The present invention relates to a power supply device including a voltage controller that is, for example, a linear regulator using a reference voltage circuit, and at least one current controller, and an electronic apparatus including the power supply device.
In a power supply device, for example, when a linear regulator is used, heat is generated in accordance with a difference between an input voltage and an output voltage as well as an output current. An allowable amount of the heat generation is determined by a substrate and a mold. Therefore, the output current of the linear regulator is limited and may not satisfy a required load current value. As a countermeasure, a power supply device according to Conventional Example 1 having a plurality of linear regulators connected in parallel to disperse a current has been already known.
However, in the power supply device according to conventional Example 1, the plurality of linear regulators are connected in parallel, the input terminals of the linear regulators are commonly connected to a power supply voltage in common, and the output terminals of the linear regulators are connected to a load in common. In the power supply device, the output voltages of the linear regulators having different output voltages exist due to an influence of variations in a manufacturing process etc. Therefore, the output current is supplied from the linear regulator with the highest output voltage, while in the linear regulator with a lower output voltage, an analog signal allowing a current to flow through an output transistor is sent by a differential amplifier circuit that receives a feedback voltage obtained by resistively dividing the output voltage and a reference voltage. However, since the common output voltage is fixed to a voltage higher than an output voltage of a certain linear regulator, the differential amplifier circuit outputs an analog signal for stopping the output current to the output transistor.
Subsequently, when the common output voltage drops due to an increase in load current and reaches the voltage of the linear regulator with a second highest output voltage, the differential amplifier circuit of the linear regulator with the second highest output voltage outputs an analog signal for outputting an output current to the output transistor, and the supply of the output current is started from the linear regulator with the second highest output voltage. When the output voltage of the linear regulator with a lowest common output voltage is finally reached, the output current is supplied from all the linear regulators.
However, the balance of the output current supply is not uniform, and the linear regulator with the highest output voltage supplies a large amount of the output current, so that the linear regulator with a low output voltage cannot supply an equivalent output current. As a result, a required load current value may not be satisfied. Regarding reliability, if an imbalance occurs in the current, an imbalance also occurs in heat generation, which may accelerate the life of the linear regulator with the largest output current and lead to destruction.
As means for solving the problems described above, each of the linear regulators detects a current proportional to the output current, converts the detected current value into an analog voltage signal, and transmits the analog voltage signal via a bus terminal of the linear regulator itself to a bus terminal of another linear regulator. In response, the other linear regulator adjusts the output voltage based on the analog voltage signal, in a proposed power supply device according to Conventional Example 2 (see, Patent Document 1, for example).
In the power supply device according to the conventional example 1, when the plurality of linear regulators are connected in parallel, the output current is not supplied by the linear regulator having an output voltage lower than the common output voltage as described above. However, in the power supply device according to Conventional Example 2, an analog voltage signal proportional to the output current of each linear regulator is sent to another linear regulator, and the analog voltage signal is compared with the analog voltage signal of the other linear regulator, so that the respective output currents can indirectly be compared. In this situation, a reference voltage of the linear regulator having a small output current is controlled to be raised. As a result, in the linear regulator with the low output voltage, the differential amplifier circuit that receives the feedback voltage obtained by resistively dividing the output voltage and the reference voltage sends to another linear regulator an analog voltage signal for supplying a current to the output transistor. In response, the other linear regulator stats supplying the output current. In this way, the plurality of output currents are controlled to be equal to each other by the linear regulators adjusting the reference voltage via the bus terminal.
Patent Document 1: Japanese laid-open patent publication No. JPH10-260743A
However, since the analog voltage signal indicating the output current affects the reference voltage, two control signals are fed back to both of the input terminals of the error amplifier, so that the feedback control loop is crossed. Due to this effect, the control system becomes complicated, and the control system with sufficient stability cannot be designed, so that oscillation occurs, causing such a problem that a power supply device lacks stability.
An object of the present invention is to provide a power supply device capable of solving the problems described above, establishing a stable control system as compared to the conventional technologies, and preventing necessary oscillation, and an electronic apparatus including the power supply device.
