Power supply module for an implantable device

Information

  • Patent Grant
  • 6269266
  • Patent Number
    6,269,266
  • Date Filed
    Friday, July 23, 1999
    25 years ago
  • Date Issued
    Tuesday, July 31, 2001
    23 years ago
Abstract
A power supply module (58) for an implantable device (54) has a biocompatible outer housing (80) which holds a repeatedly rechargeable electrochemical battery (90) that supplies electrical power to a main module (56) of the implantable device (54) via a coupling element (82). The outer housing is made as a hermetically tight protective housing or holds such a housing (88). The protective housing (88) has a detector element (92) which is designed or adjustable to actuate at least one switching element (94) which prevents recharging and/or discharging of the battery (90) when the battery is in an unallowable operating state. The coupling element (82) is preferably made detachable.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to a power supply module for an implantable device, the power supply module encompassing a biocompatible outer housing which holds a repeatedly rechargeable electrochemical battery that supplies electrical power to the main module of the implantable device via a coupling element.




2. Description of Related Art




U.S. Pat. No. 5,279,292 discloses an implantable device which is a hearing aid or a tinnitus masker which has, in one embodiment, a main module and a power supply module. The two modules are each accommodated in a separate biocompatible housing, power transmission from the power supply module to the main module taking place via a coupling element with a metallic or metallically separated and inductively coupled connection. The housing of the power supply module can hold a battery, charging electronics and a receiving resonant circuit which can be inductively coupled to a transmitting resonant circuit of a charging means which can be attached outside the body. One important advantage of the modular structure is that, with the implantation site of the power supply module, the individual is not linked to that of the main module. Rather the power supply module can be implanted anywhere on the body where there is enough space, in addition a battery with relatively large electrical capacitance can be used. This applies to a coupling element which is made for a permanent connection in the same way as for a detachable coupling element. The latter, at the same time, allows replacement of the battery without the need to replace the entire system.




The coupling element which is disclosed in U.S. Pat. No. 5,279,292 and which is made for a metallically separated and inductively coupled detachable connection comprises two coupling coils and a ferrite rod as the common core. One coupling coil is assigned to the power supply module and is supplied as part of a serial tuned circuit from the battery via an oscillator, the second coupling coil, which acts as the receiving coil, is connected to the main module via a flexible connecting lead. The AC voltage induced in the receiving coil is available via a rectifier to operate the hearing aid.




German patent disclosure document DE3 31 620 A1 describes a hermetically tight, plug-and-socket connection which is used for a detachable metallic connection of the electrode feed lines to an implantable pacemaker, a defibrillator or a cardioverter.




U.S. Pat. No. 5,755,743 relates to a contact arrangement for a detachable electrical connection between an implant housing and other, especially sensor and actuator components, with which a high degree of miniaturization can be achieved.




One special problem in the use of repeatedly rechargeable electrochemical batteries is that, in case of excess charging or a short circuit between the terminal contacts or poles of the battery, a pressure rise within the battery housing can occur which leads to its deformation which, in turn, can become so great that chemicals, especially in gaseous form, emerge.




Published European Patent Application 0 322 112 (corresponding to U.S. Pat. No. 4,756,983), published European Patent Application 0 360 395 (corresponding to U.S. Pat. No. 4,937,153) and published European Patent Application 0 370 634 (corresponding to U.S. Pat. No. 4,871,553) disclose providing electrochemical batteries with a switching element which, when a certain tolerated boundary deformation of the battery housing is exceeded, preferably, irreversibly breaks an electrical terminal contact away from the pertinent electrochemically active electrode in order to prevent further deformation of the battery housing. The battery housing comprises an electrically conductive cylindrical housing segment closed on the face, and in contact with an electrode, and on the face, the plate-shaped switching element being attached centrally by means of an electrically insulating cement from the outside. The electrically conductive switching element, in its base position, forms above its outside edge an electrical connection between the housing segment and the electrical terminal contact which projects to the outside and which is located in the center of the switching element. When the pressure rises within the battery housing, the face of the housing segment which acts as a detector element arches to the outside, causing contact to be interrupted between the housing segment and the outside edge of the switching element, and thus, between the electrode and the terminal contact. Typical applications of these switching elements are type “D” standard batteries. The curvature of the face, starting from which the switching element breaks the electrical contact, in this case, is 0.76 mm to 1.8 mm. For a curvature of more than 1.8 mm, leakage of chemicals from within the battery can usually be expected.




Published European Patent Application 0 470 726 discloses an electrochemical battery with a cylindrical battery housing and a pressure membrane as the detector element which is integrated on the face in the battery housing and which curves when the pressure rises within the battery housing, by which a plate-shaped switching element, which is connected to the pressure membrane in the center, reversibly or irreversibly interrupts the electrical contact between an electrode and a terminal contact of the battery.




