The present invention relates to a power supply stage of an electric appliance, usable in particular in battery chargers for charging batteries of electric vehicles.
The use is known and common of battery chargers generally integrated inside an electric vehicle, connectable at input to an alternate current power line and connected at output to an electric battery of the electric vehicle.
By way of example, a possible power supply stage A of a battery charger of known type is shown in
In particular, in order to comply with the regulations on electrical disturbances, the purpose of the power factor correction circuit PFC is to enable a current to be picked up from the mains which is as sinusoidal as possible.
Always in order to comply with applicable regulations on electrical disturbances, a filter EMC is normally fitted upstream of the PFC itself. The PFC output is always a voltage higher than that of the mains, stabilized with respect to the latter, which is usually used for a further conversion stage.
It is further known that one of the most hazardous events in systems powered by three-phase voltage with neutral, in the event of the three voltages being used as single-phase voltages, is the loss of the neutral connection.
In this situation in fact, if absorptions are unbalanced a virtual star centre is created with potential different from zero.
It therefore follows that the starred voltages can also take on very high values with consequent danger for the integrity of the user devices.
In particular, in the single-phase electronic systems connected to a three-phase power supply, the loss of the neutral can result in the components at supply unit input undergoing voltages in excess of plate values. The simplest way of avoiding the destruction of the device is to monitor the input voltage and interrupt the line in case of overvoltage.
Such monitoring and interruption of the line are normally carried out by an overvoltage protection circuit OP fitted upstream of the filter F.
More specifically, two solutions are known and used.
A first known solution, schematically shown in
Consequently, following the detection of an overvoltage by means of the voltage detector VD the switch SW is operated and then closed, with consequent interruption of the line by means of the breaker BRK.
This solution, however, is not without drawbacks.
In fact, first of all the reaction speed must be high or in any case compatible with the degree of “withstanding” of the components undergoing the overvoltage. This inevitably calls for the use of a switch SW of the type of an electronic switch.
Furthermore, this solution necessarily requires manual intervention to reset the line and the overcurrent protection and this is not always possible nor “acceptable” to the end user, especially if the protection consists of a fuse and not a resettable thermal magnetic switch.
A second known solution, shown schematically in
Consequently, following the detection of an overvoltage by means of the voltage detector VD, the switch SW is operated and therefore opened, with consequent line interruption.
This solution too, however, is not without drawbacks.
In fact, in this case as well, a high reaction speed is required and therefore, the use is called for of a switch SW of the type of an electronic switch.
With reference to such second solution, furthermore, we have a high dissipation of the component switch SW which, for reasons of response speed, cannot be a simple relay but normally consists of a semi-conductor electronic switch.
The main aim of the present invention is to provide a power supply stage of an electric appliance, in particular a battery charger for charging batteries of electric vehicles, which ensures an effective overvoltage protection in an efficient manner and with affordable costs.
Another object of the present invention is to provide a power supply stage of an electric appliance, in particular a battery charger for charging batteries of electric vehicles, which allows to overcome the mentioned drawbacks of the prior art within the framework of a simple, rational, easy and effective to use solution.
The above mentioned objects are achieved by the present power supply stage of an electric appliance, in particular a battery charger for charging batteries of electric vehicles, according to the characteristics described in claim 1.
Other characteristics and advantages of the present invention will become better evident from the description of two preferred, but not exclusive embodiments of a power supply stage of an electric appliance, in particular a battery charger for charging batteries of electric vehicles, illustrated as an indicative, but not limitative example in the accompanying drawings in which:
With particular reference to such figures, globally indicated with A is a power supply stage of an electric appliance, usable in particular as a power supply stage of a battery charger for charging batteries of electric vehicles.
The use of the power supply stage A for electronic devices and equipment of different kind cannot however be ruled out.
In particular, with reference to a first embodiment shown in
More specifically, the power factor correction circuit PFC comprises an input inductor L, at least a rectifying diode D and at least a smoothing capacitor C connected downstream of the rectifying diode D.
Advantageously, the power supply stage A comprises overvoltage protection means equipped with:
Consequently, the electronic switch SW1 and the control circuit CNT1 are implemented inside the power factor correction circuit PFC.
