunggreen et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6336729 | Pavelle et al. | Jan 2002 | B1 |
6345968 | Shupe | Feb 2002 | B1 |
6377848 | Garde et al. | Apr 2002 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6423029 | Elsberry | Jul 2002 | B1 |
D465026 | May et al. | Oct 2002 | S |
6458102 | Mann et al. | Oct 2002 | B1 |
6485461 | Mason et al. | Nov 2002 | B1 |
6485465 | Moberg et al. | Nov 2002 | B2 |
6500150 | Gross et al. | Dec 2002 | B1 |
6503231 | Prausnitz et al. | Jan 2003 | B1 |
6511336 | Turek et al. | Jan 2003 | B1 |
6517517 | Farrugia et al. | Feb 2003 | B1 |
D471274 | Diaz et al. | Mar 2003 | S |
D471983 | Hippolyte et al. | Mar 2003 | S |
6558351 | Steil et al. | May 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6595956 | Gross et al. | Jul 2003 | B1 |
6595960 | West et al. | Jul 2003 | B2 |
6645181 | Lavi et al. | Nov 2003 | B1 |
6652482 | Hochman | Nov 2003 | B2 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6679862 | Diaz et al. | Jan 2004 | B2 |
6689118 | Alchas et al. | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6722916 | Buccinna et al. | Apr 2004 | B2 |
6743211 | Prausnitz et al. | Jun 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6786890 | Preuthun et al. | Sep 2004 | B2 |
6800071 | McConnell et al. | Oct 2004 | B1 |
6805687 | Dextradeur et al. | Oct 2004 | B2 |
6824529 | Gross et al. | Nov 2004 | B2 |
6843782 | Gross et al. | Jan 2005 | B2 |
6854620 | Ramey | Feb 2005 | B2 |
6905298 | Haring | Jun 2005 | B1 |
6908452 | Diaz et al. | Jun 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6997727 | Legrady et al. | Feb 2006 | B1 |
7001360 | Veasey et al. | Feb 2006 | B2 |
7034223 | Fan et al. | Apr 2006 | B2 |
7048715 | Diaz et al. | May 2006 | B2 |
7060054 | Nissels | Jun 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7097637 | Triplett et al. | Aug 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
D544092 | Lewis | Jun 2007 | S |
7225694 | Said | Jun 2007 | B2 |
7247149 | Beyerlein | Jul 2007 | B2 |
7250037 | Shermer et al. | Jul 2007 | B2 |
7267669 | Staunton et al. | Sep 2007 | B2 |
7291132 | DeRuntz et al. | Nov 2007 | B2 |
7291159 | Schmelzeisen-Redeker et al. | Nov 2007 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7344385 | Chen | Mar 2008 | B2 |
7364570 | Gerondale et al. | Apr 2008 | B2 |
7390314 | Stutz, Jr. et al. | Jun 2008 | B2 |
7407493 | Cane' | Aug 2008 | B2 |
D578210 | Muta et al. | Oct 2008 | S |
7455663 | Bikovsky | Nov 2008 | B2 |
7465290 | Reilly | Dec 2008 | B2 |
7488181 | van Haaster | Feb 2009 | B2 |
7497842 | Diaz et al. | Mar 2009 | B2 |
7501587 | English | Mar 2009 | B2 |
7503786 | Kato et al. | Mar 2009 | B2 |
7530964 | Lavi et al. | May 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7565208 | Harris et al. | Jul 2009 | B2 |
7569050 | Moberg et al. | Aug 2009 | B2 |
D600341 | Loerwald | Sep 2009 | S |
7585287 | Bresina et al. | Sep 2009 | B2 |
7588559 | Aravena et al. | Sep 2009 | B2 |
7589974 | Grady et al. | Sep 2009 | B2 |
D602155 | Foley et al. | Oct 2009 | S |
D602586 | Foley et al. | Oct 2009 | S |
D604835 | Conley | Nov 2009 | S |
7628770 | Ethelfeld | Dec 2009 | B2 |
7628772 | McConnell et al. | Dec 2009 | B2 |
7628782 | Adair et al. | Dec 2009 | B2 |
7637891 | Wall | Dec 2009 | B2 |
7637899 | Woolston et al. | Dec 2009 | B2 |
7641649 | Moberg et al. | Jan 2010 | B2 |
7660627 | McNichols et al. | Feb 2010 | B2 |
7678079 | Shermer et al. | Mar 2010 | B2 |
7682338 | Griffin | Mar 2010 | B2 |
