The present invention relates to a power supply device.
Electric vehicles (EV) and plug-in hybrid vehicles have become popular, and charging facilities capable of charging batteries of the electric vehicles have also become popular. There are various kinds of standards for the charging facilities that are currently installed, thus a power supply device of an electric vehicle needs to adapt to several standards of charging devices. For example, Patent Document 1 discloses a power supply device configured to switch connection of two batteries between parallel connection and series connection to adapt to a fast charger and to an ultra-fast charger in which voltage of supplied power is higher than that of the fast charger.
Patent Document 1: JP 2020-150784 A
However, in the power supply device disclosed in Patent Document 1, when the connection of the two batteries is switched, voltage applied to a load varies significantly. Thus, in the power supply device disclosed in Patent Document 1, the load cannot be operated during this switching of the connection of the two batteries.
In view of the problem described above, an object of the present invention is to provide a power supply device that is configured to adapt to a plurality of chargers without requiring interruption of operation of a load.
To solve the above-described problem and achieve the object described above, a power supply device according to one embodiment of the present invention includes a first positive electrode-side battery terminal and a first negative electrode-side battery terminal for connecting a battery, a second positive electrode-side battery terminal and a second negative electrode-side battery terminal for connecting a battery, a positive electrode-side input terminal and a negative electrode-side input terminal for connecting a charger, a positive electrode-side output terminal and a negative electrode-side output terminal for connecting a load, a first switch, a second switch, a third switch, and a power converter, wherein the positive electrode-side input terminal is connected to the first positive electrode-side battery terminal, the negative electrode-side input terminal is connected to the second negative electrode-side battery terminal, the first switch is connected between the first negative electrode-side battery terminal and the second positive electrode-side battery terminal, the second switch is connected between a first connection point and the second positive electrode-side battery terminal, the first connection point being between the positive electrode-side input terminal and the first positive electrode-side battery terminal, the third switch is connected between the first negative electrode-side battery terminal and a second connection point, the second connection point being between the negative electrode-side input terminal and the second negative electrode-side battery terminal, the power converter includes a positive electrode-side converter input terminal, a negative electrode-side converter input terminal, a positive electrode-side converter output terminal, and a negative electrode-side converter output terminal, the positive electrode-side output terminal is connected to the positive electrode-side converter output terminal, the negative electrode-side output terminal is connected to the negative electrode-side converter output terminal, the positive electrode-side converter input terminal is connected to a line that connects the positive electrode-side input terminal and the first positive electrode-side battery terminal, and the negative electrode-side converter input terminal is connected to a line that connects the negative electrode-side input terminal and the second negative electrode-side battery terminal.
According to the present invention, it is possible to provide a power supply device that is configured to adapt to a plurality of chargers without requiring interruption of operation of a load.
<Power Supply Device 100>
The first positive electrode-side battery terminal 111 and the first negative electrode-side battery terminal 112 are terminals for connecting a first battery 210. A positive electrode of the first battery 210 is connected to the first positive electrode-side terminal 111, and a negative electrode of the first battery 210 is connected to the first negative electrode-side battery terminal 112. The second positive electrode-side battery terminal 121 and the second negative electrode-side battery terminal 122 are terminals for connecting a second battery 220. A positive electrode of the second battery 220 is connected to the second positive electrode-side terminal 121, and a negative electrode of the second battery 220 is connected to the second negative electrode-side battery terminal 122. The first battery 210 and the second battery 220 are rechargeable batteries which can be charged with and discharge electric power, such as lithium-ion batteries. Drive voltages of the first battery 210 and the second battery 220 are the same and are a first voltage (for example, 400V or 500V).
The positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 are terminals for connecting a charger 300. When a first charger 300A (for example, a fast charger) for supplying electric power with the first voltage is connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132, the electric power with the first voltage is input from the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132. When a second charger 300B (for example, an ultra-fast charger) for supplying electric power with a second voltage (for example, 800V or 1000V) that is a voltage twice the first voltage is connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132, the electric power with the second voltage is input from the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132.
The power converter 150 includes a positive electrode-side converter input terminal 151, a negative electrode-side converter input terminal 152, a positive electrode-side converter output terminal 153, and a negative electrode-side converter output terminal 154. The power converter 150 is configured to output, from the positive electrode-side converter output terminal 153 and the negative electrode-side converter output terminal 154, electric power that is inputted from the positive electrode-side converter input terminal 151 and the negative electrode-side converter input terminal 152. At that time, the power converter 150 operates in a mode (relay mode) in which electric power inputted from the positive electrode-side converter input terminal 151 and the negative electrode-side converter input terminal 152 is outputted from the positive electrode-side converter output terminal 153 and the negative electrode-side converter output terminal 154 without the voltage of the electric power inputted being converted, and in a mode (power conversion mode) in which electric power inputted from the positive electrode-side converter input terminal 151 and the negative electrode-side converter input terminal 152 is outputted from the positive electrode-side converter output terminal 153 and the negative electrode-side converter output terminal 154 with the voltage of the electric power inputted being converted. The power conversion mode includes at least one of a mode (step-up mode) in which electric power with the first voltage is converted to electric power with the second voltage or a mode (step-down mode) in which electric power with the second voltage is converted to electric power with the first voltage.