Published European Patent Application 0 674 351 (corresponding to U.S. Pat. No. 5,585,207) discloses an electrochemical battery with a battery housing which comprises a cutting device which can be actuated by a pressure membrane and which irreversibly breaks an electrical conductor which connects the terminal contact of the battery with an electrochemically active electrode when a boundary pressure within the battery housing is exceeded.




When a switching element is being used which breaks the electrical connection between a terminal contact and the associated electrochemically active electrode when a certain pressure within the battery housing is exceeded, it is possible for the pressure to continue to increase and ultimately for chemicals to discharge from the battery housing or even for it to explode. For this reason, it was proposed (for example, in Published European Patent Applications Nos. 0 364 995, 0 573 998 or 0 739 047, which correspond to U.S. Pat. Nos. 4,943,497, 5,418,082 and 5,766,790, respectively) that a pressure membrane which actuates the switching element and which is located in the battery housing be provided with a bursting area via which after activation of the switching element and a further pressure increase chemicals can emerge from within the battery housing.




The safety measures cited in the aforementioned prior art for electrochemical batteries are not adequate or are unsuited for use in a power supply module of implantable devices, since for this purpose, especially high demands, particularly with respect to safety and reliability, must be satisfied with, at the same time, a reduction of all dimensions to the largest degree possible.




SUMMARY OF THE INVENTION




Thus, a primary object of the present invention is to devise a power supply module for an implantable device which precludes risk to the implant wearer in case of battery malfunction, for example, by contamination with toxic substances, and which satisfies the specific requirements for implantable devices.




This object is achieved, in accordance with the invention, by the provision of a power supply module having a biocompatible outer housing which holds a repeatedly rechargeable electrochemical battery which supplies electrical power to a main module of the implantable device via a coupling element, and in which the outer housing is made as a hermetically sealed protective housing, or holds such a housing, and in which the protective housing has a detector element which for actuating at least one switching element which prevents recharging and/or discharging of the battery when the battery is in an unallowable operating state.




Basically, the implantable device can be any implantable medical or biological device, and thus, among others, can be an active electronic hearing implant, cardiac pacemaker, defibrillator, drug dispenser, nerve or bone growth stimulator, neurostimulator, pain suppression device or the like.




By the outer housing being made as a hermetically sealed protective housing or holding such a housing, the battery is always held hermetically sealed in the housing and it is possible to use a conventional battery, for example, a ordinary button cell, without special regard to the material selection or the like. Chemicals leaking from within the battery housing are reliably retained in the hermetically sealed protective housing which, moreover, can be made explosion-proof.




If the biocompatible outer housing accommodates a hermetically sealed protective housing which, for its part, surrounds the battery, the protective housing itself need not be made biocompatible, so that there is greater freedom in the choice and optimization of material.




Here, hermetically sealed is defined, preferably, as hermetic gas-tightness as per Mil-Std 883 D. This design ensures that, when using a hermetically sealed protective housing which, itself, is housed, in turn, in a hermetically sealed, and furthermore, biocompatible outer housing, besides toxic liquids, no gases can escape from the protective housing. These battery gases occur, basically, in small amounts even in regular normal operation of a battery surrounded by the protective housing. The hermetic gas-tightness of the protective housing reliably prevents risk to the electronics accommodated in the outer housing, outside the protective housing; this means that the electronic circuits, especially integrated circuits, can remain unprotected since contamination by even the smallest amounts of escaping battery gases is not possible.




An unallowable operating state of the battery, which can be the continuous escape of chemicals from the battery housing in addition to its expansion, which leads to a pressure rise in the protective housing or in the outer housing made as the protective housing, is answered by the detector element, preferably with a change in shape, which directly causes mechanical actuation and/or electrical actuation, via evaluation electronics, at least one switching element which prevents further recharging and/or discharging of the battery.




The at least one switching element can be designed to be fundamentally reversible or irreversible and can be accommodated or integrated in the outer or protective housing. Furthermore, it is possible for the at least one switching element to be placed in the housing of the main module. The switching element can be made as a break contact which electrically interrupts a recharging and/or discharging current in an unallowable operating state of the battery. Recharging and/or discharging of the battery can, furthermore, be prevented by the switching element being made as a make contact which electrically short circuits the battery when it is in an unallowable operating state in order to discharge it in a controlled manner. Alternatively, the make contact can electrically short circuit a recharging circuit in order to interrupt further power supply to the battery.




Detector and switching elements which are suitable for use in this invention are described in commonly-owned, U.S. Pat. No. 6,143,440 claiming priority of German Patent Application No. 198 37 909.9 file Aug. 20, 1998.