7686787 | Moberg et al. | Mar 2010 | B2 |
7699829 | Harris et al. | Apr 2010 | B2 |
7699833 | Moberg et al. | Apr 2010 | B2 |
7704088 | Sakamoto | Apr 2010 | B2 |
7704227 | Moberg et al. | Apr 2010 | B2 |
7704229 | Moberg et al. | Apr 2010 | B2 |
7704231 | Pongpairochana et al. | Apr 2010 | B2 |
7708717 | Estes et al. | May 2010 | B2 |
7713238 | Mernoe | May 2010 | B2 |
7713240 | Istoc et al. | May 2010 | B2 |
7717913 | Novak et al. | May 2010 | B2 |
7722574 | Toman et al. | May 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7744589 | Mounce et al. | Jun 2010 | B2 |
7749194 | Edwards et al. | Jul 2010 | B2 |
7776030 | Estes et al. | Aug 2010 | B2 |
7780637 | Jerde et al. | Aug 2010 | B2 |
7789857 | Moberg et al. | Sep 2010 | B2 |
7801599 | Young et al. | Sep 2010 | B2 |
7806868 | De Polo et al. | Oct 2010 | B2 |
7828528 | Estes et al. | Nov 2010 | B2 |
7837659 | Bush, Jr. et al. | Nov 2010 | B2 |
7846132 | Gravesen et al. | Dec 2010 | B2 |
7854723 | Hwang et al. | Dec 2010 | B2 |
7857131 | Vedrine | Dec 2010 | B2 |
7879025 | Jacobson et al. | Feb 2011 | B2 |
7918825 | O'Connor et al. | Apr 2011 | B2 |
7935104 | Yodfat et al. | May 2011 | B2 |
7935105 | Miller et al. | May 2011 | B2 |
7938803 | Mernoe et al. | May 2011 | B2 |
7955305 | Moberg et al. | Jun 2011 | B2 |
7967784 | Pongpairochana et al. | Jun 2011 | B2 |
7967795 | Cabiri | Jun 2011 | B1 |
7981105 | Adair et al. | Jul 2011 | B2 |
7988683 | Adair et al. | Aug 2011 | B2 |
7993300 | Nyholm et al. | Aug 2011 | B2 |
7993301 | Boyd et al. | Aug 2011 | B2 |
7998111 | Moberg et al. | Aug 2011 | B2 |
8021357 | Tanaka et al. | Sep 2011 | B2 |
8025658 | Chong et al. | Sep 2011 | B2 |
8029469 | Ethelfeld | Oct 2011 | B2 |
8034019 | Nair et al. | Oct 2011 | B2 |
8038666 | Triplett et al. | Oct 2011 | B2 |
8057431 | Woehr et al. | Nov 2011 | B2 |
8057436 | Causey et al. | Nov 2011 | B2 |
8062253 | Nielsen et al. | Nov 2011 | B2 |
8066694 | Wagener | Nov 2011 | B2 |
D650079 | Presta et al. | Dec 2011 | S |
D650903 | Kosinski et al. | Dec 2011 | S |
8086306 | Katzman et al. | Dec 2011 | B2 |
D652503 | Cameron et al. | Jan 2012 | S |
8105279 | Mernoe et al. | Jan 2012 | B2 |
8114046 | Covino et al. | Feb 2012 | B2 |
8114064 | Alferness et al. | Feb 2012 | B2 |
8114066 | Naef et al. | Feb 2012 | B2 |
D657462 | Siroky | Apr 2012 | S |
8147446 | Yodfat et al. | Apr 2012 | B2 |
8152764 | Istoc et al. | Apr 2012 | B2 |
8152770 | Reid | Apr 2012 | B2 |
8152779 | Cabiri | Apr 2012 | B2 |
8152793 | Keinanen et al. | Apr 2012 | B2 |
8157693 | Waksmundzki | Apr 2012 | B2 |
8157769 | Cabiri | Apr 2012 | B2 |
8162674 | Cho et al. | Apr 2012 | B2 |
8162923 | Adams et al. | Apr 2012 | B2 |
8167841 | Teisen-Simony et al. | May 2012 | B2 |
8172591 | Wertz | May 2012 | B2 |
8172804 | Bikovsky | May 2012 | B2 |
8182462 | Istoc et al. | May 2012 | B2 |
8197444 | Bazargan et al. | Jun 2012 | B1 |
8206351 | Sugimoto et al. | Jun 2012 | B2 |
8221356 | Enggaard et al. | Jul 2012 | B2 |
8267921 | Yodfat et al. | Sep 2012 | B2 |
8287520 | Drew et al. | Oct 2012 | B2 |
8292647 | McGrath et al. | Oct 2012 | B1 |
8308679 | Hanson et al. | Nov 2012 | B2 |
8323250 | Chong et al. | Dec 2012 | B2 |
8372039 | Mernoe et al. | Feb 2013 | B2 |
8373421 | Lindegger et al. | Feb 2013 | B2 |
8409142 | Causey et al. | Apr 2013 | B2 |
8414557 | Istoc et al. | Apr 2013 | B2 |
8430847 | Mernoe et al. | Apr 2013 | B2 |
8469942 | Kow et al. | Jun 2013 | B2 |
8474332 | Bente, IV et al. | Jul 2013 | B2 |