According to one aspect of the present invention, there is provided a power supply device including a voltage controller, and at least one current controller. The power supply device is configured by connecting the voltage controller and the current controllers in parallel with each other. The voltage controller includes a reference voltage circuit, a voltage control circuit, and a first current detector circuit. The reference voltage circuit generates a predetermined reference voltage based on an input voltage, and the voltage control circuit configured to generate and output an output voltage of the voltage controller based on the input voltage by controlling an output current of the voltage controller so that the output voltage of the voltage controller becomes a voltage substantially corresponding to the reference voltage. The first current detector circuit detects the output current of the voltage controller, and generates and outputs a first current detection signal indicating a value corresponding to the output current of the voltage controller. Each of the current controllers includes a second current detector circuit, and a current control circuit. The second current detector circuit detects the output current of the current controller, and generates and outputs a second current detection signal indicating a value corresponding to the output current of the current controller, and the current control circuit configured to control an output current of the current controller so that the second current detection signal substantially becomes a value corresponding to the value indicated by the first current detection signal.
Therefore, according to the power supply device according to the present invention, the control system of the voltage controller and the control system of each of the current controllers can be separated from each other, so that a stable control system can be established as compared to the conventional technologies to provide the power supply device etc. capable of preventing unnecessary oscillation.
Embodiments according to the present invention will now be described with reference to the drawings. The same or similar components are denoted by the same reference numerals. In this description, a MOS (Metal-Oxide Semiconductor) field effect transistor will hereinafter be referred to as a “MOS transistor”.
As described above, the power supply device according to Conventional Example 2 disclosed in Patent Document 1 cannot solve the problem that the complexity of the control system makes it unable to ensure the stability of the circuit and results in oscillation.
On the other hand, the present embodiment is characterized in that, when the output terminals of a plurality of controllers 1 and 2 (for example, a voltage controller 1 and a current controller 2 of
Referring to
A current detection signal output terminal T12 of the voltage controller 1 and a current detection signal input terminal T22 of the current controller 2 are connected to each other, and a ground terminal T14 of the voltage controller 1 and a ground terminal T24 of the current controller 2 are connected to each other and grounded.
In
In the power supply device 101 configured as described above, the input voltage Vin is inputted to the input terminal T11 of the voltage controller 1 and the input terminal T21 of the current controller 2. The voltage controller 1 is a linear regulator having a built-in reference voltage circuit and controls the input voltage Vin to be a reference voltage. The total current Iouttotal obtained by summing an output current Iout0 from the voltage controller 1 and an output current Iout1 from the current controller 2 flows through the load 3.
The voltage controller 1 generates the current detection signal BS1 that is an analog voltage signal corresponding to the output current Iout0 in a predetermined correlation such as being proportional to the output current Iout0, and outputs the current detection signal BS1 from the current detection signal output terminal T12 to the current detection signal input terminal T22 of the controller 2. In response, the current controller 2 generates a current detection signal that is an analog voltage signal corresponding to the output current Iout1 in a predetermined correlation such as being proportional thereto, and compares the current detection signal with the input current detection signal BS1 to control the difference to be substantially zero, and therefore, the impedance of the output transistor (for example, a MOS transistor Q11 of
The load 3 is, for example, an electronic apparatus having a predetermined function and receiving power supply voltage and power supply current from the voltage controller 1 and the current controller 2, and specifically, an electronic apparatus for an automobile receiving power supply, or an image forming device such as a copy machine or a printer, a personal computer, a tablet, a smart phone, a mobile phone, etc., receiving power supply.
According to the first embodiment configured as described above, the voltage control system in the voltage controller 1 and the current control system in the current controller 2 are separated from each other, and therefore, do not affect each other. Thus, the power supply device 101 capable of establishing a stable control system compared to the conventional technologies and preventing unnecessary oscillation can be implemented.