The coupling element for transmission of electrical power can, as already mentioned, be made either permanent or detachable, and can enable a metallic, or alternatively, a metallically separated and inductive connection. A permanent connection provides especially high reliability but the detachable, metallically separated and inductive connection has the advantage that there is no metallic connection between the power supply module and the main module which need be sealed to prevent the penetration of body fluids. DC-less power transmission, whether using the detachable or permanent metallic or metallically separated connection, generally reduces the risk that ion migration takes place over a longer time in the same direction in an insulator between locations of different electrical voltage; after some time, this increases the electrical conductivity of the insulator and leads to leakage currents.




The combination of main module and power supply module can be made especially compact when one half of the coupling element assigned to the power supply module is integrated in the outer or the protective housing and the complementary half of the coupling element assigned to the main module is integrated in the housing of the main module.




Greater freedom in placement of the power supply module occurs when the half of the coupling element assigned to the power supply module is electrically connected to the power supply module via a flexible connecting lead. In addition or alternatively, also, one half of the coupling element assigned to the main module can be electrically connected to the main module via a flexible connecting lead.




When the outer or protective housing of the power supply module accommodates charging/discharging electronics for control of recharging and/or discharging of the battery and when the coupling element is detachable, when the power supply module is replaced by one of a different battery type, the charging/discharging electronics can be changed at the same time and matched to the respective battery type. However, the charging/discharging electronics can also be accommodated in the housing of the main module.




In another advantageous embodiment of the invention, there is a charging current feed arrangement into which power can be supplied via a charging device located outside of the body, and separated from the power supply module and main module. The power can be transferred by electrical, magnetic and electromagnetic fields into the charging current feed arrangement. One suitable version of a charging current feed arrangement with a receiving coil and a charging device with an inductively coupled transmitting coil is shown in the already mentioned U.S. Pat. No. 5,279,292.




The charging current feed arrangement can be accommodated in the outer or protective housing of the power supply module or alternatively in the housing of the main module. In the conventional manner (for example, as described in U.S. Pat. No. 4,991,582), the housing which holds the charging current feed arrangement can be made at least in part of ceramic and can be provided with a metal housing part in order to achieve greater transparency to electrical, magnetic and electromagnetic fields as compared to a purely metallic housing. Biocompatible metallic materials include titanium, titanium alloys, niobium, niobium alloys, tantalum or implantable steels. Suitable biocompatible ceramics include aluminum oxide and boron nitride.




The cost of manufacturing the housing can be greatly reduced when the charging current feed arrangement comprises at least one coil of biocompatible metal which is surrounded by a biocompatible polymer and which is fixed to an outer side of the housing of the main module, or alternatively, to the outer or protective housing. The coil, which is made, for example, of pure gold, gold alloys, platinum, platinum-iridium, niobium, tantalum or other metallic materials which are biocompatible and resistant to body fluids, can be supplied with power with high efficiency without a production-intensive metal ceramic composite housing being necessary for this purpose. The same applies to optionally provided power emission by a coil to be used as a transmission coil or an additional transmission coil which is surrounded, likewise, by a biocompatible polymer, with which, for example, information of a bidirectional telemetry circuit on the relative position of the coil of the power supply module relative to the transmission coil of the charging device and/or on the charging state of the battery can be transcutaneously exchanged. The implanted part of the telemetry circuit can be integrated both in the main and also in the power supply module.




The biocompatible polymer, preferably silicone, polytetrafluorethylene (PTFE), polymethane, parylene, or the like, on the one hand, can be used to increase the mechanical cohesion of the coil itself, and on the other hand, for mechanical linkage of the coil to the corresponding housing.




If the coil of the charging current feed arrangement is placed in the direction of the largest dimension of the main module or the outer or protective housing laterally next to the latter, and a straight line which runs in this direction forms an angle in the range from 5° to 25° with respect to a perpendicular to the coil axis, a unit is formed which is comprised of the coil and the corresponding housing, which is especially well suited for implantation on the outside of the human skull, especially in the area of the mastoid plane, as is the case, for example, in at least partially implantable hearing aids, tinnitus maskers or retina stimulators, and was already described in the commonly owned, co-pending application U.S. Pat. No. 6,143,440 claiming priority based upon German patent application 198 29 637 1.




If the coil on the main module or on the outer or protective housing is flexibly fixed, especially by means of the biocompatible polymer, the unit comprised of the coil and housing can be especially well adapted geometrically to the implantation site.




In another advantageous embodiment of the invention, at least one switching element is designed to be mechanically actuated by the detector element in an unallowable operating state of the battery and is integrated in the outer or protective housing. The switching element is thus actuated without nonmechanical intermediate elements and works very reliably. The detector element can be made as a deflectable membrane and can be part of the protective housing. For example, an outside wall or partition of the hermetically sealed protective housing can be made at least partially as a detector element; this allows a space-saving construction and easily predictable change of shape of the detector element in an unallowable operating state of the battery, for example, due to a pressure rise in the protective housing.