8475408 | Mernoe et al. | Jul 2013 | B2 |
8479595 | Vazquez et al. | Jul 2013 | B2 |
8495918 | Bazargan et al. | Jul 2013 | B2 |
8496862 | Zelkovich et al. | Jul 2013 | B2 |
8512287 | Cindrich et al. | Aug 2013 | B2 |
8517987 | Istoc et al. | Aug 2013 | B2 |
8523803 | Favreau | Sep 2013 | B1 |
8556856 | Bazargan et al. | Oct 2013 | B2 |
8562364 | Lin et al. | Oct 2013 | B2 |
8574216 | Istoc et al. | Nov 2013 | B2 |
8603026 | Favreau | Dec 2013 | B2 |
8603027 | Favreau | Dec 2013 | B2 |
8628510 | Bazargan et al. | Jan 2014 | B2 |
8674288 | Hanson et al. | Mar 2014 | B2 |
8679060 | Mernoe et al. | Mar 2014 | B2 |
8690855 | Alderete, Jr. et al. | Apr 2014 | B2 |
8708961 | Field et al. | Apr 2014 | B2 |
8751237 | Kubota | Jun 2014 | B2 |
8753326 | Chong et al. | Jun 2014 | B2 |
8753331 | Murphy | Jun 2014 | B2 |
8764707 | Moberg et al. | Jul 2014 | B2 |
8764723 | Chong et al. | Jul 2014 | B2 |
8771222 | Kanderian, Jr. et al. | Jul 2014 | B2 |
8777896 | Starkweather et al. | Jul 2014 | B2 |
8777924 | Kanderian, Jr. et al. | Jul 2014 | B2 |
8777925 | Patton | Jul 2014 | B2 |
8784369 | Starkweather et al. | Jul 2014 | B2 |
8784370 | Lebel et al. | Jul 2014 | B2 |
8790295 | Sigg et al. | Jul 2014 | B1 |
8795224 | Starkweather et al. | Aug 2014 | B2 |
8795231 | Chong et al. | Aug 2014 | B2 |
8795260 | Drew | Aug 2014 | B2 |
8801668 | Ali et al. | Aug 2014 | B2 |
8801679 | Iio et al. | Aug 2014 | B2 |
8810394 | Kalpin | Aug 2014 | B2 |
8814379 | Griffiths et al. | Aug 2014 | B2 |
8920374 | Bokelman et al. | Dec 2014 | B2 |
9061104 | Daniel | Jun 2015 | B2 |
9061110 | Avery et al. | Jun 2015 | B2 |
9089475 | Fangrow | Jul 2015 | B2 |
9089641 | Kavazov | Jul 2015 | B2 |
20010025168 | Gross et al. | Sep 2001 | A1 |
20010041869 | Causey et al. | Nov 2001 | A1 |
20020010423 | Gross et al. | Jan 2002 | A1 |
20020029018 | Jeffrey | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020055711 | Lavi et al. | May 2002 | A1 |
20020065488 | Suzuki et al. | May 2002 | A1 |
20020107487 | Preuthun | Aug 2002 | A1 |
20020123740 | Flaherty et al. | Sep 2002 | A1 |
20020169215 | Meng | Nov 2002 | A1 |
20030009133 | Ramey | Jan 2003 | A1 |
20030125671 | Aramata et al. | Jul 2003 | A1 |
20030135159 | Daily et al. | Jul 2003 | A1 |
20030160683 | Blomquist | Aug 2003 | A1 |
20030171717 | Farrugia et al. | Sep 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040092873 | Moberg | May 2004 | A1 |
20040116866 | Gorman et al. | Jun 2004 | A1 |
20040127857 | Shemesh et al. | Jul 2004 | A1 |
20040158172 | Hancock | Aug 2004 | A1 |
20040186419 | Cho | Sep 2004 | A1 |
20040260233 | Garibotto et al. | Dec 2004 | A1 |
20050033234 | Sadowski et al. | Feb 2005 | A1 |
20050065466 | Vedrine | Mar 2005 | A1 |
20050065472 | Cindrich et al. | Mar 2005 | A1 |
20050071487 | Lu et al. | Mar 2005 | A1 |
20050113761 | Faust et al. | May 2005 | A1 |
20050159706 | Wilkinson et al. | Jul 2005 | A1 |
20050171476 | Judson et al. | Aug 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050177136 | Miller | Aug 2005 | A1 |
20050197650 | Sugimoto et al. | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050283114 | Bresina et al. | Dec 2005 | A1 |
20060030816 | Zubry | Feb 2006 | A1 |
20060095014 | Ethelfeld | May 2006 | A1 |
20060122577 | Poulsen et al. | Jun 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173439 | Thorne et al. | Aug 2006 | A1 |
20060195029 | Shults et al. | Aug 2006 | A1 |
20060211982 | Prestrelski et al. | Sep 2006 | A1 |
20060229569 | Lavi et al. | Oct 2006 | A1 |
