The present disclosure relates to a power supply.
Generally, Liquid Crystal Displays (LCDs) include two display substrates where an electric field applying electrode is displayed, and a liquid crystal layer that has dielectric anisotropy and is disposed between the two substrates. LCDs apply a voltage to an electric field applying electrode to generate an electric field in a liquid crystal layer, change the voltage to adjust intensity of the electric field, and thus adjust a transmittance of light passing through the liquid crystal layer, thereby displaying a desired image.
Since LCDs cannot self emit light, the LCDs require a separate light source called a backlight, and the light source is being replaced by Light Emitting Diodes (LEDs).
Since LEDs are semiconductor devices, LEDs have long service life, fast lighting speed, low consumption power, and excellent color reproductivity. Moreover, LEDs are robust to impact, and facilitate the miniaturizing and thinning of LEDs. Therefore, a backlight using LEDs are being mounted on medium and large LCDs such as computer monitors and televisions (TVs), in addition to small LCDs mounted on mobile phones, etc.
Embodiments provide a power supply with a new openness detection circuit.
Embodiments also provide a power supply which detects a circuit-opened state of at least one LED included in a light emission unit having a plurality of LEDs, thereby regulating a supplied power.
Embodiments also provide a power supply which automatically varies a supplied current according to a circuit-opened state of an arbitrary LED in a light emission unit.
In one embodiment, a power supply includes: at least one light emission unit including a plurality of serially connected Light Emitting Diodes (LEDs); a power source supplying a Direct Current (DC) voltage to the light emission unit; an openness detection circuit varying a reference potential with a voltage which is detected from both ends of at least one of the LEDs in the light emission unit; and a feedback control unit regulating an output current of the power source according to the reference potential of the openness detection circuit.
According to embodiments, a light emission unit including LEDs and a lighting system such as a light unit including the light emission unit can be improved in reliability.
According to embodiments, a normally driven LED can be protected.
According to embodiments, by detecting a circuit-opened state of an arbitrary LED to automatically vary a supplied current, provided can be an openness detection circuit corresponding to a circuit-opened state of a light emission unit.
Hereinafter, embodiments of the present disclosure will be described below in more detail with reference to the accompanying drawings.
Referring to
The power source 101 may supply a Direct Current (DC) voltage, for example, include a switched-mode power supply (SMPS). The power supply includes a filter 102 that is connected to an output terminal of the power source 101 in parallel. The filter 102 includes a capacitor C1, and removes a ripple included in the DC voltage.
The light emission module 120 includes at least one board, which includes at least one light emission unit 121. The board may be a flexible substrate, a rigid substrate, or a metal core Printed Circuit Board (PCB), a material of which may be resin or ceramic, but the embodiment is not limited thereto.
Each board includes at least one light emission unit 121, each of which includes a plurality of light emitting diodes LD1 to LDn. The light emitting diodes LD1 to LDn may be connected in series. Herein, when each board includes the plurality of light emission units 121, the light emission units 121 may be connected in parallel.
Each of the light emitting diodes LD1 to LDn is LED is an LED, and may emit light of a visible light band such as blue, red, green, and white or emit light of a ultraviolet (UV) band. However, the embodiment is not limited thereto.
Input terminals of the respective light emission units 121 are connected to a positive polarity terminal of the power source 101 in common, and output terminals of respective light emission units 121 are connected to a negative polarity terminal of the power source 101 in common. The number of LEDs LD1 to LDn in each light emission unit 121 may vary according to a voltage supplied from the power source 101, but the embodiment is not limited thereto. A current flowing through each light emission unit 121 is transferred to the power source 101 through a current regulator 111 of the feedback control unit 110.
The light emission module 120 may include an openness detection circuit 125, which may be disposed on each board or a main board, but the embodiment is not limited thereto.
The openness detection circuit 125 includes a voltage detector 126, a reference voltage regulator 127, a voltage comparator 128, a switch 129, and a load detector 130. The openness detection circuit 125 detects whether each light emission unit 11 is circuit-opened and outputs a control voltage. The feedback control unit 110 includes a reference potential unit 112 and a comparator 113. The feedback control unit 110 may change an output of the comparator 113 to disconnect an output of the power source 101 or regulate an output current, according to the control voltage.
The reference voltage regulator 127 may be connected to an input terminal of each light emission unit 121 to operate according to a voltage inputted to each light emission unit 121. As another example, the reference voltage regulator 125 may receive another voltage to operate. The voltage detector 126 is connected to both ends of at least one LED LDn, namely, an anode and cathode thereof. The voltage detector 126 may check a voltage that is applied across both ends of the LED LDn, and detect a voltage when the LED LDn is in an opened state or a normal state. The voltage comparator 128 compares a voltage detected by the voltage detector 126 with a reference voltage of the reference voltage regulator 127, and outputs a control signal according to the compared result.
