The present invention relates to a power supply device and method for plasma generation that is a high frequency power supply device and method used for generating plasma.
A plasma etching apparatus is used in, e.g., a manufacturing process of a semiconductor device such as IC (integrated circuit), LSI (large-scale integration) and the like. In such a plasma apparatus, there is employed a power supply device for plasma generation that is a high frequency power supply device used for generating plasma. A conventional high frequency power supply device will be described with reference to
As shown in
As shown in
In the output power detection unit 15, the detector 15b detects an output power Pf of the power amplifier 14 extracted by the directional coupler 15a, and the A/D converter 15c converts the detected power into a digital signal and outputs the digital signal to the control unit 16.
The control unit 16 obtains a difference between the output power detected by the output power detection unit 15 (i.e., the digital signal from the A/D converter 15c) and a set power that is previously set, and controls a level adjustment value to be outputted to the level adjustment unit 13 such that the difference becomes zero. The control unit 16 outputs a level control signal 16s2 to the level adjustment unit 13. The D/A converter 13b converts the level control signal 16s2 into an analog signal and outputs the analog signal as the level adjustment signal 13bs to the level adjustment circuit 13a.
As such, the control unit 16 controls the output power of the high frequency power supply device to become a constant value by controlling the level adjustment circuit 13a. The level adjustment circuit 13a adjusts the output power by using a circuit of a variable attenuator or the like.
A method of adjusting a level of the output power in the conventional high frequency power supply device will be described. First, a conventional output power level adjusting method will be briefly described. The control unit 16 detects the high frequency output power Pf through the output power detection unit 15 from a time point at which the modulation signal 16s1 is turned on. Marks ∘ shown in
The conventional output power level adjusting method will be described in detail with reference to a flow chart of
Next, the high frequency power supply device is operated and it is examined whether or not the modulation signal 16s1 has been turned on, i.e., whether or not the output power Pf has been outputted in step S102. If the modulation signal 16s1 is not in an on state (NO in step S102), the device waits until the modulation signal 16s1 is turned on. If the modulation signal 16s1 is turned on (YES in step S102), a value of the output power Pf (e.g., Pf1) at that moment is obtained in step S103. Thereafter, it is examined whether or not the modulation signal 16s1 has been turned off, i.e., whether or not the output power Pf has been turned off in step S104. If the modulation signal 16s1 is not in an off state (NO in step S104), the flow goes to step S103, and a value of the output power Pf (e.g., Pf2) at that moment is obtained.
If the modulation signal 16s1 is turned off (YES in step S104), an average value of the obtained output power Pf (Pf1, Pf2, . . . ) is calculated in step S105, and the average value of the output power Pf and the set power are compared to each other in step S106.
If a difference between the average value of the output power Pf and the set power is within the allowable power range (YES in step S107), the flow returns to step S102. If the difference between the average value of the output power Pf and the set power is not within the allowable power range (NO in step S107), a level adjustment value N is calculated based on the difference between the average value of the output power Pf and the set power in step S108. For example, if the average value of the output power Pf is larger than the set power while exceeding the allowable power range, the level adjustment value N is calculated to decrease, and if the average value of the output power Pf is smaller than the set power while exceeding the allowable power range, the level adjustment value N is calculated to increase.
Next, the level adjustment value N is updated in step S109, and the flow returns to step S102. By updating the level adjustment value N, a magnitude of the level adjustment signal 13bs outputted to the level adjustment circuit 13a is updated.
In Japanese Patent Application Publication No. 2002-270574, there is disclosed a plasma etching apparatus that applies a pulsed high frequency power to a vacuum chamber in which a plasma etching is performed on a wafer.
As described above, in the conventional output power level adjusting method, a level adjustment value is set such that a difference between an average value of the detected output power Pf and the set power falls within a predetermined range in an off state between modulation pulses. By doing so, an average output power of a subsequent modulation pulse is controlled. However, impedance of a plasma load is not always constant and changed depending on an operation state of the plasma load even during an on-state of the modulation pulse. If the impedance of the plasma load is changed, the characteristic of the power amplifier 14 is changed and a value of the output power Pf is separated away from a value of the set power.
That is, as shown in
A representative configuration of a power supply device for plasma generation in accordance with the present invention for solving the above problems is as follows. That is, there is provided a power supply device for plasma generation using a pulse modulation system which supplies a pulsed high frequency power to a plasma generation unit for generating plasma provided outside, the power supply device including: an oscillation unit configured to output a high frequency signal of a predetermined frequency; a modulation unit configured to modulate the high frequency signal outputted from the oscillation unit to a pulse shape in which on and off states are repeated and output the modulated high frequency signal as a pulsed high frequency signal; a level adjustment unit configured to adjust a level of the pulsed high frequency signal outputted from the modulation unit and output the level-adjusted pulsed high frequency signal; a power amplifier configured to amplify a power of the pulsed high frequency signal outputted from the level adjustment unit and output a pulsed high frequency power; an output power detection unit configured to detects an output power value of the pulsed high frequency power outputted from the power amplifier; a storage unit that stores a plurality of elapsed times in an on-state of the pulsed high frequency signal outputted from the modulation unit, a plurality of correction factors respectively corresponding to the elapsed times, and a set power value that is previously set as a value of an output power; and a control unit configured to receive the output power value detected by the output power detection unit, and output to the level adjustment unit a level control signal for controlling the level of the pulsed high frequency signal adjusted in the level adjustment unit based on the received output power value and the set power value, wherein the control unit corrects and outputs the level control signal at each of the elapsed times based on the correction factors respectively corresponding to the elapsed times, and compares a comparison value in a current pulse with a comparison value in a previous pulse to update the correction factors such that a comparison result between the set power value and the output power value becomes smaller at each reflection coefficient Γ.
