The present invention relates to a power supply system for a transport vehicle. In particular, the power supply system can be used to supply power to running systems such as life support, controls, compressor, and/or propulsion.
Moving vehicles in transportation systems, e.g., railway or bus systems, can use an onboard power supply for running systems such as controls, compressor, and/or propulsion. The power can come from an energy storage device located in or on the vehicle, such as a battery. However, it can be advantageous to use external sources to avoid the mass of any device or system employed to generate or store energy. Such external sources, however, require a transmission method. In practice, vehicles such as buses and trains have utilized external sources to draw power via electric conduction, e.g., via a catenary system or an electrified rail system.
It has also been sought to transmit power in a manner that eliminates the need for transmission of energy via physical contact. One such transmission system has been achieved through inductive coupling. Such systems require a minimalized distance between the transmitter and receiver for maximum efficiency.
Microwave transmission systems have been used in an attempt to transmit power to unmanned aerial vehicles. However, as these attempts have been in the context of open air transmission, these systems suffer from signal dispersion with distance.
Additionally, vehicles with on-board propulsion capability have been sought. Self-propelled vehicles can add flexibility and robustness to a system. This is particularly true for utility vehicles, such as rescue pods, or any vehicle that may need to move inside the system without being strictly constrained by external propulsion sources. Electromagnetic propulsion, which requires a power supply and on-board energy storage in batteries, results in increased vehicle mass. Three-phase electric motors, including induction motors, can be driven by variable frequency drives (VFDs), which accept incoming electrical power, and then output a three-phase alternating current at whatever frequency is necessary to drive the motor. However, such an on-board VFD will also likely be quite heavy and increase the mass of the vehicle.
In a high speed, high efficiency transportation system, a low pressure environment can be utilized in order to reduce drag on a vehicle at high operating speeds. In this manner, the transportation system achieves the benefit of allowing a greater potential vehicle speed while lowering energy costs associated with overcoming drag forces. Preferably, these systems use a near vacuum within a tubular structure and the vehicles operating within the tube require an onboard power supply for running systems such as life support, controls, compressor, and/or propulsion. Preferably, the power can come from an energy storage device located in or on the vehicle, such as a battery, or from an external source.
In a high speed scenario, because physical contact between a vehicle transported at a velocity of up to and in excess of 300 m/s and a stationary object may be undesirable because of the associated drag and rapid wear of contact surfaces, it would be advantageous to achieve an external source solution by which onboard power is supplied for running systems such as life support, controls, compressor, and/or propulsion while reducing vehicle weight and avoiding physical contact between the vehicle and the external source.
Embodiments include a microwave source, e.g., a gyrotron, kleistron or magnetron, injecting microwaves into a structure, e.g., a tube, within which a vehicle (or pod) travels. The tube can be configured to act as a waveguide, which keeps the microwave energy from dispersing over distance. The vehicle has a receiver that absorbs the microwaves and converts the energy into electrical current to power onboard systems. The use of the tube as a waveguide maintains power density over tens of kilometers, which makes it practical for powering vehicles over those ranges.
In another embodiment, the vehicle has a system of lenses, waveguides, and mirrors to route impinging microwaves to an absorber. The absorber is made from a substance that absorbs microwaves well and can withstand high temperatures. The absorber converts the energy of the microwaves into heat. The absorber also has air channels in it. A compressor mounted on the vehicle ingests air from the tube, and increases its pressure. The compressor pushes air into the absorber. The absorber heats the incoming air, thus adding energy to it. The absorber routs air into a turbine. The hot pressurized air expands through the turbine, imparting rotational energy to it. The turbine, absorber, and compressor are designed such that the turbine liberates enough energy from the hot air stream to power the compressor via a shaft, other mechanical linkage or an electrical generator. The hot air that exits the turbine has enough energy to impart thrust to the vehicle and compensate for drag. Some of the rotational energy from the turbine can also drive an alternator to provide electrical power for onboard systems.
In another embodiment, the system is designed such that it injects extra air in the path of the vehicle. Thrust that the system can generate increases linearly with air density. Thus, increasing the pressure in the tube to an extent that doubles the air density in the tube, will roughly double the thrust. Drag increases at the square of velocity. Therefore, at low speeds, the thrust to drag ratio can be much higher than at top speed. Maximum thrust is limited by density (pressure) and available thermal power. The system can be configured such that parts of the route where acceleration is required can introduce more microwave power and air into the pipe when a vehicle goes by. As the vehicle enters this acceleration region, it will have both higher thrust to drag ratio and higher maximum thrust than during cruise legs of the route.
Another embodiment provides the ability to brake. If the pod could increase its cross-section area ratio to the tube, by either increasing its cross-section area or the tube shrinking its cross-section area, then a plug of air would be pushed in front of the pod. This will create a high density region in front of the pod. When the pod must accelerate again, the situation will be the same as described in the above paragraph, assuming a sufficient source of microwave power is available. Thus, the pod will convert some of the kinetic energy that it must shed by braking into stored energy in the air.
An embodiment converts microwave power directly into thermal power, thus optimizing transmission efficiency. The thermal absorbers in accordance with embodiments can achieve, e.g., 1,000 kW/m2, which is substantially higher than other devices conventionally used with microwave power transmission. This means that less vehicle surface area is needed to receive power, or more power can be ultimately transmitted to each vehicle. However, as a thermal cycle is run, all related heat rejection takes place at very high temperatures, in the form of the exhaust, with no radiators needed.