In the first embodiment, the output current Iout1 of the current controller 2 is controlled so that the output current Iout0 of the voltage controller 1 and the output current Iout1 of the current controller 2 become equal to each other. However, the output current Iout1 of the current controller 2 may be controlled by current distribution so that the value of the ratio of the output current Iout0 of the voltage controller 1 to the output current Iout1 of the current controller 2 becomes a predetermined value.
Referring to
(1) instead of the current controller 2, a plurality of N current controllers 2-1 to 2-N connected in parallel with each other are included, and the current controllers 2-1 to 2-N configured in the same manner as each other.
The differences will hereinafter be described.
Each of the current controllers 2-1 to 2-N is configured in the same manner as the current controller 2 of
In the power supply device 102 configured as described above, the total current Iouttotal obtained by summing the output current Iout0 of the voltage controller 1 and the output currents Iout1 to IoutN of the current controllers 2-1 to 2-N flows through the load 3. The current controllers 2-1 to 2-N control the output currents Iout1 to IoutN of the current controllers 2 so that the output currents Iout0, and the output currents Iout1 become equal to each other, for example. Since the voltage control system in the voltage controller 1 and the current control systems in the current controllers 2-1 to 2-N are separated from each other, and therefore, do not affect each other. Thus, the power supply device 102 capable of establishing a stable control system as compared to the conventional technologies and preventing unnecessary oscillation can be implemented.
Referring to
The reference voltage circuit 11 is a known reference voltage circuit (also referred to as a reference voltage source), generates a predetermined reference voltage Vref based on the input voltage Vin, and outputs the reference voltage Vref to an inverting input terminal of the operational amplifier circuit 12. The input voltage Vin is inputted as a power supply voltage to the operational amplifier circuit 12, and is outputted to the output terminal T13 via the source and drain of the MOS transistor Q1 that controls the output current Iout0 from the voltage controller 1. The output terminal T13 is grounded via the voltage divider resistors R1 and R2 connected in series with each other. The output voltage Vout of the output terminal T13 is divided by the voltage divider resistors R1 and R2 of the voltage detector circuit 14, and the voltage of the voltage divider resistor R2 after the voltage division (voltage proportional to the output voltage Vout) is inputted as a feedback voltage Vfb to the inverting input terminal of the operational amplifier circuit 12.
The operational amplifier circuit 12 outputs a difference voltage between the feedback voltage Vfb and the reference voltage Vref as an output current control signal to each of the gates (control terminals) of the MOS transistors Q1 and Q2. The voltage detector circuit 14, the operational amplifier circuit 12, and the MOS transistor Q1 configure a voltage control circuit 15, and the output current Iout0 is controlled so that the difference voltage between the feedback voltage Vfb and the reference voltage Vref becomes substantially zero, namely, so that the feedback voltage Vfb substantially matches the reference voltage Vref. As a result, the voltage control circuit 15 controls the output voltage Iout to be a predetermined voltage value (=Vref·(R1+R2)/R2).
The MOS transistors Q1 and Q2 configure a current mirror circuit CM1, and a detection current a·Iout1 proportional to the output current Iout0 flowing through the MOS transistor Q1 flows through the MOS transistor Q2 from the source to the drain toward the current to voltage converter circuit 13. The coefficient “a” is a sufficiently small value (negligible value) as compared to 1, for example, 1/10,000, or at most 1/100. The current to voltage converter circuit 13 converts the input detection current a·Iout1 into the current detection signal BS1, that is an analog voltage signal indicating the detection current, and outputs the current detection signal BS1 from the current detection signal output terminal T12.
The voltage controller 1 configured as described above includes:
(1) the reference voltage circuit 11 that generates the reference voltage Vref based on the input voltage Vin;
(2) the voltage control circuit 15 that generates and outputs the output voltage Vout of the voltage controller 1 based on the input voltage Vin, since the MOS transistor Q2 controls the output current Iout0 of the voltage controller 1 so that the output voltage Vout of the voltage controller 1 becomes a voltage substantially proportional to the reference voltage Vref; and
(3) a current detector circuit (the MOS transistor Q2 and the current to voltage converter circuit 13) that detects the output current Iout0 of the voltage controller 1, and generates and outputs the current detection signal BS1 indicating a value corresponding to the output current Iout0.