20060264889 | Moberg et al. | Nov 2006 | A1 |
20060264890 | Moberg et al. | Nov 2006 | A1 |
20060264894 | Moberg et al. | Nov 2006 | A1 |
20060270987 | Peter | Nov 2006 | A1 |
20060283465 | Nickel et al. | Dec 2006 | A1 |
20060293722 | Slatkine et al. | Dec 2006 | A1 |
20070021733 | Hansen et al. | Jan 2007 | A1 |
20070049865 | Radmer et al. | Mar 2007 | A1 |
20070073228 | Mernoe et al. | Mar 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070167912 | Causey et al. | Jul 2007 | A1 |
20070185449 | Mernoe | Aug 2007 | A1 |
20070197968 | Pongpairochana et al. | Aug 2007 | A1 |
20070203454 | Shermer et al. | Aug 2007 | A1 |
20070233038 | Pruitt et al. | Oct 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20080021439 | Brittingham et al. | Jan 2008 | A1 |
20080033367 | Haury et al. | Feb 2008 | A1 |
20080033369 | Kohlbrenner et al. | Feb 2008 | A1 |
20080033393 | Edwards et al. | Feb 2008 | A1 |
20080051711 | Mounce et al. | Feb 2008 | A1 |
20080051730 | Bikovsky | Feb 2008 | A1 |
20080059133 | Edwards et al. | Mar 2008 | A1 |
20080097381 | Moberg et al. | Apr 2008 | A1 |
20080108951 | Jerde et al. | May 2008 | A1 |
20080140006 | Eskuri et al. | Jun 2008 | A1 |
20080140018 | Enggaard et al. | Jun 2008 | A1 |
20080147004 | Mann et al. | Jun 2008 | A1 |
20080167641 | Hansen et al. | Jul 2008 | A1 |
20080188813 | Miller et al. | Aug 2008 | A1 |
20080208138 | Lim et al. | Aug 2008 | A1 |
20080215006 | Thorkild | Sep 2008 | A1 |
20080215015 | Cindrich et al. | Sep 2008 | A1 |
20080243087 | Enggaard et al. | Oct 2008 | A1 |
20080249473 | Rutti et al. | Oct 2008 | A1 |
20080262436 | Olson | Oct 2008 | A1 |
20080269687 | Chong et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080274630 | Shelton et al. | Nov 2008 | A1 |
20080294143 | Tanaka et al. | Nov 2008 | A1 |
20080306449 | Kristensen et al. | Dec 2008 | A1 |
20080312601 | Cane | Dec 2008 | A1 |
20080319416 | Yodfat et al. | Dec 2008 | A1 |
20090041805 | Walker | Feb 2009 | A1 |
20090048347 | Cohen et al. | Feb 2009 | A1 |
20090054750 | Jennewine | Feb 2009 | A1 |
20090069784 | Estes et al. | Mar 2009 | A1 |
20090076453 | Mejlhede et al. | Mar 2009 | A1 |
20090088694 | Carter et al. | Apr 2009 | A1 |
20090088731 | Campbell et al. | Apr 2009 | A1 |
20090093792 | Gross et al. | Apr 2009 | A1 |
20090093793 | Gross et al. | Apr 2009 | A1 |
20090105650 | Wiegel et al. | Apr 2009 | A1 |
20090124977 | Jensen | May 2009 | A1 |
20090143730 | De Polo et al. | Jun 2009 | A1 |
20090143735 | De Polo et al. | Jun 2009 | A1 |
20090149830 | Spector | Jun 2009 | A1 |
20090182277 | Carter | Jul 2009 | A1 |
20090204076 | Liversidge | Aug 2009 | A1 |
20090209896 | Selevan | Aug 2009 | A1 |
20090234319 | Marksteiner | Sep 2009 | A1 |
20090240240 | Hines et al. | Sep 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090259176 | Yairi | Oct 2009 | A1 |
20090281585 | Katzman et al. | Nov 2009 | A1 |
20090299290 | Moberg | Dec 2009 | A1 |
20090299397 | Ruan et al. | Dec 2009 | A1 |
20090326459 | Shipway et al. | Dec 2009 | A1 |
20090326509 | Muse et al. | Dec 2009 | A1 |
20100030156 | Beebe et al. | Feb 2010 | A1 |
20100030198 | Beebe et al. | Feb 2010 | A1 |
20100049128 | McKenzie et al. | Feb 2010 | A1 |
20100049144 | McConnell et al. | Feb 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100076412 | Rush et al. | Mar 2010 | A1 |
20100094255 | Nycz et al. | Apr 2010 | A1 |
20100100076 | Rush et al. | Apr 2010 | A1 |
20100100077 | Rush et al. | Apr 2010 | A1 |