Especially when two or more switching elements are redundantly present, at least one switching element can be electrically actuated by evaluation electronics which monitor the detector element. The evaluation electronics can, for example, detect a change in the shape of the detector element which is impressed on the latter in an unallowable operating state of the battery. Advantageously, an electrical extensometer is used which picks up the change in shape of the detector element and responds with a change of an electrical quantity which is monitored by the evaluation electronics. If the electrical extensometer is a passive system, it can convert the change in the shape of the detector element into a change of its electrical resistance (strain gauge), its inductance, or its capacitance. Alternatively, an active electrical extensometer can be used which reacts like, for example, a piezoelement, with a change in charge due to a change in shape applied by the detector element to the extensometer.




The evaluation electronics can be accommodated in the outer or protective housing. Alternatively, the main module can also include the evaluation electronics. In the latter case, the coupling element and an optionally present flexible connecting lead can be advantageously made such that, between the main module and the power supply module, a signal can be transmitted in addition to power.




It goes without saying that the power supply module can also supply electric power to one or more secondary modules which can be connected to the main module. Such secondary modules can be actuator and/or sensor components.




These and further objects, features and advantages of the present invention will become apparent from the following description when taken in connection with the accompanying drawings which, for purposes of illustration only, show several embodiments in accordance with the present invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic cross-sectional view of a hermetically sealed, biocompatible protective housing with a repeatedly rechargeable electrochemical battery, a detector and a switching element;





FIG. 2

is a schematic cross section of an implantable device with a main and a power supply module as well as secondary modules, the power supply module being detachably and rigidly coupled to the main module;





FIG. 3

is a view similar to that of

FIG. 2

by showing a modified embodiment of the main and power supply module;





FIG. 4

is a schematic cross section of a power supply module with a coil of a charging current feed arrangement accommodated in its own housing;





FIG. 5

a partial sectional view of the power supply module as viewed along line V—V in

FIG. 4

;





FIG. 6

is a schematic cross-sectional view of another embodiment of an implantable device, to which main module the power supply module is coupled via a flexible connecting lead;





FIG. 7

is a schematic sectional view of another implantable device with flexibly coupled power supply module, the coil of the charging current feed arrangement being assigned to the main module and being accommodated in its own housing part; and





FIG. 8

is a view similar to that of

FIG. 3

, but with the power supply module supplying the main and secondary modules with power via a flexible connecting lead with a metallically separated coupling element.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows a protective housing


10


for a repeatedly rechargeable electrochemical battery


12


which is a conventional button cell. The protective housing


10


has a one-piece bottom


14


of electrically conductive material and is sealed by a, likewise, electrically conductive cover


16


, an insulating ring


18


of oxide ceramic being soldered between the cover


16


and the bottom


14


. The insulating ring


18


has an inner diameter which is less than that of the cylindrical side wall of the bottom


14


. The bottom of the insulating ring


18


bears, in an electrically insulated manner on a membrane


20


and its top bears in the same manner on a contact membrane


22


. The two membranes


20


and


22


are made of electrically conductive material, the top of the contact membrane


22


being electrically insulated relative to the adjacent cover


16


by means of an insulating layer


24


and being placed at the electrical potential of the bottom


14


via a metal coating


26


, a through-plated hole


28


and a solder layer


30


. The battery


12


is hermetically sealed by the surrounding bottom


14


, insulating ring


18


and membrane


20


, and its positive pole (the battery poles are labelled + and − in FIG.


1


), via a face


32


, makes contact with the inner base surface of the bottom


14


. A spring


34


is located between a shoulder of the battery


12


and the transition area between the insulating ring


18


and the side wall of the bottom


14


. Spring


34


is used for centering and play-free contact of the face


32


of the battery


12


with the base surface of the bottom


14


. At the same time, the spring


34


is in electrical contact with the side wall of the base


14


, the solder layer


30


and the positive pole of the battery


12


which extends into the area of the shoulder adjoining the spring


34


.




The negative pole of the battery


12


makes contact with the bottom of the membrane


20


via a face


36


of the battery


12


and via an optional spring


38


. A metal coating


40


on the bottom of the insulating ring


18


, a through-plated hole


42


through the insulating ring and a solder layer


44


close the electrical connection between the membrane


20


and the cover


16


from which the negative pole of the battery


12


is tapped via a terminal


46


. A terminal


48


on the outer side wall of the bottom


14


is used to tap the positive pole of the battery


12


. The two terminals


46


,


48


are surrounded by a biocompatible insulating jacket


50


; a biocompatible polymer


52


, such as silicone, jackets the protective housing


10


and the housing-side ends of the terminals


46


,


48


.