When the Nth LED LDn connected to the voltage detector 126 is opened, the voltage comparator 128 turns on/off the switch 129 with the voltage detected by the voltage detector 126, thereby varying reference potential V1.
When any one of the LEDs LD to LDm is opened instead of the Nth LED LDn connected to the voltage detector 126, the voltage comparator 128 turns on/off the switch 129 with the voltage detected by the voltage detector 126, thereby varying reference potential V1. Herein, the LEDs LD1 to LDn of the light emission unit 121 may be divided into a first group of the LEDs LD1 to LDm and a second group including the LED LDn. The LEDs LD1 to LDm of the first group are LEDs other than the LED LDn connected to both ends of the voltage detector 126, and the LED LDn of the second group is an LED other than those of the first group Herein, the LEDs LD1 to LDn are divided into the first and second groups, but the embodiment is not limited thereto. For example, the LEDs LD1 to LDn may be divided into two or more groups. Also, the second group may be connected to detect a voltage across both ends of a plurality of LEDs.
The voltage comparator 128 may output a first voltage of the voltage detector 126 or a second voltage of the reference voltage regulator 127. The switch 129 is turned on/off according to the control signal of the voltage comparator 128 such as the first or second voltage. The load detector 130 varies the reference potential V1 according to the turn-on/off of the switch 129.
The reference potential unit 112 of the feedback control unit 110 outputs a reference potential of the load detector 130. The comparator 113 compares the reference potential V1 inputted to a first terminal(−) and a voltage V3 inputted to a second terminal(+) and outputs a signal V4 to the power source 101 according to the compared result. The voltage V3 inputted to a second terminal(+) of the comparator 113 is a voltage applied to an output terminal of the light emission unit 121 or a voltage applied to the current regulator 111. The current regulator 111 includes a resistor, and senses the fine change of a current flowing in the current regulator 111, thereby allowing a constant current to flow in the LEDs LD1 to LDn of the light emission unit 121.
An output of the comparator 113 varies according to the change of the reference potential V1, and an output V4 of the comparator 113 controls an output current of the power source 101. The feedback control unit 110 may disconnect, increase or decrease the output current of the power source 101. For example, the feedback control unit 110 increases the output V4 of the comparator 113 when the reference potential V1 outputted from the openness detection circuit 125 is reduced, but the output V4 of the comparator 113 decreases when the reference potential V1 increases.
The power source 101 regulates a current value of the DC power source according to the output V4 of the comparator 113. For example, when the output V4 of the comparator 113 increases, the power source 101 decreases a supply current. Also, the power source 101 increases the supply current in inverse proportion to the decrease in the output V4 of the comparator 113. The power source 101 may disconnect or decrease a current according to the reference potential V1 that is supplied from the feedback control unit 110 based on an opened state.
According to the embodiment, the power supply may detect an opened state of any one of the LEDs LD1 to LDn in the light emission unit 121, and feed back the control signal to the power source 101 to regulate the output current of the power source 101 according to whether the one LED is opened.
Moreover, in the embodiment, the openness detection circuit 125 of the one light emission module 120 has been described above, but respective openness detection circuits 125 of the plurality of light emission modules 120 may be disposed. A reference potential V1 of each openness detection circuit 125 may vary. Therefore, the feedback control unit 110 may disconnect, increase or decrease the output current of the power source 101 according to the reference potential V1 of each openness detection circuit 125.
Hereinafter, current and voltage characteristics of an LED array will be described in detail with reference to
Referring to
Referring to
According to the embodiment, when an LED of at least one light emission unit is opened, the power supply detects an opened state to decrease or disconnect a current outputted from the power source 101, thus protecting LEDs.
As illustrated in
The voltage detector 126 includes a resistor R7, and is connected to both ends of the LED LDn of the second group. The resistor R7 is connected to an anode and cathode of the LED LDn of the second group in parallel. When the LED LDn of the second group is opened, the voltage detected by the voltage detector 126 is a high voltage, for example, is higher than a voltage that is applied to the LED LDm of the first group in a normal operation.
Also, when at least one of the LEDs LD1 to LDm in the first group is opened, the voltage detected by the voltage detector 126 as a low voltage is lower than a voltage that is applied to the LED LDn of the second group in a normal operation, for example, is detected as 0 V.
The reference voltage regulator 127 receives a voltage supplied from the power source 101 to each light emission unit 121 or receives a separate voltage 140 to operate. The reference voltage regulator 127 includes a first switch element Q1. The first switch element Q1 has a base that is connected to the voltage 140 through a resistor R9, and a collector that is connected to the voltage 140 through a resistor R8. A Zener diode Z3 and a capacitor C1 are connected in parallel between the base and a ground terminal. The first switching element Q1 is turned on/off by a second switching element Q2 of the voltage comparator 128. An emitter of the first switching element Q1 is connected to an emitter of the second switching element Q2. When the second switching element Q2 is turned on, the first switching element Q1 is turned on. On the contrary, when the second switching element Q2 is turned off, the first switching element Q1 is turned off.