In practice therefore, the particular positioning of the electronic switch SW1 allows quickly protecting the capacitor C in case of overvoltages.
In fact, generally speaking the electrolytic smoothing capacitors downstream of the rectifying diode of the PFC are the first to undergo breakage in case of overvoltage. Currently, in fact, the work voltage for the single-phase systems is limited to 400-450 Vdc. Higher work voltages, sufficient to resist the overvoltages caused by lack of neutral, involve unacceptable sizes and costs of the capacitors and, therefore, of the power supply stage A itself.
Consequently, by means of a suitable control circuit CNT1 the input voltage can be monitored and any overvoltages can be determined very quickly.
The use of a switch of the electronic type, furthermore, permits having minimum response times sufficient to prevent faults affecting the capacitor C. It is not in fact possible to section the circuit with a relay because, in that case, the response time of an electromechanical device would be too high and would allow the voltage at the heads of the output electrolytic capacitor C to rise above acceptable limits.
In particular, the electronic switch SW1 used preferably consists of a field effect transistor of the type of a MOSFET or the like.
Always with reference to the first embodiment of the power supply stage A shown in
Consequently, the electromechanical switch SW2 can be operated to protect all the component parts of the power supply stage A.
The operation of the power supply stage A, therefore, envisages that, in case of an overvoltage being detected, the control circuit CNT1 and the overvoltage detector VD trigger the electronic switch SW1 and the electromechanical switch SW2.
In particular, the rapid response times of the electronic switch SW1 permit quickly protecting the most sensitive components of the power supply stage A, more specifically the electrolytic capacitors C.
At the same time, the electronic switch SW1 is only in series to the electrolytic capacitor C and only dissipates the ripple current of the capacitor itself. Consequently, the electronic switch SW1 dissipates a very limited current and ensures a high efficiency of the entire circuit.
In the same way, albeit with slower response times, the electromechanical switch SW2 ensures the protection of the other components of the power supply stage A which are upstream of the power factor correction circuit PFC.
In fact, the input filter F necessarily consists of components able to withstand overvoltages inasmuch as such components must, according to standards, be oversized with respect to the applied voltages.
In practice, using components for voltage ratings of up to 300 Vac (those normally used in applications of a certain standard), these components can, for short periods, also undergo much higher voltages which, in the worst cases, can reach around 500 Vac (at maximum tolerance of +20% of the phase-to-phase three-phase voltage).
In the same way, the input rectifying bridge R is also normally able to withstand alternate voltages of up to 600 Vac, while the semi-conductors of the PFC circuit can be made using components with adequate voltage range, without this affecting dimensions and with zero or in any case very small cost increase. For example, the use of semi-conductors is currently common with breakdown voltage higher or equal to 650 volt.
With reference to a second possible embodiment of the power supply stage A, shown in
In particular, such ignition current limiter ICL comprises an electromechanical switch SW2 operatively connected to an overvoltage detector VD and connected in parallel to at least a positive temperature coefficient resistor PTC.
The power factor correction circuit PFC comprises a control switch SW3 connected to a respective control circuit CNT2.
In practice, once the overvoltage has been detected and SW1 has been immediately activated for the protection of the electrolytes, SW2 opens to prevent too much current passing in the PTC, and the control switch SW3 of the PFC circuit goes into short circuit. It is thus possible to raise the temperature of the resistor PTC so as to isolate the circuit or, in any case, so as to reduce to the utmost the current that crosses it.
Usefully, as shown in
Alternative embodiments cannot however be ruled out wherein, for example, the ignition current limiter ICL is connected upstream of the power factor correction circuit PFC but downstream of the input filter F.
It has in practice been observed how the described invention achieves the proposed objects.
In particular, the fact is underlined that the power supply stage according to the invention, usable in particular in battery chargers for charging the batteries of electric vehicles, ensures effective protection against overvoltages in an efficient manner and at affordable costs.
Number | Date | Country | Kind |
---|---|---|---|
MO2014A000070 | Mar 2014 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IT2015/000055 | 3/3/2015 | WO | 00 |