Further, there is provided a power supply method for plasma generation using a pulse modulation system which supplies a pulsed high frequency power to a plasma generation unit for generating plasma provided outside, the power supply method including: outputting a high frequency signal of a predetermined frequency; modulating the outputted high frequency signal to a pulse shape in which on and off states are repeated and outputting the modulated high frequency signal as a pulsed high frequency signal; adjusting a level of the pulsed high frequency signal and outputting the level-adjusted pulsed high frequency signal; amplifying a power of the pulsed high frequency signal and outputting a pulsed high frequency power; detecting an output power value of the pulsed high frequency power; and allowing a control unit to receive the detected output power value and output to a level adjustment unit a level control signal for controlling the level of the pulsed high frequency signal adjusted in the level adjustment unit based on the received output power value and a set power value that is previously set as a value of an output power. The control unit corrects and outputs the level control signal at each of a plurality of elapsed times in an on-state of the pulsed high frequency based on correction factors respectively corresponding to the elapsed times, and compares a comparison value in a current pulse with a comparison value in a previous pulse to update the correction factors such that a comparison result between the set power value and the output power value becomes smaller at each reflection coefficient.
In accordance with the above configuration, it is possible to prevent a value of the output power from being separated away from the set power value by suppressing fluctuations of the output power in an on-state of the modulation pulse.
The present inventors have found that after supplying power to a plasma load 20 by turning on a pulsed modulation signal 16s1, an output power value varies with the lapse of time, and the fluctuations of the output power value are repeated in the same pattern when the plasma load 20 has the same property. For example, the fluctuation pattern of the output power value is identical in the same plasma generating apparatuses. In a first embodiment, the present inventors have paid attention to a phenomenon in which the output power varies in the same pattern as time goes by after the pulsed modulation signal 16s1 is turned on. In the first embodiment, an output power within an on-period of the modulation signal 16s1 is controlled to become a constant value by correcting a level adjustment signal 13bs in each elapsed time.
The first embodiment of the present invention will be described with reference to
As shown in
The oscillation unit 11 outputs a high frequency signal (RF signal) 11s of a predetermined frequency, e.g., about 30 MHz. The modulation unit 12 modulates the RF signal 11s outputted from the oscillation unit 11 to a pulse shape in which on and off states are repeated, by using the pulsed modulation signal 16s1 outputted from the control unit 16. The modulated RF signal is outputted as a pulsed high frequency signal. The on-state indicates a state where the high frequency signal is being outputted, and the off-state indicates a state where the high frequency signal is not outputted. In other words, the modulation unit 12 outputs the RF signal only during an on-period of the pulsed modulation signal 16s1 shown in
The level adjustment unit 13 includes a variable attenuator and the like. The level adjustment unit 13 adjusts a level (amplitude) of the pulsed high frequency signal outputted from the modulation unit 12 based on a level control signal 16s2 outputted from the control unit 16 and outputs the level-adjusted signal. Specifically, the D/A converter 13b of the level adjustment unit 13 converts a digital signal (the level control signal 16s2) outputted from the control unit 16 into an analog signal (the level adjustment signal 13bs) and outputs the analog signal to the level adjustment circuit 13a. The D/A converter 13b may be provided in the control unit 16 as a part of the control unit 16.
The power amplifier 14 amplifies a power of the pulsed high frequency signal outputted from the level adjustment unit 13 by a predetermined amplification degree and outputs a pulsed high frequency power. The output power detection unit 15 extracts the pulsed high frequency power outputted from the power amplifier 14 and outputs the same to the plasma load 20. Further, the output power detection unit 15 detects the pulsed high frequency power outputted from the power amplifier 14 and outputs the same to the control unit 16. The plasma load 20 is a plasma generating apparatus, such as a plasma etching apparatus or the like, which generates plasma. Specifically, the directional coupler 15a of the output power detection unit 15 extracts the output from the power amplifier 14, and the detector 15b detects a level of the extracted output power Pf. The A/D converter 15c converts the analog output signal from the detector 15b into a digital signal and outputs the digital signal to the control unit 16. The A/D converter 15c may be provided in the control unit 16 as a part of the control unit 16.