As a result, the voltage controller 1 converts the input voltage Vin into the output voltage Vout proportional to the reference voltage Vref, and outputs the current detection signal BS1 indicating a value proportional to the output current Iout0.
Referring to
The input voltage Vin is inputted as a power supply voltage to the operational amplifier circuit 21 and is outputted to the output terminal T23 via the source and drain of the MOS transistor Q11 that controls the output current Iout1 from the voltage controller 1.
The MOS transistors Q11 and Q12 configures a current mirror circuit CM2, and the detection current b⋅Iout1 proportional to the output current Iout1 flowing through the MOS transistor Q11 flows through the MOS transistor Q12 from the source to the drain toward the current to voltage converter circuit 22. The coefficient “b” is a sufficiently small value (negligible value) as compared to 1, for example, 1/10,000, or at most 1/100. The current to voltage converter circuit 22 converts the input detection current b⋅Iout1 into a current detection signal BS2 that is an analog voltage signal indicating the detection current and outputs the current detection signal BS2 to the non-inverting input terminal of the operational amplifier circuit 21. The coefficient “b” may be set equal to or different from the coefficient “a”.
The operational amplifier circuit 21 outputs a difference voltage signal between the current detection signal BS2 and the current detection signal BS1 as an output current control signal SS1 to the gates (control terminals) of the MOS transistors Q11, Q12. The operational amplifier circuit 21, the MOS transistor Q12, and the current to voltage converter circuit 22 configure a current control circuit 26, and the output current Iout1 is controlled so that the difference voltage between the current detection signal BS2 and the current detection signal BS1 becomes substantially zero, namely, so that the current detection signal BS2 substantially matches the current detection signal BS1. As a result, the current control circuit 26 controls the output current Iout1 to be equal to a predetermined current value (for example, be equal to the output current Iout0 of the voltage controller 1, be a current value proportional to the output current Iout0 of the voltage controller 1).
The current controller 2 configured as described above includes:
(1) a current detector circuit (the MOS transistor Q2 and the current to voltage converter circuit 22) that detects the output current Iout1 of the current controller 2, and generates and outputs the current detection signal BS2 indicating a value corresponding to the output current Iout1; and
(2) the current control circuit 26 that controls the output current Iout1 of the current controller 2 so that the current detection signal BS2 substantially becomes a value corresponding to the value indicated by the current detection signal BS1.
As a result, the current controller 2 controls the output current Iout1 of the current controller 2 so that the current detection signal BS2 substantially becomes a value corresponds to the value indicated by the current detection signal BS1.
Referring to
Referring to
(1) a specific example of the current to voltage converter circuit 22 made up of the variable resistor VR1 is shown;
(2) a voltage at the input end of the current to voltage converter circuit 22 is outputted as a monitor voltage Vmonitor via the terminal T25; and
(3) the power supply devices 101 and 102 includes a current setting controller 4 that controls a variable resistor VR1 based on the monitor voltage Vmonitor.
The differences will hereinafter be described.
Referring to
The variable resistor VR1 may have the following forms, for example:
(Form A) The variable resistance VR1 is configured to include a plurality of resistance elements connected in series with each other, and switching elements connected in parallel with the respective resistance elements, and the resistance value of the variable resistance VR1 is changed and set by turning on or off each of the switching elements.
(Form B) The variable resistance VR1 is configured to include a plurality of resistance elements connected in series with each other and fuse elements connected in parallel with the respective resistance elements, and the resistance value of the variable resistance VR1 is changed and set by laser-trimming each of the fuse elements.
Some variations exist in the current ratio between the MOS transistor Q11 and the MOS transistor Q12, and the variable resistor VR1. Therefore, the transfer impedance between the output current Iout1 of the MOS transistor Q11 and the voltage of the current detection signal BS2 of the current to voltage converter circuit 22 may deviate from a predetermined value, and as a result, a difference occurs between the output currents Iout0 to IoutN of the voltage controller 1 and the current controllers 2 connected in parallel. In such a case, by adjusting the resistance value of the variable resistor VR1, the transfer impedance between the MOS transistor Q11 and the non-inverting input terminal of the operational amplifier circuit 21 can be adjusted to a predetermined value, and the difference can be reduced in the output currents Iout0 to IoutN of the voltage controller 1 and the current controllers 2.