At least one of the first and second switching elements Q1 and Q2 may be configured with a Bipolar Junction Transistor (BJT) or a Metal Oxide Semiconductor Field Effect Transistor (MOSFET).
In the voltage comparator 128, a resistor R15 is connected to a base of the second switching element Q2, an anode of a diode D6 is connected to the resistor R15, and a cathode of the diode D6 is connected to one end of the resistor R7 of the voltage detector 126. The switch 128 includes a first voltage output unit 128A. The first voltage output unit 128A outputs a first voltage when the voltage detector 126 detects a high voltage, but a current I2 is disconnected when a voltage lower than the high voltage is inputted thereto. Herein, the first voltage output unit 128A includes a resistor R4 connected to a collector of the second switching element Q2, a Zener diode Z2 having an anode connected to the resistor R4, and a diode D2 having a cathode connected to a cathode of the Zener diode Z2. An anode of the diode D2 is connected to one end of the resistor R7. The Zener diode Z22 can disconnect an abnormal voltage and thus prevent an abnormal operation of a switch 129.
The first voltage output unit 128A outputs the voltage detected by the voltage detector 126 when the LED LDn of the second group is opened, in which case the first voltage is a voltage in which drop voltages of diodes are not reflected and may be lower than the voltage detected by the voltage detector 126.
The second switching element Q2 serves as a second voltage output unit. When the LEDs LD1 to LDn of the first group are opened, the voltage applied to the voltage detector 126 becomes a low voltage, which is applied to the base of the second switching element Q2, and thus, the second switching element Q2 is turned on.
Therefore, the second switching element Q2 outputs a voltage, inputted to the first switching element Q1, as a second voltage through a collector thereof. The second switching element Q2 of the voltage comparator 128 is driven by an abnormal voltage detected by the voltage detector 126.
A resistor R11 and a capacitor C2 are connected to the output terminal of the voltage comparator 128 in parallel to serve as a filter. The switch 129 includes a third switching element Q3. The third switching element Q3 has a gate connected to the voltage comparator 128, a drain connected to a first node N1, and a source connected to a second node N2 connected to the ground terminal. The third switching element Q3 may be configured with a BJT or a MOSFET.
The load detector 130 is connected to an output terminal of the switch 129, and controls the reference potential V1 according to the turn-on/off of the switch 129.
Herein, a drain of the third switching element Q3 is connected to a load resistor 131 and reference resistor Rf of the load detector 130. Another end of the load resistor 131 is connected to the ground terminal, and another end of the reference resistor Rf is connected to a reference voltage (Vref) 142. Herein, the reference resistor Rf and the reference voltage 142 are not included in the load detector 130, but may be included in the feedback control unit 110 (see
A first node N1 being the drain of the third switching element Q3 and a second node N2 being a source of the third switching element Q3 are connected to the load resistor 131, which outputs a reference potential V1 to a reference potential unit 112 according to the turn-on/off of the third switching element Q3.
The third switching element Q3 is turned on/off by an input voltage of the gate thereof. When at least one group among the LEDs LD1 to LDn of the light emission unit 121 is opened, the third switching element Q3 is turned on. When at least one group among the LEDs LD1 to LDn of the light emission unit 121 is not opened, the third switching element Q3 is turned off.
When the third switching element Q3 is turned on, the reference potential V1 applied to the load resistor 131 becomes a low voltage. When the third switching element Q3 is turned off, the reference potential V1 applied to the load resistor 131 becomes a high voltage or a normal voltage.
The reference potential V1 is inputted to the second terminal(−) of the comparator 113 through the reference potential unit 112 of the feedback control unit 110 of
Herein, the first node N1 is connected to a first node N1 of another light emission module, and the second node N2 is connected to a second node N2 of the other light emission module. Therefore, the load resistor 131 may be connected to nodes N1 and N2 of each of a plurality of light emission modules in parallel, and detect whether openness occurs in the light emission modules by a parallel resistance value. Also, since the reference potential V1 varies according to a parallel resistance value of the load resistor 131, currents respectively flowing in the light emission units can be regulated.
Referring to
A gate of the fourth switching element Q4 is connected to the drain of the third switching element Q3 and a base of the first switching element Q1, a drain of the fourth switching element Q4 is connected to the load resistor 131, and a source of the fourth switching element Q4 is connected to the ground terminal.