The control unit 16 includes, as hardware components, a CPU (central processing unit) and the storage unit 16a that stores operation programs of the CPU. In the storage unit 16a, there are previously stored a set power value Ps that is set as a target power value desired to be outputted, a plurality of elapsed times t in an on-state of the pulsed high frequency signal outputted from the modulation unit 12, a plurality of correction factors B respectively corresponding to the elapsed times t, and an average level adjustment value Nave. The correction factors B are stored in association with the corresponding elapsed times t. The average level adjustment value Nave will be described later. The set power value Ps, the average level adjustment value Nave, the elapsed times t and the correction factors B are previously inputted through an operation unit (not shown) of the high frequency power supply device by an operator and stored in the storage unit 16a.
The control unit 16 receives an output power value detected by the output power detection unit, and calculates a level adjustment value for the level adjustment unit 13 based on the received output power value and the set power value Ps. Further, the control unit 16 creates the level control signal 16s2 based on the level adjustment value and outputs the created signal to the level adjustment unit 13. The level control signal 16s2 controls a level of the pulsed high frequency signal adjusted in the level adjustment unit 13. Furthermore, at each of the elapsed times t, the control unit 16 corrects and outputs the level adjustment value, i.e., the level control signal 16s2 based on the correction factors B respectively corresponding to the elapsed times t. As such, the control unit 16 controls the output power of the high frequency power supply device to become a constant value in a pulse-on state by correcting the level adjustment value, i.e., the level control signal 16s2 outputted to the level adjustment unit 13 based on the correction factors B.
An operation of the control unit 16 will be described in detail. As stated above, in the storage unit 16a, there are previously stored the elapsed times t (t1, t2, . . . , tn) after the modulation signal 16s1 is turned on, the correction factors B (B1, B2, . . . , Bn) respectively corresponding to the elapsed times t, and the average level adjustment value Nave. The correction factors B1 to Bn respectively correspond to the elapsed times t1 to tn, and are factors for correcting a value of the output power Pf which varies depending on the elapsed time t after the modulation signal 16s1 is turned on. Here, n is a natural number equal to or larger than 2. In an example of
The average level adjustment value Nave is a variable for adjusting a level of the output power to an appropriate value, and is maintained at a constant value between pulse-on states of the modulation signal 16s1. An initial average level adjustment value Nave of when the high frequency power supply device performs an output power level adjusting process for the first time can be obtained, e.g., as an average value of the previous level adjustment values N. However, the initial average level adjustment value Nave may be an arbitrary value. Even if it is so, as will be later described, the average level adjustment value Nave converges on a proper value while the process is repeated.
The correction factor B is determined by a characteristic of the plasma load 20. The correction factor B can be obtained by checking in advance the characteristic of the plasma load 20 that is a target to be supplied with power. The value of the correction factor B is changed at the elapsed times t1 to t6, as in the level adjustment signal 13bs shown in (c) of
The control unit 16 corrects and outputs the level control signal 16s2 based on the correction factor B corresponding to the elapsed time t after the modulation signal 16s1 is turned on between the pulse-on states of the modulation signal 16s1. Specifically, the control unit 16 reads out the correction factor B corresponding to the elapsed time t and the average level adjustment value Nave from the storage unit 16a and calculates the level adjustment value N based on the correction factor B and the average level adjustment value Nave. For example, the control unit 16 calculates the level adjustment value N by multiplying the correction factor B by the average level adjustment value Nave. Further, the control unit 16 determines a control amount by the level control signal 16s2 to be outputted to the D/A converter 13b in conformity with a magnitude of the level adjustment value N. Furthermore, the control unit 16 obtains a value of the output power Pf from the output power detection unit 15, at each elapsed time t after the modulation signal 16s1 is turned on, and stores the obtained value in the storage unit 16a.
In the example of
When the modulation signal 16s1 is turned off, the control unit 16 calculates and updates the average level adjustment value Nave based on the obtained values of the output powers Pf1 to Pf6 and the set power value Ps. Specifically, when the modulation signal 16s1 is turned off, the control unit 16 obtains an average value Pfa of the output powers Pf1 to Pf6 and compares the average value Pfa with the set power value Ps. If a difference between the average value Pfa and the set power value Ps falls within a predetermined range, the control unit 16 waits for the next on-state of the modulation signal 16s1. When the modulation signal 16s1 is turned on, the above-described process in the on-state of the modulation signal 16s1 is identically repeated. If the difference between the average value Pfa and the set power value Ps does not fall within the predetermined range, the control unit 16 calculates and updates the average level adjustment value Nave based on the difference between the average value Pfa and the set power value Ps and stores the updated value in the storage unit 16a. Thereafter, the control unit 16 waits for the next on-state of the modulation signal 16s1, and when the modulation signal 16s1 is turned on, the control unit 16 identically repeats the above-described process in the on-state of the modulation signal 16s1.
For example, in a case where the difference between the average value Pfa and the set power value Ps does not fall within the predetermined range, if the average value Pfa is smaller than the set power value Ps, the control unit 16 updates the average level adjustment value Nave such that the average level adjustment value Nave increases by a predetermined value C1. If the average value Pfa is larger than the set power value Ps, the control unit 16 updates the average level adjustment value Nave such that the average level adjustment value Nave decreases by a predetermined value C2. Here, the values C1 and C2 may be the same to each other or different from each other.