Therefore, while the membrane


20


is connected to the negative pole of the battery


12


, the contact membrane


22


is located at a distance from the membrane


20


which corresponds to the thickness of the insulating ring


18


and is electrically connected with the positive pole of the battery


12


. This distance is such that, in an unallowable operating state of the battery


12


, especially when the volume of the battery


12


expands and/or when battery gases escape, which leads to a pressure rise within the protective housing


10


, a curvature is impressed on the membrane


20


, which functions as a detector element, which is sufficient to make electrically conductive contact with the contact membrane


22


so that battery


12


is electrically short circuited.




A section of the solder connection


44


can be dimensioned as a fusible link which burns through irreversibly if a recharging or discharging current exceeds a given threshold value without the contact membrane


22


making contact with the membrane


20


. Further power supply and emission via terminals


46


,


48


is thus suppressed.




In the version of the protective housing as shown in

FIG. 1

, the combination of the detector membrane


20


and the contact membrane


22


is used as a reversibly operating switching element which is made as a make contact and which is mechanically activated by a detector element


20


. The entire unit shown in

FIG. 1

represents one embodiment of a power supply module with a biocompatible hermetically sealed outer housing, the outer housing being made as a protective housing and comprising a detector and a switching element.




An implantable device


54


as shown in

FIG. 2

comprises a main module


56


, a power supply module


58


, and secondary modules comprised of a sensor


60


and an actuator component


70


. The secondary modules


60


and


70


are each connected electrically and mechanically to the main module via a flexible connecting lead


62


and a coupling element labeled


64


as a whole. The coupling element


64


has a first half assigned to the main module


56


and a secondary module-side second half


68


which is detachably coupled to the first half


66


and into which the flexible connecting lead


62


discharges. It goes without saying that all lines shown in simplified form by a single line, depending on the components which connect them, can in principle be made with one or more poles. The corresponding applies to coupling elements and line penetrations through the housings or housing parts.




The main module housing


72


of the main module


56


holds signal processing electronics


74


, charging/discharging electronics


76


and a charging current feed arrangement


78


with a coil. Furthermore, the housing


72


is hermetically sealed and is made of a biocompatible material which allows sufficient permeation of the coil with electromagnetic fields of a transmitting coil of a charging device that is located outside of the body. The function of the signal processing electronics


74


is dependent on the type of implantable device. It controls the actuator component


70


according to a stored program depending on the signals of the sensor component


60


and is connected to the two components via the coupling elements


64


with first halves


66


integrated in a hermetically sealed manner in the main module housing


72


. The charging/discharging electronics


76


forms a nodal point between the signal processing electronics


74


, the charging current feed arrangement


78


and the rechargeable electrochemical battery


90


and is used for power distribution between these components.




A coupling element


82


with a first half


84


integrated in a hermetically sealed manner in the main module housing


72


and a second half


86


, which hermetically seals a biocompatible outer housing


80


of the power supply module


58


, provides a detachable, rigid mechanical linkage of the power supply module


58


to the main module


56


. At the same time, coupling element


82


is used for detachable metallic contact between the battery


90


and the charging/discharging electronics


76


which is connected to the inner side of the first half


84


, i.e., the side pointing into the interior of the main module housing


72


. In the current path between the second half


86


of the coupling element


82


and the battery


90


, which is held in a hermetically tight protective housing


88


, there is a switching element


94


which is made as a break contact and which is fixed on the protective housing


88


and is mechanically actuated by a detector element


92


, for example, a deflectable membrane in the outer wall or partition of the protective housing


88


, when a change in shape is impressed on the detector element


92


in an unallowable operating state of battery


90


.




Instead of the protective housing


88


, it is possible to use the protective housing


10


of

FIG. 1

, which then need not be biocompatible, since it is located in the biocompatible outer housing


80


. In this case, the switching element


94


would be a make contact which electrically shorts the battery


90


when it is in an unallowable operating state and interrupts further power supply and emission to or from the battery


90


.




The embodiment of

FIG. 3

differs from that of

FIG. 2

essentially only in that the charging/discharging electronics


76


and the charging current feed arrangement


78


are not accommodated in the main module housing


72


, but in the outer housing


80


of the power supply module


58


. To increase the operating safety, evaluation electronics


96


monitor the state of the detector element


92


, and depending thereon, electrically actuate a switching element


98


which is made as a break contact and which is placed in the current path between the charging current feed arrangement


78


and the charging/discharging electronics


76


. The state of change in the shape of the detector element


92


is, for example, acquired via an electrical strain gauge. When a predetermined boundary shape change of the detector element


92


is exceeded, the switching element


98


interrupts further power supply from the charging current feed arrangement


78


regardless of the function of the switching element


94


so that there is redundancy.