20100106098 | Atterbury et al. | Apr 2010 | A1 |
20100121314 | Iobbi | May 2010 | A1 |
20100137790 | Yodfat | Jun 2010 | A1 |
20100137831 | Tsals | Jun 2010 | A1 |
20100145303 | Yodfat et al. | Jun 2010 | A1 |
20100145305 | Alon | Jun 2010 | A1 |
20100162548 | Leidig | Jul 2010 | A1 |
20100168607 | Miesel | Jul 2010 | A1 |
20100168683 | Cabiri | Jul 2010 | A1 |
20100198157 | Gyrn et al. | Aug 2010 | A1 |
20100204657 | Yodfat et al. | Aug 2010 | A1 |
20100234767 | Sarstedt | Sep 2010 | A1 |
20100234830 | Straessler et al. | Sep 2010 | A1 |
20100241065 | Moberg et al. | Sep 2010 | A1 |
20100264931 | Lindegger et al. | Oct 2010 | A1 |
20100274112 | Hoss et al. | Oct 2010 | A1 |
20100274192 | Mernoe | Oct 2010 | A1 |
20100280499 | Yodfat et al. | Nov 2010 | A1 |
20100331826 | Field et al. | Dec 2010 | A1 |
20110034900 | Yodfat et al. | Feb 2011 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110054400 | Chong et al. | Mar 2011 | A1 |
20110125056 | Merchant | May 2011 | A1 |
20110160654 | Hanson et al. | Jun 2011 | A1 |
20110160666 | Hanson et al. | Jun 2011 | A1 |
20110160669 | Gyrn et al. | Jun 2011 | A1 |
20110172645 | Moga et al. | Jul 2011 | A1 |
20110172745 | Na et al. | Jul 2011 | A1 |
20110178472 | Cabiri | Jul 2011 | A1 |
20110201998 | Pongpairochana et al. | Aug 2011 | A1 |
20110238031 | Adair et al. | Sep 2011 | A1 |
20110245773 | Estes et al. | Oct 2011 | A1 |
20110270160 | Mernoe | Nov 2011 | A1 |
20110282282 | Lorenzen et al. | Nov 2011 | A1 |
20110282296 | Harms et al. | Nov 2011 | A1 |
20110295205 | Kaufmann et al. | Dec 2011 | A1 |
20110313238 | Reichenbach et al. | Dec 2011 | A1 |
20110319861 | Wilk | Dec 2011 | A1 |
20110319919 | Curry et al. | Dec 2011 | A1 |
20120004602 | Hanson et al. | Jan 2012 | A1 |
20120010594 | Holt et al. | Jan 2012 | A1 |
20120022344 | Kube | Jan 2012 | A1 |
20120022499 | Anderson et al. | Jan 2012 | A1 |
20120029431 | Hwang et al. | Feb 2012 | A1 |
20120035546 | Cabiri | Feb 2012 | A1 |
20120041364 | Smith | Feb 2012 | A1 |
20120041414 | Estes et al. | Feb 2012 | A1 |
20120071828 | Tojo et al. | Mar 2012 | A1 |
20120096953 | Bente, IV et al. | Apr 2012 | A1 |
20120096954 | Vazquez et al. | Apr 2012 | A1 |
20120101436 | Bazargan et al. | Apr 2012 | A1 |
20120108933 | Liang et al. | May 2012 | A1 |
20120129362 | Hampo et al. | May 2012 | A1 |
20120160033 | Kow et al. | Jun 2012 | A1 |
20120165733 | Bazargan et al. | Jun 2012 | A1 |
20120165780 | Bazargan et al. | Jun 2012 | A1 |
20120226234 | Bazargan et al. | Sep 2012 | A1 |
20120259282 | Alderete, Jr. et al. | Oct 2012 | A1 |
20130012875 | Gross et al. | Jan 2013 | A1 |
20130068319 | Plumptre et al. | Mar 2013 | A1 |
20130085457 | Schiff et al. | Apr 2013 | A1 |
20130089992 | Yang | Apr 2013 | A1 |
20130096509 | Avery et al. | Apr 2013 | A1 |
20130110049 | Cronenberg et al. | May 2013 | A1 |
20130133438 | Kow et al. | May 2013 | A1 |
20130237953 | Kow et al. | Sep 2013 | A1 |
20130245595 | Kow et al. | Sep 2013 | A1 |
20130253419 | Favreau | Sep 2013 | A1 |
20130253420 | Favreau | Sep 2013 | A1 |
20130253421 | Favreau | Sep 2013 | A1 |
20130323699 | Edwards et al. | Dec 2013 | A1 |
20130331791 | Gross et al. | Dec 2013 | A1 |
20140055073 | Favreau | Feb 2014 | A1 |
20140055076 | Favreau | Feb 2014 | A1 |
20140058349 | Bazargan et al. | Feb 2014 | A1 |
20140083517 | Moia et al. | Mar 2014 | A1 |
20140094755 | Bazargan et al. | Apr 2014 | A1 |
20140128807 | Moberg et al. | May 2014 | A1 |
20140128835 | Moberg et al. | May 2014 | A1 |