As such, the control unit 16 sets, as a reference parameter, the elapsed time t from when the modulation signal 16s1 is turned on, and reads out the correction factor B, which is stored in association with the elapsed time t from a LUT (look-up table) including the storage unit 16a in the control unit 16. Further, the control unit 16 corrects the fluctuations of the output power Pf due to a change in impedance of the plasma load 20 in an on-period of the modulation signal 16s1 by multiplying the correction factor B by the average level adjustment value Nave. By doing so, the control unit 16 obtains a constant output power Pf in an on-state of the modulation signal 16s1.
An output power level adjusting method in accordance with the first embodiment will be described in detail with reference to a flow chart of
Next, the high frequency power supply device is operated and it is examined whether or not the modulation signal 16s1 is in an on state, i.e., whether or not the output power Pf has been outputted in step S2. If the modulation signal 16s1 is not in an on state (NO in step S2), the device waits until the modulation signal 16s1 is turned on. If the modulation signal 16s1 is turned on (YES in step S2), a correction factor B corresponding to the elapsed time t after the modulation signal 16s1 is turned on is read out from the storage unit 16a in step S3. As described above, the correction factor B is a factor for correcting a value of the output power Pf that varies depending on the elapsed time t after the modulation signal 16s1 is turned on. At an elapsed time t1 that is an initial detection point, the correction factor B1 corresponding to the elapsed time t1 is read out.
Further, the average level adjustment value Nave is read out from the storage unit 16a, and the level adjustment value N at the elapsed time t1 is calculated based on the read average level adjustment value Nave and the correction factor B1 in step S4. The level adjustment value N is updated in step S5. By updating the level adjustment value N, the level control signal 16s2 is updated. A value pf1 of the output power Pf at the elapsed time t1 is obtained in step S6.
Thereafter, it is examined whether or not the modulation signal 16s1 is in an off state, i.e., whether or not the output power Pf has been turned off in step S7. If the modulation signal 16s1 is not in an off-state (NO in step S7), t is set to t(1+1) in step S8, i.e., an elapsed time t2 is set as a next detection point, and then the flow returns to step S3 to perform at the elapsed time t2 the same process as in the elapsed time t1.
If the modulation signal 16s1 is in an off-state (YES in step S7), an average value Pfa of the obtained output power Pf (Pf1 to Pf6 in the example of
If a difference between the output power average value Pfa and the set power value Ps does not fall within the allowable power range (NO in step S11), the average level adjustment value Nave is calculated and updated based on the difference between the output power average value Pfa and the set power value Ps in step S12. The elapsed time t is cleared in step S13 and then the flow returns to step S2.
For example, in a case where the difference between the output power average value Pfa and the set power value Ps is not within the allowable power range, if the output power average value Pfa is smaller than the set power value Ps, the average level adjustment value Nave is calculated to increase by a predetermined value C1. Further, if the output power average value Pfa is larger than the set power value Ps, the average level adjustment value Nave is calculated to decrease by a predetermined value C2 and the average level adjustment value Nave is updated. Here, the values C1 and C2 may be the same to each other or different from each other.
If the difference between the output power average value Pfa and the set power value Ps falls within the allowable power range (YES in step S11), the elapsed time t is cleared in step S13 and the flow returns to step S2.
In the first embodiment, the output power Pf is obtained in the whole on-period of the modulation signal 16s1 (t1 to t6 in the example of
In accordance with the first embodiment, at least the following effects (A1) to (A3) can be acquired. (A1) When a plurality of elapsed times passes in an on-state of the pulsed high frequency signal, a level of the pulsed high frequency signal is adjusted based on the correction factor corresponding to each of the elapsed times, so that an output power value can be corrected during the on-state of the pulsed high frequency signal. Therefore, in the on-state of the pulsed high frequency signal, even in a case where impedance is changed due to a change in a state of the plasma load, the fluctuations of the output power level in the on-state can be controlled. (A2) When a plurality of elapsed times passes in an on-state of the pulsed high frequency signal, a level of the pulsed high frequency signal is adjusted based on the correction factor corresponding to each of the elapsed times and the average level adjustment value, and output power values are obtained. Further, if a difference between the set power value and each of the output power values is not within a predetermined range in an off-state of the pulsed high frequency signal, the average level adjustment value is updated. Therefore, even though the average level adjustment value has been set to an arbitrary value, the average level adjustment value can converge on a proper value by repeating the output power level adjusting process. (A3) When the output power value is larger than the set power value by a predetermined value or more, the average level adjustment value is made smaller, and when the output power value is smaller than the set power value by the predetermined value or more, the average level adjustment value is made larger. Therefore, the output power value can be made to be within a range not exceeding the predetermined value from the set power value.
Next, a second embodiment of the present invention will be described. A functional configuration of a high frequency power supply device in the second embodiment is equal to that in the first embodiment, except a configuration of the control unit 16. In the second embodiment, the control unit 16 operates to frequently update the correction factor B. Specifically, the control unit 16 compares the set power value Ps and the output power Pf at each elapsed time t in a pulse-on state (on-state of the modulation signal 16s1), and updates the correction factor B such that a difference Pd between the set power value Ps and the output power Pf becomes smaller than a difference Pd′ in a previous pulse-on state at each elapsed time t.