In this embodiment, the positive electrode-side input terminal 131 is connected to the first positive electrode-side battery terminal 111, and the negative electrode-side input terminal 132 is connected to the second negative electrode-side battery terminal 122.
The first switch SW1 is connected between the first negative electrode-side battery terminal 112 and the second positive electrode-side battery terminal 121. The second switch SW2 is connected between the second positive electrode-side battery terminal 121 and a first connection point CP1, the first connection point CP1 being between the positive electrode-side input terminal 131 and the first positive electrode-side battery terminal 111. A third switch SW3 is connected between the first negative electrode-side battery terminal 112 and a second connection point CP2, the second connection point CP2 being between the negative electrode-side input terminal 132 and the second negative electrode-side battery terminal 122.
Thus, in this embodiment, as shown in
Thus, in this embodiment, when the first charger 300A (for example, a fast charger) is connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132, the first switch SW1 is opened and the second switch SW2 and the third switch SW3 are closed so that the first battery 210 and the second battery 220 are charged with these batteries connected in parallel. In this way, in this embodiment, the first battery 210 and the second battery 220 can be charged with the electric power with the first voltage that is the drive voltage of the first battery 210 and the second battery 220.
Further, in this embodiment, as shown in
Thus, in this embodiment, when the second charger 300B (for example, an ultra-fast charger) is connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132, the first switch SW1 is closed and the second switch SW2 and the third switch SW3 are opened so that the first battery 210 and the second battery 220 are charged with these batteries connected in series. In this way, in this embodiment, the first battery 210 and the second battery 220 can be charged with the electric power with the first voltage that is half the voltage of the second voltage, i.e., the electric power with the first voltage that is the drive voltage of the first battery 210 and the second battery 220.
The positive electrode-side output terminal 141 and the negative electrode-side output terminal 142 are terminals for connecting a load 400.
In this embodiment, the positive electrode-side output terminal 141 is connected to the positive electrode-side converter output terminal 153 of the power converter 150, and the negative electrode-side output terminal 142 is connected to the negative electrode-side converter output terminal 154 of the power converter 150.
The positive electrode-side converter input terminal 151 of the power converter 150 is connected to a line that connects the positive electrode-side input terminal 131 and the first positive electrode-side battery terminal 111, and the negative electrode-side converter input terminal 152 of the power converter 150 is connected to a line that connects the negative electrode-side input terminal 132 and the second negative electrode-side battery terminal 122.
Thus, in this embodiment, the voltage outputted from the charger 300 is inputted to the power converter 150.
In this embodiment, as shown in
Further, in this embodiment, as shown in
Further, in this embodiment, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 (for example, during traveling), if a drive voltage of the load 400 connected to the positive electrode-side output terminal 141 and the negative electrode-side output terminal 142 is the first voltage, then, for example, as shown in
Further, in this embodiment, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 (for example, during traveling), if a drive voltage of the load 400 connected to the positive electrode-side output terminal 141 and the negative electrode-side output terminal 142 is the second voltage, then, for example, as shown in
Further, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 (for example, during traveling), if a drive voltage of the load 400 connected to the positive electrode-side output terminal 141 and the negative electrode-side output terminal 142 is lower than the first voltage, then the power converter 150 steps down the voltage of the electric power inputted to the drive voltage of the load 400 and outputs it. At this time, the first switch SW1 may be opened and the second switch SW2 and the third switch SW3 may be closed so that the first battery 210 and the second battery 220 are connected in parallel, as shown in
Further, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 (for example, during traveling), if a drive voltage of the load 400 connected to the positive electrode-side output terminal 141 and the negative electrode-side output terminal 142 is higher than the first voltage but lower than the second voltage, then the first switch SW1 may be opened and the second switch SW2 and the third switch SW3 may be closed so that the first battery 210 and the second battery 220 are connected in parallel, as shown in
Further, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 (for example, during traveling), if a drive voltage of the load 400 connected to the positive electrode-side output terminal 141 and the negative electrode-side output terminal 142 is higher than the second voltage, then the power converter 150 steps up the voltage of the electric power inputted to the drive voltage of the load 400 and outputs it. At this time, the first switch SW1 may be opened and the second switch SW2 and the third switch SW3 may be closed so that the first battery 210 and the second battery 220 are connected in parallel, as shown in
Thus, in this embodiment, in both cases where the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 are connected to the first charger 300A and the second charger 300B, it is possible to charge the first battery 210 and the second battery 220. Further, in this embodiment, it is possible to supply the load 400 with electric power with an appropriate voltage regardless of the drive voltage of the load 400 connected to the positive electrode-side output terminal 141 and the negative electrode-side output terminal 142. Consequently, in this embodiment, it is possible to provide the power supply device that can adapt to the plurality of chargers without requiring interruption of operation of the load.