20140135692 | Alderete, Jr. et al. | May 2014 | A1 |
20140135694 | Moberg et al. | May 2014 | A1 |
20140142499 | Moberg et al. | May 2014 | A1 |
20140148784 | Anderson et al. | May 2014 | A1 |
20140148785 | Moberg et al. | May 2014 | A1 |
20140163522 | Alderete, Jr. et al. | Jun 2014 | A1 |
20140194819 | Maule et al. | Jul 2014 | A1 |
20140194854 | Tsals | Jul 2014 | A1 |
20140207064 | Yavorsky | Jul 2014 | A1 |
20140207065 | Yavorsky | Jul 2014 | A1 |
20140207066 | Yavorsky | Jul 2014 | A1 |
20140213975 | Clemente et al. | Jul 2014 | A1 |
20140236087 | Alderete, Jr. et al. | Aug 2014 | A1 |
20140261758 | Wlodarczyk et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1747683 | Mar 2006 | CN |
1863566 | Nov 2006 | CN |
101090749 | Dec 2007 | CN |
201941304 | Aug 2011 | CN |
102186733 | Sep 2011 | CN |
1064693 | Sep 1959 | DE |
0017412 | Oct 1980 | EP |
0222656 | May 1987 | EP |
0401179 | Dec 1990 | EP |
1530979 | May 2005 | EP |
1666080 | Jun 2006 | EP |
2060606 | May 2009 | EP |
2498589 | Sep 2012 | EP |
H07-194701 | Aug 1995 | JP |
H09-505758 | Jun 1997 | JP |
2001-512992 | Aug 2001 | JP |
2002-505601 | Feb 2002 | JP |
2002-507459 | Mar 2002 | JP |
2002-528676 | Sep 2002 | JP |
2003-501157 | Jan 2003 | JP |
2003-527138 | Sep 2003 | JP |
2003-534061 | Nov 2003 | JP |
2004-501721 | Jan 2004 | JP |
2004-512100 | Apr 2004 | JP |
2005-523127 | Aug 2005 | JP |
2005-270629 | Oct 2005 | JP |
2007-509661 | Apr 2007 | JP |
2008-534131 | Aug 2008 | JP |
2008-220961 | Sep 2008 | JP |
2009-502273 | Jan 2009 | JP |
9009202 | Aug 1990 | WO |
9307922 | Apr 1993 | WO |
9407553 | Apr 1994 | WO |
9513838 | May 1995 | WO |
9609083 | Mar 1996 | WO |
9632975 | Oct 1996 | WO |
9700091 | Jan 1997 | WO |
9710012 | Mar 1997 | WO |
9733638 | Sep 1997 | WO |
9857683 | Dec 1998 | WO |
9929151 | Jun 1999 | WO |
9959665 | Nov 1999 | WO |
0025844 | May 2000 | WO |
0187384 | Nov 2001 | WO |
0189607 | Nov 2001 | WO |
0189613 | Nov 2001 | WO |
0202165 | Jan 2002 | WO |
0234315 | May 2002 | WO |
02072182 | Sep 2002 | WO |
03090833 | Nov 2003 | WO |
2004032990 | Apr 2004 | WO |
2004105841 | Dec 2004 | WO |
2005018703 | Mar 2005 | WO |
2005037350 | Apr 2005 | WO |
2006037434 | Apr 2006 | WO |
WO2006069380 | Jun 2006 | WO |
2006102676 | Sep 2006 | WO |
2006104806 | Oct 2006 | WO |
2007051563 | May 2007 | WO |
2007056504 | May 2007 | WO |
2008001377 | Jan 2008 | WO |
2008014908 | Feb 2008 | WO |
2008057976 | May 2008 | WO |
2008072229 | Jun 2008 | WO |
2008076459 | Jun 2008 | WO |
2008078318 | Jul 2008 | WO |
2009044401 | Apr 2009 | WO |
2009046989 | Apr 2009 | WO |
2009125398 | Oct 2009 | WO |
2009144085 | Dec 2009 | WO |
2010078227 | Jul 2010 | WO |
2010078242 | Jul 2010 | WO |
2011075105 | Jun 2011 | WO |
2011090955 | Jul 2011 | WO |
2011156373 | Dec 2011 | WO |
2012032411 | Mar 2012 | WO |
2012040528 | Mar 2012 | WO |
2012160157 | Nov 2012 | WO |
2014179774 | Nov 2014 | WO |
Entry |
---|
Daikyo Crystal Zenith® polymer, Manufactured by Daikyo Seiko, Ltd. (Jun. 25, 2008). |
Copaxone® , Manufactured by Teva Pharmaceutical Industries Ltd. (2009). |
Int'l Search Report issued May 13, 2009 in Int'l Application No. PCT/IL2008/001312. |
Int'l Preliminary Report on Patentability issued Apr. 7, 2010 in Int'l Application No. PCT/IL2008/001312; Written Opinion. |
Int'l Search Report issued Apr. 26, 2010 in Int'l Application No. PCT/US2009/069552. |
Office Action issued Apr. 5, 2010 in U.S. Appl. No. 12/244,666. |
Office Action issued Sep. 21, 2010 in U.S. Appl. No. 12/244,666. |