An output power level adjusting method in accordance with the second embodiment will be described in detail with reference to a flow chart of
Next, the high frequency power supply device is operated and it is examined whether or not the modulation signal 16s1 is in an on state, i.e., whether or not the output power Pf has been outputted in step S22. If the modulation signal 16s1 is not in an on state (NO in step S22), the device waits until the modulation signal 16s1 is turned on. If the modulation signal 16s1 is turned on (YES in step S22), the correction factor B corresponding to the elapsed time t after the modulation signal 16s1 is turned on is read out from the storage unit 16a in step S23. At an elapsed time t1 that is an initial detection point, a correction factor B1 corresponding to an elapsed time t1 is read out.
Further, the average level adjustment value Nave is read out from the storage unit 16a, and the level adjustment value N is calculated based on the read average level adjustment value Nave and the correction factor B1 in step S24. The level adjustment value N is updated in step S25. By updating the level adjustment value N, the level control signal 16s2 is updated. A value pf1 of the output power Pf at the elapsed time t1 is obtained in step S26.
Thereafter, it is examined whether or not the modulation signal 16s1 is in an off state, i.e., whether or not the output power Pf has been turned off in step S27. If the modulation signal 16s1 is not in an off-state (NO in step S27), t is set to t(1+1) in step S28, i.e., an elapsed time t2 is set as a next detection point, and then the flow returns to step S23 to read out a correction factor B2 from the storage unit 16a at the elapsed time t2. Subsequently, the same process as in the elapsed time t1 is performed. In this example, at the elapsed times t1 to t6, the correction factors B1 to B6 are respectively read out from the storage unit 16a and the same process as in the elapsed time t1 is performed.
If the modulation signal 16s1 is in an off-state (YES in step S27), the set power value Ps and the output power Pf (Pf1 to Pf6) obtained at each of the elapsed times t1 to t6 are compared with each other to calculate the difference Pd (Pd1 to Pd6) therebetween in step S29. The difference Pd is averaged in step S30. If an average value Pda of the difference Pd does not fall within a predetermined allowable power range (NO in step S31), the average level adjustment value Nave is calculated and updated based on a difference between the average value Pda and the set power value Ps in step S32.
For example, in a case where the average value Pda of the difference Pd is not within the predetermined allowable power range, if the average value Pda is larger than the set power value Ps, the average level adjustment value Nave is calculated to decrease by a predetermined value C21. Further, if the average value Pda is smaller than the set power value Ps, the average level adjustment value Nave is calculated to increase by a predetermined value C22 and the average level adjustment value Nave is updated. By updating the average level adjustment value Nave, a magnitude of the level adjustment signal 13bs outputted to the level adjustment circuit 13a is updated. Here, the values C21 and C22 may be the same to each other or different from each other.
If the average value Pda falls within the predetermined allowable power range (YES in step S31), the flow goes to step S33.
In the above process (steps S21 to S32), as in the first embodiment, the level adjustment value N is updated based on the correction factor B and the average level adjustment value Nave, and the average level adjustment value Nave is updated based on the set power value Ps and the output power Pf at each elapsed time t. In the second embodiment, the correction factor B (B1 to B6) is also updated at each elapsed time t (t1 to t6) in a subsequent process after step S33 which will be described below.
First, a variable n is initialized, i.e., n is set to 1 in step S33. Next, the difference Pd (Pd1 to Pd6) between the set power value Ps and the output power Pf (Pf1 to Pf6) at each elapsed time t is converted into an absolute value in step S34.
In a case where the output power Pf1 is larger than the set power value Ps, if a difference Pd1 (absolute value) at the elapsed time t1 in a current pulse-on state is equal to or larger than a difference Pd1′ (absolute value) at the elapsed time t1 in a previous pulse-on state (NO in step S35), the polarity of an updating value K of step S37 for updating the correction factor B1 at the elapsed time t1 is reversed in step S36. This is because the current correction factor B1 is considered to have become bigger than a previous correction factor B1 (i.e., the plus polarity of the updating value K). In this way, the polarity of the updating value K is converted to minus and the correction factor B1 is made to decrease by the predetermined value K in step S37. As such, the correction factor B1 at the elapsed time t1 is changed and updated such that a difference Pd1″ (absolute value) at the elapsed time t1 in a subsequent pulse-on state becomes smaller than the difference Pd1 (absolute value) in the current pulse-on state.
Further, in the case where the output power Pf1 is larger than the set power value Ps, if the difference Pd1 (absolute value) at the elapsed time t1 in the current pulse-on state is smaller than the difference Pd1′ (absolute value) in the previous pulse-on state (YES in step S35), the correction factor B1 is changed and updated without reversing the polarity of the updating value K of step S37 for updating the correction factor B1 at the elapsed time t1. This is because the current correction factor B1 is considered to have become smaller than the previous correction factor B1 (i.e., the minus polarity of the updating value K). In this way, the correction factor B1 is made to decrease by the predetermined value K in step S37. As such, the correction factor B1 at the elapsed time t1 is changed and updated such that the difference Pd1″ (absolute value) at the elapsed time t1 in the subsequent pulse-on state becomes smaller than the difference Pd1 (absolute value) in the current pulse-on state.