A power supply module


100


is illustrated in

FIGS. 4 and 5

and differs from the power supply module


58


in the version of

FIG. 3

mainly by placement of a coil


106


in its own housing part of biocompatible polymer


104


. The coil


106


is part of the charging current feed arrangement


78


which can contain still other components which are not shown, such as for example, a capacitor for building a tuned circuit. The coil


106


which can also be several individual coils is potted with biocompatible polymer


104


which is used, at the same time, for mechanical attachment of the coil


106


to a side wall of an outer housing


102


, the side wall lying perpendicular to a straight line


110


which runs in the direction of the longest extension of the outer housing


102


. A straight line which runs perpendicular to the axis


112


of the coil


106


forms with the line


110


an angle α in the range from 5 to 25 degrees, preferably in the range from 7 to 15 degrees. The outer housing


102


integrates a hermetically tight through-hole


108


which is located in the current path between the coil


106


with the switching element


98


. With respect to special versions of the through-hole


108


reference is made to the aforementioned commonly owned, U.S. Pat. No. 6,143,440, claiming priority of German Patent Application No. 198 37 909.9 file Aug. 20, 1998.




By accommodating the coil


106


outside of the outer housing


102


in a polymer jacket, the outer housing


102


, except for areas in which the through-hole


108


and the second half


86


of the coupling element


82


are integrated, can be made purely metallic, especially of titanium. A metal-ceramic composite housing which is re-used to achieve a higher efficiency of power feed into the coil


106


without undue heating of the housing by eddy currents as compared to a metal housing, can be abandoned, as already mentioned in the general part of the description.




Fixing the coil


106


on the outer housing


102


by the polymer


104


can be done relatively rigidly. But, it is also possible to intentionally make the mechanical connection flexible by, for example, tapering the polymer jacketing of the coil on the side facing the outer housing


102


in the manner of tabs and only casting the tabs to the outer housing


102


.




It goes without saying that, instead of angling the unit formed of the outer housing


102


and the laterally arranged coil


106


, an angled coupling element


82


can be used between the main module housing


72


and the outer housing


102


.




By the arrangement of the coil


106


laterally next to the outer housing


102


and jacketing with a biocompatible polymer


104


, the arrangement has an especially high permeability for electrical, magnetic and electromagnetic fields in the permeation direction of the coil, i.e., essentially in the direction of the axis


112


of the coil


106


. Depending on the choice of materials for the outer housing


102


and the frequency of the field used for power transmission into the coil


106


, it can also be a good idea, especially to minimize the amount of space required, to place the coil on the top of the outer housing


102


, and thus, in the permeation direction on the side of the outer housing


102


facing the transmission coil.




Furthermore, the coil can also be mechanically detached completely from the outer housing


102


and provided with a flexible connecting lead, and optionally, a coupling element, in order to be able to be implanted independently of the outer housing


102


at a suitable location in the body.




A modified embodiment of an implantable device


114


, as shown in

FIG. 6

, has a main module


116


with a main module housing


118


which holds the evaluation electronics


96


and the switching element


98


in addition to the components of the main module


56


already described in conjunction with

FIG. 2. A

power supply module


126


has a hermetically sealed outer housing which is made as a biocompatible protective housing


128


so that an additional outer housing can be dispensed with. A coupling element labeled


120


as a whole is used for electrical linkage of the power supply module


126


to the main module


116


and is divided into two parts which can be engaged in a hermetically sealed manner. A first of the two parts of the coupling element


120


, a first half


122


is integrated into the main module housing


118


in a hermetically sealed manner, and the second half


124


is connected to the power supply module


126


via a flexible connecting lead. The connecting lead also comprises, in addition to a power line


125


for supplying power to the main module


116


and the secondary modules


60


,


70


from the battery


90


, a signal line


127


which allows the evaluation electronics


96


accommodated in the main module housing


118


to monitor the detector element


92


.




The main module


130


of an implantable device as shown in

FIG. 7

differs from the main module


116


of

FIG. 6

essentially only in that the coil


106


, as part of the charging current feed arrangement


78


, is located outside of the main module housing


132


and is electrically connected to the switching element


98


, via the through-hole


108


, which is hermetically sealed, in a side wall of the main module housing. The coil


106


is potted with the biocompatible polymer


104


and is fixed on one side wall of the main module housing


132


which is perpendicular to a straight line which runs in the direction of the greatest extension of the main module housing


132


. The coil


106


can form a unit with the main module housing


132


that is angled in at least one direction by the angle α, as is the case in the outer housing


102


(see FIGS.


4


and


5


). The first halves


66


of two coupling elements


64


are, in the same way as the first half


122


of the coupling element


120


in the main module housing


132


, integrated into a side wall which is opposite the one to which the coil


106


is linked.