Office Action issued Apr. 5, 2010 in U.S. Appl. No. 12/244,688. |
Office Action issued Sep. 2, 2010 in U.S. Appl. No. 12/244,688. |
Office Action issued Sep. 30, 2010 in U.S. Appl. No. 12/689,250. |
Int'l Search Report issued Jan. 12, 2011 in Int'l Application No. PCT/US2010/048556; Written Opinion. |
International Preliminary Report on Patentability issued on Jul. 5, 2011 in International Application No. PCT/US2009/069552; Written Opinion. |
Office Action issued Jul. 13, 2011 in U.S. Appl. No. 12/559,563. |
Int'l Preliminary Report on Patentability issued Sep. 1, 2011 in Int'l Application No. PCT/US2010/048556. |
Office Action issued Sep. 6, 2011 in U.S. Appl. No. 12/345,818. |
Office Action issued Feb. 21, 2012 in U.S. Appl. No. 12/689,249. |
Int'l Search Report issued Jun. 17, 2011 in Int'l Application No. PCT/US2011/021604. |
Int'l Search Report issued Oct. 12, 2011 in Int'l Application No. PCT/US2011/021605. |
Office Action issued Oct. 28, 2011 in U.S. Appl. No. 12/615,828. |
Int'l Search Report issued Sep. 22, 2011 in Int'l Application No. PCT/IL11/00368; Written Opinion. |
U.S. Appl. No. 13/521,181 by Cabiri, filed Jul. 9, 2012. |
U.S. Appl. No. 13/521,167 by Cabiri, filed Jul. 9, 2012. |
Office Action issued May 16, 2012 in U.S. Appl. No. 12/615,828. |
Office Action issued Jul. 2, 2012 in U.S. Appl. No. 13/272,555. |
Office Action issued May 3, 2012 in CN Application No. 200880117084.X. |
U.S. Appl. No. 13/472,112 by Cabiri, filed May 15, 2012. |
U.S. Appl. No. 13/429,840 by Cabiri, filed Mar. 26, 2012. |
Int'l Preliminary Report on Patentability issued Aug. 2, 2012 in Int'l Application No. PCT/US2011/021604. |
U.S. Appl. No. 13/643,470 by Alon, filed Oct. 25, 2012. |
U.S. Appl. No. 13/733,516 by Cabiri, filed Jan. 3, 2013. |
Office Action issued Jan. 8, 2013 in JP Application No. 2010-527595. |
Int'l Preliminary Report on Patentability issued Feb. 7, 2013 in Int'l Application No. PCT/US2011/021604. |
Int'l Preliminary Report on Patentability issued Feb. 7, 2013 in Int'l Application No. PCT/US2011/021605. |
English translation of an Office Action issued Jan. 30, 2013 in CN Application No. 200880117084.X. |
U.S. Appl. No. 13/873,335 by Filman, filed Apr. 30, 2013. |
U.S. Appl. No. 13/892,905 by Cabiri, filed May 13, 2013. |
U.S. Appl. No. 13/874,121 by Degtiar, filed Apr. 30, 2013. |
U.S. Appl. No. 13/874,085 by Cabiri, filed Apr. 30, 2013. |
U.S. Appl. No. 13/874,017 by Cabiri, filed Apr. 30, 2013. |
Int'l Search Report and Written Opinion issued Jul. 26, 2013 in Int'l Application No. PCT/US2012/039465. |
Int'l Search Report and Written Opinion issued Aug. 5, 2013 in Int'l Application No. PCT/US2013/033118. |
U.S. Appl. No. 13/964,651 by Gross, filed Aug. 12, 2013. |
Office Action issued Aug. 15, 2013 in CN Application No. 200880117084.X. |
Office Action issued Oct. 9, 2013 in IL Application No. 208634. |
Office Action issued Nov. 5, 2013 in JP Application No. 2010-527595. |
Office Action issued Sep. 29, 2013 in CN Application No. 201080040968.7. |
Office Action issued Nov. 4, 2013 in EP Application No. 11 709 234.6. |
Office Action issued Dec. 17, 2013 in JP Application No. 2012-529808. |
Office Action issued Dec. 10, 2013 in CN Application No. 201180006567.4. |
Office Action issued Jan. 8, 2014 in U.S. Appl. No. 13/521,167 by Cabiri. |
U.S. Appl. No. 29/479,307 by Norton, filed Jan. 14, 2014. |
U.S. Appl. No. 14/193,692 by Gross, filed Feb. 28, 2014. |
Office Action issued Feb. 4, 2014 in EP Application No. 11 707 942.6. |