Further, in this embodiment, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 (for example, during traveling), the load 400 can be supplied with electric power from both of the first battery 210 and the second battery 220. Thus, the first battery 210 and the second battery 220 can be used evenly.
<Control of the First to Third Switches SW1-SW3 and the Power Converter 150>
The power supply device 100 may further include a control unit 160 configured to control the first switch SW1, the second switch SW2, the third switch SW3 and the power converter 150.
The control unit 160 may be configured to, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 and when the load 400 with the drive voltage that is the first voltage is connected, control the first switch SW1, the second switch SW2 and the third switch SW3 such that the first switch SW1 is opened and the second switch SW2 and the third switch SW3 are closed, as shown in
Further, the control unit 160 may be configured to, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 and when the load 400 with the drive voltage that is the second voltage is connected, control the first switch SW1, the second switch SW2 and the third switch SW3 such that the first switch SW1 is closed and the second switch SW2 and the third switch SW3 are opened, as shown in
Further, the control unit 160 may be configured to, when the charger 300 is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 and when the load 400 with the drive voltage that is different from the first voltage and the second voltage is connected, control the power converter 150 so as to convert the electric power inputted to the electric power with the drive voltage of the load 400. In this way, even for the load 400 the drive voltage of which is different from the first voltage and the second voltage, the electric power from both the first battery 210 and the second battery 220 can be supplied to the load 400. At this time, the control unit 160 may control such that the first switch SW1 is opened and the second switch SW2 and the third switch SW3 are closed, as shown in
The control unit 160 may for example be configured to, when the first charger 300A is connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 and when the load 400 with the drive voltage that is the first voltage is connected, control the first switch SW1, the second switch SW2 and the third switch SW3 such that the first switch SW1 is opened and the second switch SW2 and the third switch SW3 are closed, as shown in
The control unit 160 may for example be configured to, when the first charger 300A is not connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 and when the load 400 with the drive voltage that is different from the first voltage is connected, control such that the first switch SW1 is opened and the second switch SW2 and the third switch SW3 are closed, as shown in
The control unit 160 may for example be configured to, when the second charger 300B is connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 and when the load 400 with the drive voltage that is the second voltage is connected, control the first switch SW1, the second switch SW2 and the third switch SW3 such that the first switch SW1 is closed and the second switch SW2 and the third switch SW3 are opened, as shown in
The control unit 160 may for example be configured to, when the second charger 300B is connected to the positive electrode-side input terminal 131 and the negative electrode-side input terminal 132 and when the load 400 with the drive voltage that is different from the second voltage is connected, control such that the first switch SW1 is closed and the second switch SW2 and the third switch 142 are opened, as shown in
As shown in
At this time, the control unit 160 may be configured to control the fourth switch SW4 and the fifth switch SW5 such that the fourth switch SW4 and the fifth switch SW5 are closed as shown in
<Configuration of the Power Converter 150>
The power converter 150 may include, for example, a circuit configuration of a step-down chopper constituted of a switch, a diode, an inductor L and a capacitor C. In this case, the power converter 150 may include, for example, a sixth switch SW6 as a switch constituting the circuit configuration of the step-down chopper, as shown in
In addition, the power converter 150 may include, for example, a switching element S1 including a diode connected in parallel as a diode constituting the circuit configuration of the step-down chopper, as shown in
The power converter 150 may include, for example, a circuit configuration of a step-up chopper constituted of a switch, a diode, an inductor L and a capacitor C. In this case, the power converter 150 may include, for example, a seventh switch SW7 as a diode constituting the circuit configuration of the step-up chopper, as shown in
In the case where the sixth switch SW6 is constituted of the two switching elements S2, S3, an inductor L may be connected between the two switching elements S2, S3 as shown in
As shown in
The present invention has been described above with reference to the preferred embodiments of the present invention. Although the present invention has been described with reference to the specific examples, various modifications and changes can be made to these specific examples without departing from the spirit and scope of the present invention as set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2022-091419 | Jun 2022 | JP | national |