FIG. 8

shows an implantable device which differs from that of

FIG. 3

essentially only by the type of coupling of the power supply module


142


to the main module


134


. This is achieved by means of a coupling element


138


which is made for a metallically separated and inductive connection. The coupling element


138


is preferably detachable and works according to the already described principle of power transmission between two coupling coils by resonant coupling, a principle known from German Patent DE 41 04 359 C2 and corresponding U.S. Pat. No. 5,279,292. The power stored in the battery


90


is converted by means of an oscillator


146


into an alternating oscillation, and is fed via the through-hole


108


in the outside wall of modified outer housing


144


and a flexible connecting lead


140


into a first coupling coil of the coupling element


138


, by which, in the second coupling coil of the coupling element


138


, an AC voltage is induced. The AC voltage is available via a second flexible connecting lead


140


, a hermetically sealed through-hole


108


in the outside wall of the main module housing


136


and a rectifier (not shown) for operation of the signal processing electronics


74


. It goes without saying that the power supply module


142


can also be modified in that the coil


106


of the power feed arrangement


78


can be located outside of the outer housing


144


and can be potted using a biocompatible polymer


104


.




As follows from

FIGS. 2

,


6


and


7


, the outer or protective housing of the power supply module comprises not only the detector element


92


and at least one switching element


94


, but also at least the battery


90


. However, it can be a good idea, especially in the outer housing, if this is provided in addition to the protective housing, to integrate other components which can be functionally assigned to the power supply module. These include, for example, the charging/discharging electronics


76


, the charging current feed arrangement


78


, the evaluation electronics


96


and additional switching elements


98


. In this way, there results a preferably detachably coupled independent power supply module which is monitored itself and has protection functions which take effect in an unallowable operating state of the battery


90


. The information about the unallowable operating state of the battery can be communicated to the implant wearer via warning means. If the implantable device is a hearing aid, the information can be fed directly into the signal path of the actuator component. Likewise, it can be transmitted via a transmitting coil into the charging device located outside of the body.




While various embodiments in accordance with the present invention have been shown and described, it is understood that the invention is not limited thereto, and is susceptible to numerous changes and modifications as known to those skilled in the art. Therefore, this invention is not limited to the details shown and described herein, and includes all such changes and modifications as are encompassed by the scope of the appended claims.