English translation of an Office Action issued Mar. 5, 2014 in CN Application No. 200880117084.X. |
Int'l Search Report and Written Opinion issued Apr. 3, 2014 in Int'l Application No. PCT/US2013/078040. |
Extended European Search Report issued Mar. 27, 2014 in EP Application No. 14154717.4. |
Office Action issued Feb. 28, 2014 in CN Application No. 201180006571.0. |
U.S. Appl. No. 14/258,661 by Cabiri, filed Apr. 22, 2014. |
Int'l Search Report and Written Opinion issued Jan. 7, 2014 in Int'l Application No. PCT/US2013/065211. |
Office Action issued May 23, 2014 in U.S. Appl. No. 13/472,112 by Cabiri. |
Office Action issued Jun. 3, 2014 in JP Application No. 2010-527595. |
Office Action issued Jul. 7, 2014 in U.S. Appl. No. 12/244,666 by Gross. |
Int'l Search Report and Written Opinion issued Jul. 31, 2014 in Int'l Application No. PCT/US2014/033598. |
Extended European Search Report issued Aug. 7, 2014 in EP Application No. 1417477.4. |
Office Action issued Aug. 6, 2014 in EP Application No. 11 707 942.6. |
Office Action issued Sep. 2, 2014 in JP Application No. 2012-550069. |
Office Action issued Sep. 2, 2014 in JP Application No. 2012-550068. |
Office Action issued Aug. 26, 2014 in CN Application No. 201180006567.4. |
Int'l Preliminary Report on Patentability issued Oct. 9, 2014 in Int'l Application No. PCT/US2013/033118. |
Office Action issued Oct. 9, 2014 in U.S. Appl. No. 13/873,335. |
Office Action issued Nov. 5, 2014 in U.S. Appl. No. 13/643,470 by Alon. |
U.S. Appl. No. 14/553,399 by Cabiri, filed Nov. 25, 2014. |
Office Action issued Nov. 2, 2014 in CN Application No. 201180006571.0. |
Office Action issued Nov. 21, 2014 in U.S. Appl. No. 13/472,112 by Cabiri. |
Office Action issued Nov. 21, 2014 in U.S. Appl. No. 13/429,840 by Cabiri. |
Int'l Preliminary Report on Patentability issued Nov. 27, 2014 in Int'l Application No. PCT/US2013/039465. |
U.S. Appl. No. 14/593,051 by Gross, filed Jan. 9, 2015. |
U.S. Appl. No. 14/683,193 by Cabiri, filed Apr. 10, 2015. |
Office Action issued Feb. 20, 2015 in U.S. Appl. No. 13/521,181 by Cabiri. |
Office Action issued Feb. 24, 2015 in U.S. Appl. No. 14/258,661 by Cabiri. |
Extended European Search Report issued Feb. 23, 2015 in EP Application No. 14166596.8. |
Office Action issued Mar. 10, 2015 in U.S. Appl. No. 13/643,470 by Alon. |
Office Action issued Mar. 10, 2015 in U.S. Appl. No. 12/244,666 by Gross. |
Extended European Search Report issued Feb. 23, 2015 in EP Application No. 14166591.9. |
Office Action issued Mar. 10, 2015 in CN Application No. 201180006567.4. |
Office Action issued Mar. 31, 2015 in JP Application No. 2012-550068. |
U.S. Appl. No. 14/715,791 by Cabiri, filed May 19, 2015. |
U.S. Appl. No. 14/725,009 by Bar-El, filed May 29, 2015. |
Office Action issued Jun. 4, 2015 in U.S. Appl. No. 13/667,739 by Cabiri. |
Int'l Preliminary Report on Patentability issued May 14, 2015 in Int'l Application No. PCT/US2013/065211. |
Office Action issued May 7, 2015 in JP Application No. 2012-550069. |
Office Action issued May 13, 2015 in CN Application No. 201380025566.3. |
Office Action issued Jul. 31, 2015 in U.S. Appl. No. 13/521,181 by Cabiri. |
Office Action issued Aug. 13, 2015 in U.S. Appl. No. 14/553,399 by Cabiri. |
Notice of Allowance issued Aug. 24, 2015 in U.S. Appl. No. 29/479,307 by Norton. |
Number | Date | Country | |
---|---|---|---|
20150180146 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13873335 | Apr 2013 | US |
Child | 14638525 | US |