In Example 1 of
The current setting controller 4 is disposed as a setting circuit for automatically controlling the resistance value of the variable resistor VR1 based on the monitor voltage Vmonitor. This automatic control may be performed in real time or may be executed in a predetermined cycle.
The current setting controller 4 is configured to include a CPU (Central Processing Unit) 41, an EEPROM (Electrically Erasable Programmable Read-Only Memory) 42, an AD converter (ADC) 42, and an interface circuit (I/F) 43. The EEPROM 41 may be a ROM (Read Only Memory) depending on a type of usage. The EEPROM 41 preliminarily sores a relation table of the set clue of the variable resistor VR1 for the monitor voltage Vmonitor according to the set current ratio of the output current Iout0 of the voltage controller 1 to each of the output currents Iout1 to IoutN of the current controllers 2 (the case that the currents are equal to each other and the case that the currents are different from each other).
The AD converter 42 converts the monitor voltage Vmonitor into a digital voltage value, and outputs the digital voltage value to the CPU 40. The CPU 40 retrieves the set value of the resistance value of the variable resistor VR1 corresponding to the digital voltage value of the input monitor voltage Vmonitor from the relation table in the EEPROM 41, and sets the resistance value of the variable resistor VR1 via the interface circuit 43. For example, if the variable resistor VR1 is the form A, the resistance value of the variable resistor VR1 is set to a predetermined value by turning on or off the switching elements of the variable resistor VR1.
The current setting controller 4 can accurately measure the transfer impedance in consideration of the variation in the respective elements described above, and can set the resistance value of the variable resistor VR1 via the interface circuit 43 so as to adjust the transfer impedance to a predetermined value. As a result, the value of the coefficient “b” can be changed, and the output current Iout1 of the current controller 2 can be adjusted and set.
Example 1 configured as described above further includes the current setting controller 4 that sets the ratio of the output current from the voltage controller 1 to the output current from each of the current controllers 2, into a predetermined value. The variable resistor VR1 divides the detection current b⋅Iout detected by the MOS transistor Q12 at a predetermined current ratio, and outputs the divided current to the operational amplifier circuit 21.
In Example 1 of
The variable resistor VR1 may be shipped as a fixed value after being adjusted at the time of manufacturing before shipment. When the value of the variable resistor VR1 at the time of design is not different from the resistance value at the time of manufacturing, the variable resistor VR1 may be a fixed resistance.
Although
Referring to
(1) a specific example of the current to voltage converter circuit 22 made up of the variable resistors VR1 and VR2 is shown; and
(2) instead of the current setting controller 4, a current setting controller 4A including an interface circuit 44 capable of controlling the variable resistor VR2 is disposed.
The differences will hereinafter be described.
Referring to
The current setting controller 4A can accurately measure the transfer impedance in consideration of the variation in the respective elements described above, and can set the resistance values of the variable resistors VR1 and VR2 via the interface circuits 43 and 44 so as to adjust the transfer impedance to a predetermined value. As a result, the value of the coefficient “b” can be changed, and the output current Iout1 of the current controller 2 can be adjusted and set.
Example 2 configured as described above further includes the current setting controller 4 that sets the ratio of the output current from the voltage controller 1 to the output current from the current controllers 2 into a predetermined value. The variable resistors VR1 and VR2 divide the detection current b⋅Iout detected by the MOS transistor Q12 at a predetermined voltage division ratio, and divide the same current at a predetermined current ratio, and then outputting the divided current to the operational amplifier circuit 21.
A modification of Example 1 can similarly be applied to Example 2.