On the other hand, in a case where the output power Pf1 is smaller than the set power value Ps, if the difference Pd1 (absolute value) at the elapsed time t1 in the current pulse-on state is equal to or larger than the difference Pd1′ (absolute value) at the elapsed time t1 in the previous pulse-on state (NO in step S35), the polarity of the updating value K of step S37 for updating the correction factor B1 at the elapsed time t1 is reversed in step S36. This is because the current correction factor B1 is considered to have become smaller than the previous correction factor B1 (i.e., the minus polarity of the updating value K). In this way, the polarity of the updating value K is converted to plus and the correction factor B1 is made to increase by the predetermined value K in step S37. As such, the correction factor B1 at the elapsed time t1 is changed and updated such that the difference Pd1″ (absolute value) at the elapsed time t1 in the subsequent pulse-on state becomes smaller than the difference Pd1 (absolute value) in the current pulse-on state.
Further, in the case where the output power Pf1 is smaller than the set power value Ps, if the difference Pd1 (absolute value) at the elapsed time t1 in the current pulse-on state is smaller than the difference Pd1′ (absolute value) in the previous pulse-on state (YES in step S35), the correction factor B1 is changed and updated without reversing the polarity of the updating value K of step S37 for updating the correction factor B1 at the elapsed time t1. This is because the current correction factor B1 is considered to have become larger than a previous correction factor B1 (i.e., the plus polarity of the updating value K). In this way, the correction factor B1 is made to increase by the predetermined value K in step S37. As such, the correction factor B1 at the elapsed time t1 is changed and updated such that the difference Pd1″ (absolute value) at the elapsed time t1 in the subsequent pulse-on state becomes smaller than the difference Pd1 (absolute value) in the current pulse-on state.
As described above, in the case where the output power Pf1 is larger than the set power value Ps, the corresponding correction factor B is made to decrease, and in the case where the output power Pf1 is smaller than the set power value Ps, the corresponding correction factor B is made to increase. Accordingly, the correction factor B can converge on a proper value.
Thereafter, in step S38, the difference Pd1′ in the previous pulse-on state is substituted with the difference Pd1 in the current pulse-on state. In other words, in the subsequent pulse-on state, the difference Pd1 in the current pulse-on state at the elapsed time t1 is treated as the difference Pd1′ in the previous pulse-on state. The difference Pd1 in the current pulse-on state is stored in the storage unit 16a.
When the variable n is not a maximum value (6 in this example) of the number of the detection points (NO in step S39), 1 is added to n in step S40, i.e., n is set to 2. Subsequently, as in the case of the correction factor B1, a process of updating a correction factor B2 at an elapsed time t2 is performed and a difference Pd2′ in a previous pulse-on state at the elapsed time t2 is substituted with a difference Pd2 in a current pulse-on state. The difference Pd2 is stored in the storage unit 16a.
When the variable n is the maximum value (6 in this example) of the number of the detection points, the elapsed time t and the variable n are cleared in step S41 and the flow returns to step S22.
As described above, in the second embodiment, the correction factors B corresponding to the elapsed time t are updated such that the difference between the set power value Ps and the output power Pf becomes smaller by repeating the above-described process at each elapsed time t.
In the second embodiment, the output power Pf is obtained at each elapsed time t, and the difference Pd between the output power Pf and the set power value Ps is calculated, and the average level adjustment value Nave is updated based on the average value Pda of the difference Pd. However, as in the first embodiment, the average value Pfa of the output power Pf may be calculated and the average level adjustment value Nave may be updated based on the average value Pfa and the set power value Ps. on the contrary, in the first embodiment, as in the second embodiment, the difference Pd between the output power Pf and the set power value Ps may be calculated, and the average level adjustment value Nave may be updated based on the average value Pda of the difference Pd. Further, in the second embodiment, both of the average level adjustment value Nave and the correction factor B are updated, but only the correction factor B may be updated without updating the average level adjustment value Nave.
In accordance with the second embodiment, in addition to the effect of the first embodiment, at least the following effects (B1) to (B4) can be acquired. (B1) The correction factor is updated based on a first power value difference and a second power value difference, the first power value difference being a difference between an output power value detected when the pulsed high frequency signal is turned on and a set power value, and the second power value difference being a difference between an output power value detected when the pulsed high frequency signal is next turned on and the set power value. Therefore, the correction factor corresponding to each elapsed time can be set to a proper value in an on-state of the pulsed high frequency signal. (B2) In a case where the output power value is larger than the set power value, (a) if the second power value difference is larger than the first power value difference, the corresponding correction factor is made smaller. Therefore, when the pulsed high frequency signal is next turned on, the output power value can be decreased. Further, (b) if the second power value difference is smaller than the first power value difference, the corresponding correction factor is made smaller. Therefore, when the pulsed high frequency signal is next turned on, the output power value can be further decreased. (B3) In a case where the output power value is smaller than the set power value, (c) if the second power value difference is larger than the first power value difference, the corresponding correction factor is made larger. Therefore, when the pulsed high frequency signal is next turned on, the output power value can be increased. Further, (d) if the second power value difference is smaller than the first power value difference, the corresponding correction factor is made larger. Therefore, when the pulsed high frequency signal is next turned on, the output power value can be further increased. (B4) In the case where the output power value is larger than the set power value, the corresponding correction factor is made smaller, and in the case where the output power value is smaller than the set power value, the corresponding correction factor is made larger. Therefore, the correction factor can converge on a proper value.