When at least one of the LEDs LD1 to LDn in the light emission unit 121 is opened, the third switching element Q3 of the switch 129A is turned on, and the fourth switching element Q4 is turned off. At this point, a reference potential V1 applied to the load resistor 131 of the load detector 130 is outputted as a high voltage. On the contrary, when all the LEDs LD1 to LDn of the light emission unit 121 are normal, the third switching element Q3 is turned off, and the fourth switching element Q4 is turned on. At this point, the reference potential V1 applied to the load resistor 131 of the load detector 130 is outputted as a low voltage.
The switch 129A is turned on by a voltage when the LEDs of each light emission unit 121 are opened, the reference potential V1 of the load detector 130 is outputted as a high voltage. Also, the switch 129A is turned off when the LEDs of each light emission unit 121 are normal, the reference potential V1 of the load detector 130 is outputted as a low voltage. The feedback control unit 110 of
Herein, the load resistor 131 of the load detector 130, as illustrated in
In
The load resistors 131 to 13n are connected to an openness detection circuit of each light emission unit, and connected to each other in parallel. That is, each of the load resistors 131 to 13n is a load resistor of an openness detection circuit connected to each light emission unit. In the circuit diagram of
The feedback control unit 110 of
Referring to
The respective boards B1 to Bn, the respective light emission units 121 to 12n, and the respective openness detection circuits 125 may be defined as the respective light emission modules 120 to 12n.
The openness detection circuit 125 may be disposed in the light emission unit of each of the boards B1 to Bn. Such a structure is an example. As another example, the openness detection circuit 125 may be disposed on a main board instead of the boards B1 to Bn, but the embodiment is not limited thereto.
A voltage (which is detected by each of a plurality of openness detection units 125) based on whether each light emission unit is opened varies a reference potential of an integrated load detector 130A, which varies the output of the feedback control unit 110, and thus, the output current of the power source 101 is disconnected, decreased, increased.
Herein, the integrated load detector 130A is disposed to be separated from the openness detection circuit 125. This is an exemplary configuration for convenience.
The feedback control unit 110 may detect whether the light emission units 121 to 12n are opened with a reference potential value of the integrated load detector 130A. The openness detection circuit 125 may detect the increase or decrease in the number of the boards B1 to Bn with a parallel resistance value of each board and regulate an output current suitable for the number of boards. That is, one load resistor is disposed in each board, and when load resistors of respective boards are connected in parallel, a load resistance value is changed in the circuit diagrams of
The above-described power supply may be applied to a plurality of lighting systems such as backlight units, various kinds of display devices, headlamps, streetlamps, indoor lamps, outdoor lamps, signal lights, and lighting lamps.
In the embodiments, the above-described features, structures, and effects are included in at least one embodiment, but are not necessarily limited to one embodiment. Furthermore, the features, structures, and effects that have exemplified in each embodiment may be combined or modified by those skilled in the art and implemented. Therefore, it should be construed that contents related to the combination and modification are included in the spirit and scope of the embodiments.
According to embodiments, a light emission unit including LEDs and a lighting system such as a light unit including the light emission unit can be improved in reliability.
According to embodiments, a normally driven LED can be protected.
According to embodiments, by detecting a circuit-opened state of an arbitrary LED to automatically vary a supplied current, provided can be an openness detection circuit corresponding to a circuit-opened state of a light emission unit.
While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For example, each element specifically illustrated in embodiments can be modified and implemented. Therefore, it should be construed that differences related to the combination and modification are included in the spirit and scope of the embodiments.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0136074 | Dec 2010 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2011/007533 | 10/11/2011 | WO | 00 | 6/28/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/091258 | 7/5/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8890417 | Hu et al. | Nov 2014 | B2 |
20030034742 | Chang et al. | Feb 2003 | A1 |
20060145631 | Bao et al. | Jul 2006 | A1 |
20070278971 | Ren et al. | Dec 2007 | A1 |
20080116818 | Shteynberg et al. | May 2008 | A1 |
20080231198 | Zarr | Sep 2008 | A1 |
20100091220 | Lee et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1798468 | Jul 2006 | CN |
101083865 | Dec 2007 | CN |
2005-109025 | Apr 2005 | JP |
2005-261148 | Sep 2005 | JP |
2010-124614 | Jun 2010 | JP |
10-0728465 | Jun 2007 | KR |
10-2009-0017145 | Feb 2009 | KR |
10-2010-0039969 | Apr 2010 | KR |
10-1005199 | Dec 2010 | KR |
200838358 | Sep 2008 | TW |
200906228 | Feb 2009 | TW |
Entry |
---|
International Search Report dated Apr. 4, 2012 issued in Application No. PCT/KR2011/007533. |
Number | Date | Country | |
---|---|---|---|
20130278154 A1 | Oct 2013 | US |