The current controller 2 according to Example 3 of
(1) the operational amplifier circuit 21 is a known operational amplifier circuit and is configured to include four MOS transistors Q21 to Q24 and a constant current source 24 that is a so-called tail current source;
(2) a series circuit of a constant current source 25 and a P-channel MOS transistor Q13 serving as a switching element is connected between the input voltage Vin and the output terminal of the operational amplifier circuit 21; and
(3) an operational amplifier circuit 23 for switching on/off of the MOS transistor Q13 is included.
The differences will hereinafter be described. Example 3 of
Referring to
When the voltage of the current detection signal BS1 becomes equal to or less than a predetermined threshold value, the operational amplifier circuit 23 outputs a switch control signal for turning on the MOS transistor Q13 to the gate of the MOS transistor Q13. As a result, the responsiveness of the output current Iout1 is improved by supplying the MOS transistor Q11 with a constant current from the constant current source 25 operated by the input voltage Vin.
When the voltage of the current detection signal BS1 becomes equal to or less than a predetermined threshold value, namely, when the output current Iout1 of the current controller 2 exceeds the output current Iout0 of the voltage controller 1, the MOS transistor Q13 is turned on to improve the responsiveness by making the constant current of the constant current source 25 sufficiently large relative to an amount of current of the constant current source 24 of the operational amplifier circuit 21. This can suppress the overshoot of the output voltage Vout due to a response delay in the output current Iout1 of the current controller 2, which occurs when the state transitions from a heavy load to a light load.
In the embodiment, since the response characteristics of the voltage controller 1 and the current controller 2 are not the same as each other due to the single loop of the current controller 2, and the responsiveness at the time of switching from a heavy load to a light load is determined by the characteristic of the controller with the slower response, it is important to improve the characteristic of the controller with the slower response when the responsiveness is improved. In this case, if the response of the current controller 2 is slower than that of the voltage controller 1, the circuit of
Example 3 configured as described above includes: (1) a constant current source 25 that generates a predetermined constant current based on the input voltage Vin;
(2) the MOS transistor Q11 that is a current control element that includes a gate (control terminal) for inputting the output current control signal SS1 and that controls the output current Iout1 from the current controller 2 based on the output current control signal SS1; and
(3) the MOS transistor Q13 that is a switch element for inputting the constant current to the gate of the MOS transistor Q11 when the current: detection signal 552 becomes equal to or less than a predetermined threshold value.
This can suppress the overshoot of the output voltage Vout due to a response delay in the output current Iout1 of the current controller 2, which occurs when the state transitions from a heavy load to a light load,
The circuit of Example 3 may be applied to Example 1 or 2.
As described above, according to the present embodiments, the voltage controller 1 and each of the current controllers 2 are connected in parallel with each other to transmit the current detection signal BS1 obtained by detecting a portion of the output current Iout0 of the voltage controller 1 to the current controllers 2, and the output currents Iout1 to IoutN of the current controllers 2 are controlled based on the difference signal between the current detection signal BS1 and the current detection signal BS2 obtained by detecting a portion of the output currents Iout1 to IoutN of the current controllers 2. As a result, as shown in
The control system of each of the current controllers 2 can implement characteristics different from the response frequency of the voltage controller 1, and the respective response frequencies can be separated from each other. This can prevent the loss of stability due to the resonance between respective responses.
When an offset voltage Voffset (
In the embodiments, the case of use for the voltage control circuit has been described as an example. However, this is an example, the present invention is not limited thereto and can be applied to all control circuits by using an operational amplifier circuit. For example, the present invention may be applied to the current control circuit.
As mentioned above in detail, according to the power supply device of the present invention, the control system of the voltage controller and the control system of each of the current controllers can be separated from each other, so that the stable control system can be established as compared to the conventional technologies to provide the power supply device etc. capable of preventing unnecessary oscillation.
An electronic apparatus may be configured to include the power supply device 101 and 102 according to the embodiments and the load 3. The electronic apparatus is, for example, an electronic apparatus for an automobile receiving power supply, or an image forming device such as a copy machine or a printer, a personal computer, a tablet, a smart phone, a mobile phone, etc., that receive the power supplies.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/012082 | 3/18/2020 | WO | 00 |