A difference of a third embodiment from the first and second embodiments will be described. In the first and second embodiments, the correction factor B1 is read out from a table that is previously set. However, the correction factor B1 may be frequently updated. In the third embodiment, a comparison value in a current pulse and a comparison value in a previous pulse are compared with each other and the correction factor B1 is updated such that the comparison result between a set power P and the output power Pf becomes smaller at each reflection coefficient Γ. The control flow chart is only changed and a configuration of the device is the same as those in the first and second embodiments.
A flowchart of a control method in accordance with the third embodiment is shown in
If the modulation signal is off in step S210, the set power and the output power Pf(t1) obtained at step S208 are compared with each other in step S211. An average value of the comparison result is computed in step S212. If the average value is not within a predetermined power range in step S213, the average level adjustment value Nave is calculated based on the result of step S212 in step S214. If the average value is within the predetermined power range in step S213, the level adjustment value N is substituted with the average level adjustment value Nave in step S215 and the level adjustment value N is updated in step S216. In step S217, a comparison value (n) of step S211 is converted into an absolute value. In step S218, Re(n) and Im(n) stored at step S204 are read out. If a comparison value in a current pulse is larger than a comparison value in a previous pulse in step S219, a polarity of K is reversed in step S220.
The symbol K is an updating value of when the correction factor B1 is updated. In a case where the current comparison value is larger than the previous comparison value, a polarity of the updating value K is reversed to update the correction factor B1 such that a comparison value in a subsequent pulse becomes smaller than the current comparison value. In step S221, the updating value K is added to the correction factor B1 corresponding to Re(n) and Im(n) read out at step S218. In step S222, the previous comparison value (n) is substituted with the current comparison value (n). If n is not equal to t1 in step S224, 1 is added to n in step S223, and the process from step S217 is performed again. If n is equal to t1 in step S224, values of t1 and n are cleared in step S225 and the flow returns to step S202.
By repeating the above process, the correction factor B1 is updated such that a difference between the set power P and the detected output power Pf becomes smaller. A further stable level control becomes possible by updating the correction factor B1 at each operation.
The present invention is not limited to the above embodiments and may be variously modified without departing from the scope of the invention.
In the description of the present disclosure, at least the following configurations are included. As for a first configuration, there is provided a power supply device for plasma generation using a pulse modulation system which supplies a pulsed high frequency power to a plasma generation unit for generating plasma provided outside, the power supply device including: an oscillation unit configured to output a high frequency signal of a predetermined frequency; a modulation unit configured to modulate the high frequency signal outputted from the oscillation unit to a pulse shape in which on and off states are repeated and output the modulated high frequency signal as a pulsed high frequency signal; a level adjustment unit configured to adjust a level of the pulsed high frequency signal outputted from the modulation unit and output the level-adjusted pulsed high frequency signal; a power amplifier configured to amplify a power of the pulsed high frequency signal outputted from the level adjustment unit and output a pulsed high frequency power; an output power detection unit configured to detect an output power value of the pulsed high frequency power outputted from the power amplifier; a storage unit that stores a plurality of elapsed times in an on-state of the pulsed high frequency signal outputted from the modulation unit, a plurality of correction factors respectively corresponding to the elapsed times, and a set power value that is previously set as a value of an output power; and a control unit configured to receive the output power value detected by the output power detection unit, and output to the level adjustment unit a level control signal for controlling the level of the pulsed high frequency signal adjusted in the level adjustment unit based on the received output power value and the set power value, wherein the control unit corrects and outputs the level control signal at each of the elapsed times based on the correction factors respectively corresponding to the elapsed times, and compares a comparison value in a current pulse with a comparison value in a previous pulse to update the correction factors such that the comparison result between the set power value and the output power value becomes smaller at each reflection coefficient.
As for a second configuration, in the power supply device for plasma generation having the first configuration, the storage unit further stores an average level adjustment value needed when the level adjustment unit adjusts the level of the pulsed high frequency signal, and at each of the elapsed times, the control unit corrects and outputs the level control signal based on the average level adjustment value the correction factors respectively corresponding to the elapsed times, obtains the output power value from the output power detection unit, and if the pulsed high frequency signal is turned off, updates the average level adjustment value, based on the obtained output power values and the set power value, in a case where a difference between the output power value and the set power value is not within a predetermined range.