Claims
  • 1. An implantable device comprising:a power supply module; and a main module, said power supply module and said main module being interconnected by a coupling element; wherein said power supply module includes a hermetically sealed protective enclosure; a repeatedly rechargeable electrochemical battery for supplying electrical power via said coupling element to said main module, said repeatedly rechargeable electrochemical battery being housed within said enclosure; a detector element fixed to said power supply module, and at least one switching element fixed to said power supply module and operatively connected to said detector element, said at least one switching element preventing at least one of recharging and discharging of said battery when said detector element detects that said battery is in an unallowable operating state.
  • 2. The implantable device as claimed in claim 1, wherein said coupling element is designed to provide for a metallic contact between said power supply module and said main module.
  • 3. The implantable device as claimed in claim 1, wherein said coupling element is designed to provide for an inductive coupling between said power supply module and said main module.
  • 4. The implantable device as claimed in claim 1, wherein said coupling element is designed to provide for a detachable interconnection between said power supply module and said main module.
  • 5. The implantable device as claimed in claim 4, wherein said coupling element is formed of two parts, a first part of which is assigned to the main module, and a second part which is assigned to the power supply module.
  • 6. The implantable device as claimed in claim 5, wherein said first part of said coupling element is integrated into a housing of said main module.
  • 7. The implantable device as claimed in claim 5, wherein said second part of said coupling element is integrated into said hermetically sealed protective enclosure.
  • 8. The implantable device as claimed in claims 5, wherein said second part of said coupling element is integrated into said outer housing.
  • 9. The implantable device as claimed in claim 5, wherein at least one of said first part and said second part of said coupling element is electrically connected to the associated module via a flexible connecting lead.
  • 10. The implantable device as claimed in claim 1, wherein said hermetically sealed protective enclosure is biocompatible and defines an outer housing of said power supply module.
  • 11. The implantable device as claim 10, wherein said hermetically sealed protective enclosure is biocompatible and defines an outer housing of said power supply module.
  • 12. The implantable device as claimed in claim 1, wherein said power supply module further comprises a biocompatible outer housing, and said hermetically sealed protective enclosure is disposed within said outer housing.
  • 13. The implantable device as claimed in claims 12, wherein said second part of said coupling element is integrated into said outer housing.
  • 14. The implantable device as claimed in claim 1, wherein said main module comprises charging/discharging electronics for controlling at least one of recharging and discharging of the battery.
  • 15. The implantable device as claimed in claim 1, further comprising a charging current feed arrangement into which power can be supplied via an external charging device, said charging device being separated from said power supply module and said main module.
  • 16. The implantable device as claimed in claim 15, wherein said charging current feed arrangement is accommodated by a housing of said main module.
  • 17. The implantable device as claimed in claim 15, wherein said charging current feed arrangement comprises a receiving coil which is fixed on an outer side of said main module.
  • 18. The implantable device as claimed in claim 17, wherein said receiving coil is surrounded by a biocompatible polymer.
  • 19. The implantable device as claimed in claim 17, wherein said receiving coil is made of a biocompatible metal.
  • 20. The implantable device as claimed in claim 17, wherein said receiving coil is located on a longitudinal end of the housing of said main module, and wherein a straight line running in a direction of said main module forms an angle in a range from 5 to 25° with a line which is perpendicular to an axial direction of said receiving coil.
  • 21. The implantable device as claimed in claim 17, wherein said receiving coil is affixed to said main module in a flexible manner by means of a biocompatible polymer which surrounds said receiving coil.
  • 22. The implantable device as claimed in claim 1, further comprising evaluation electronics for monitoring said detector element; and wherein said least one switching element is electrically actuable by said evaluation electronics.
  • 23. The implantable device as claimed in claim 22, wherein said main module comprises said evaluation electronics.
  • 24. The implantable device as claimed in claim 1, wherein said coupling element further comprises means for transmitting an electrical signal in addition to said supplying of said electrical power.
  • 25. The implantable device as claimed in claim 1, further comprising at least one secondary module which is connectable to said main module and which also is supplied with electric power by said power supply module.
  • 26. A power supply module for an implantable device, said power supply module comprising:a hermetically sealed protective enclosure; a repeatedly rechargeable electrochemical battery for supplying electrical power via a coupling element to a main module of said implantable device, said battery being housed within said enclosure, and said coupling element being designed to provide for a detachable interconnection between said power supply module and said main module, a detector element fixed to said enclosure, and at least one switching element fixed to said enclosure and operatively connected to said detector element, said at least one switching element preventing at least one of recharging and discharging of said battery when said detector element detects that said battery is in an unallowable operating state.
  • 27. The power supply module as claimed in claim 26, wherein said hermetically sealed protective enclosure is biocompatible and defines an outer housing of said power supply module.
  • 28. The power supply module as claimed in claim 27, wherein a part of said coupling element associated to the power supply module is integrated into said hermetically sealed protective enclosure.
  • 29. The power supply module as claimed in claim 26, wherein said power supply module further comprises a biocompatible outer housing, and said hermetically sealed protective enclosure is disposed within said outer housing.
  • 30. The power supply module as claimed in claim 29, wherein a part of said coupling element associated to the power supply module is integrated into said outer housing.
  • 31. The power supply module as claimed in claim 26, further comprising charging/discharging electronics for controlling at least one of recharging and discharging of the battery.
  • 32. The power supply module as claimed in claim 26, further comprising a charging current feed arrangement into which power can be supplied via an external charging device.
  • 33. The power supply module as claimed in claim 32, wherein said charging current feed arrangement comprises a receiving coil which is fixed on an outer side of the power supply module.
  • 34. The power supply module as claimed in claim 33, wherein said receiving coil is surrounded by a biocompatible polymer.
  • 35. The power supply module as claimed in claim 33, wherein said receiving coil is made of a biocompatible metal.
  • 36. The power supply module as claimed in claim 33, wherein said receiving coil is located on a longitudinal end of a housing of said power supply module, and wherein a straight line running in a direction of the power supply module forms an angle in a range from 5 to 25° with a line which is perpendicular to an axial direction of said receiving coil.
  • 37. The power supply module as claimed in claim 33, wherein said receiving coil is affixed to said power supply module in a flexible manner by means of a biocompatible polymer which surrounds said receiving coil.
  • 38. The power supply module as claimed in claim 26, wherein said at least one switching element is integrated in said protective enclosure and is mechanically operable by said detector element in response to occurrence of said unallowable operating state of the battery.
  • 39. The power supply module as claimed in claim 26, further comprising evaluation electronics for monitoring said detector element; and wherein said least one switching element is electrically actuable by said evaluation electronics.
Priority Claims (1)
Number Date Country Kind
198 37 912 Aug 1998 DE
US Referenced Citations (7)
Number Name Date Kind
3824129 Fagan, Jr. Jul 1974
4082097 Mann et al. Apr 1978
4275739 Fischell Jun 1981
5279292 Baumann et al. Jan 1994
5314451 Mulier May 1994
5411537 Munshi et al. May 1995
5755743 Volz et al. May 1998
Foreign Referenced Citations (9)
Number Date Country
33 31 620 Mar 1984 DE
0 322 112 Jun 1989 EP
0 360 395 Mar 1990 EP
0 364 995 Apr 1990 EP
0 370 634 May 1990 EP
0 470 726 Feb 1992 EP
0 573 998 Dec 1993 EP
0 674 351 Sep 1995 EP
0 739 047 Oct 1996 EP