As for a third configuration, in the power supply device for plasma generation having the second configuration, the control unit allows the average level adjustment value to decrease when the output power value is larger than the set power value by a predetermined value or more, and allows the average level adjustment value to increase when the output power value is smaller than the set power value by a predetermined value or more.
As for a fourth configuration, in the power supply device for plasma generation having the first to third configurations, the control unit obtains, as a first power value difference, a difference between the output power value detected by the output power detection unit and the set power value at each of the elapsed times and obtains, as a second power value difference, a difference between the output power value and the set power value at each of the elapsed times in a subsequent on-state of the pulsed high frequency signal, and updates the correction factors respectively corresponding to the elapsed times based on the first power value difference and the second power value difference at each of the elapsed times.
As for a fifth configuration, in the power supply device for plasma generation having the fourth configuration, the control unit allows a corresponding correction factor to decrease when the output power value is larger than the set power value, and allows a corresponding correction factor to increase when the output power value is smaller than the set power value.
As for a sixth configuration, in the power supply device for plasma generation having the fourth configuration, the control unit allows a corresponding correction factor to decrease when the output power value is larger than the set power value and the second power value difference is larger than the first power value difference.
As for a seventh configuration, in the power supply device for plasma generation having the sixth configuration, the control unit allows a corresponding correction factor to decrease when the output power value is larger than the set power value and the second power value difference is smaller than the first power value difference.
As for an eighth configuration, in the power supply device for plasma generation having the fourth configuration, the control unit allows a corresponding correction factor to increase when the output power value is smaller than the set power value and the second power value difference is larger than the first power value difference.
As for a ninth configuration, in the power supply device for plasma generation having the eighth configuration, the control unit allows a corresponding correction factor to increase when the output power value is smaller than the set power value and the second power value difference is smaller than the first power value difference.
As for a tenth configuration, there is provided a power supply device for plasma generation using a pulse modulation system which supplies a pulsed high frequency power to a plasma generation unit for generating plasma provided outside, the power supply device including: an oscillation unit configured to output a high frequency signal of a predetermined frequency; a modulation unit configured to modulate the high frequency signal outputted from the oscillation unit to a pulse shape in which on and off states are repeated and output the modulated high frequency signal as a pulsed high frequency signal; a level adjustment unit configured to adjust a level of the pulsed high frequency signal outputted from the modulation unit and output the level-adjusted pulsed high frequency signal; a power amplifier configured to amplify a power of the pulsed high frequency signal outputted from the level adjustment unit and output a pulsed high frequency power; an output power detection unit configured to detects an output power value of the pulsed high frequency power outputted from the power amplifier; a storage unit that stores a plurality of elapsed times in an on-state of the pulsed high frequency signal outputted from the modulation unit, a plurality of correction factors respectively corresponding to the elapsed times, and a set power value that is previously set as a value of an output power; and a control unit configured to receive the output power value detected by the output power detection unit, and output to the level adjustment unit a level control signal for controlling the level of the pulsed high frequency signal adjusted in the level adjustment unit based on the received output power value and the set power value, wherein the control unit corrects and outputs the level control signal at each of the elapsed times based on the correction factors respectively corresponding to the elapsed times, and obtains, as a first power value difference, a difference between the output power value detected by the output power detection unit and the set power value at each of the elapsed times and obtains, as a second power value difference, a difference between the output power value and the set power value at each of the elapsed times in a subsequent on-state of the pulsed high frequency signal, and updates the correction factors respectively corresponding to the elapsed times based on the first power value difference and the second power value difference at each of the elapsed times.
The present application claims priority based on Japanese Patent Application No. 2013-174891 filed on Aug. 26, 2013, the entire contents of which are incorporated herein by reference.
The present invention may be useful to a high frequency power supply device used for generating plasma, especially to a power supply device for plasma generation.
Number | Date | Country | Kind |
---|---|---|---|
2013-174891 | Aug 2013 | JP | national |
This application is a Continuation Application of PCT International Application No. PCT/JP2014/072133 filed on Aug. 25, 2014, which designated the United States. This application claims priority to Japanese Patent Application No. 2013-174891 filed on Aug. 26, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6313584 | Johnson | Nov 2001 | B1 |
9325282 | Bowers | Apr 2016 | B2 |
9451687 | Yuzurihara | Sep 2016 | B2 |
9578731 | Van Zyl | Feb 2017 | B2 |
20110032047 | Yuzurihara | Feb 2011 | A1 |
20110121735 | Penny | May 2011 | A1 |
20150040828 | Morisawa et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2002-270574 | Sep 2002 | JP |
2006-260857 | Sep 2006 | JP |
2010-141000 | Jun 2010 | JP |
2015-035530 | Feb 2015 | JP |
2011016266 | Feb 2011 | WO |
Entry |
---|
Japanese Office Action dated Nov. 2, 2016, issued in corresponding Japanese Patent Application No. 2015-191270 and English translation thereof. |
International Search Report dated Oct. 7, 2014. |
Number | Date | Country | |
---|---|---|---|
20160174354 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2014/072133 | Aug 2014 | US |
Child | 15053227 | US |