Air injection and compression give vehicles the ability to accelerate and decelerate without linear induction motors. This can reduce the number of propulsion stations (linear induction motors) needed to operate a system, with great potential cost savings. This embodiment would displace a burden from costly linear induction motors onto cheaper vacuum pumps.
Another embodiment includes a vehicle that contains a plurality of rectennae and a linear induction motor. On the track side, there is at least one microwave power transmission station. The microwave power transmitters operate in different frequencies, and the rectennae are substantially tuned to those frequencies. Thus, with a plurality of operating frequencies and a plurality of rectennae tuned to those frequencies, modulating the power output on the frequencies will result in a plurality of independent phases of current on the vehicle. Rectennae are lighter than a conventionally used variable frequency drive and thus represent a substantial mass reduction for a pod with onboard propulsion.
Moreover, this embodiment allows a vehicle to change its velocity at any point in the route. The vehicle-side propulsion system can also act as a supplement to a corresponding track-side propulsion system, and work together to allow the vehicle to independently control acceleration, including coming to a complete stop and then accelerating again in any part of the system, which is impossible for an equivalent stationary track-side system. Given the greater than linear scaling of track-side propulsion, it may be more economical to have some limited thrust capability on the vehicle.
In embodiments, the receiver can include a heat exchanger. The heat exchanger and the absorber can be built into one single device or two separate and distinct devices. In further embodiments, the vehicle or pod can include a ramjet engine with inlet and exit nozzles. The absorber and/or heat exchanger can be placed between the inlet and exit nozzles of the ramjet engine. Moreover, the inlet and exit nozzles can be of converging type, diverging type, or any converging-diverging combination. The inlet and outlet nozzles can also be of variable geometry. The inlet can provide compressed air to the absorber/heat exchanger, the absorber/heat exchanger can increase the temperature of the air, and the exit nozzle can expand the air at high pressure and/or high velocity.
In accordance with embodiments, the absorber and heat exchanger can perform a function similar to a combustion chamber commonly found on turbojet and ramjet engines. As such, the compressed air may be fed into the absorber/heat exchanger using either a compressor, a ramjet inlet nozzle or a combination of the two. The absorber/heat exchanger increases the temperature of the air before it is expanded through a turbine, a ramjet exit nozzle, or a combination of the two. In embodiments, the absorber/heat exchanger can fully replace a combustion chamber and remove the need for the combustion of hydrocarbon fuel altogether. In another embodiment, the absorber/heat exchanger can work in conjunction with a conventional combustion chamber.
In other embodiments, the absorber may rely on an ionized gas to absorb microwave energy and turn it into heat. A laser, or a very high potential field will ionize incoming gas within the confines of the absorber. Ionized gas, or plasma, absorbs electromagnetic waves. Microwaves directed into the absorber will add energy to the ionized gas, thus transferring heat directly to the gas instead of via an intermediary material.
Embodiments are directed to a system for converting transmitted energy to vehicle movement. The system includes a structure having an elongated tubular interior; a movable vehicle structured and arranged to move through the elongated tubular interior; at least one energy source arranged at a fixed location within the elongated tubular interior to transmit energy; and a receiver, carried by the movable vehicle, being configured to receive the transmitted energy from the at least one energy source and to convert the received energy into at least one of electrical power and thrust for moving the vehicle.
In embodiments, the at least one source can include a microwave energy source. Further, the elongated tubular interior can be configured to act a waveguide to guide microwave energy transmitted from the microwave source to the at least one receiver.
According to embodiments, the system may further include at least one vacuum source coupled to the elongated tubular structure to maintain the elongated tubular structure at a near vacuum pressure.
In accordance with other embodiments, the at least one energy source may include a plurality of energy sources distributed along a length of the elongated tubular structure.
In other embodiments, the elongated tubular structure can include at least one section having a reduced diameter, whereby, as the vehicle moves into the at least one reduced diameter section, forward motion of the vehicle is impeded.
Moreover, in embodiments, the vehicle can include at least one exterior section being outwardly extensible, whereby, as the at least one section is extended outwardly, forward motion of the vehicle is impeded.
According to still other embodiments, the receiver may include a heat exchanger. Further, the heat exchanger can include an absorber configured to absorb the received energy to generate heat. The absorber may include a plurality of air channels and the receiver can further include a compressor configured for supplying pressurized air into the air channels and a turbine for receiving heated pressurized air from the absorber, which imparts rotational energy to the turbine. The can be configured to at least one of rotate the compressor and generate electricity. The at least some of the heated pressurized air can escape from the turbine to impart thrust to the vehicle. Further, the compressor can be structured to receive air from outside of the vehicle. In embodiments, a bypass fan can be included for supplying air into the compressor. Still further, fluid supply may be coupled to supply a fluid to the absorber. The fluid in the fluid supply can be one of nitrogen or air. The system may also include a fluid supply, structured and arranged to selectively supply a fluid under pressure into the air channels. Moreover, microwave lenses and an internal waveguide can be coupled to the vehicle to receive and guide the energy transmitted from the energy source to the absorber. Further still, a ramjet engine may be coupled to the vehicle. The ramjet engine can have inlet and outlet nozzles configured as converging type, diverging type or any converging-diverging combination of nozzles. The heat exchanger may be positioned between the inlet and exit nozzles.
In accordance with other embodiments, the vehicle can include a dielectric shell located on at least one end of the vehicle. The dielectric shell may be structured to be invisible to the energy transmitted from the energy source.
Further, the receiver may include a plurality of rectennae configured to receive the energy transmitted from the energy source and to convert the received energy into electrical power.
According to other embodiments, the movable vehicle can be a capsule or pod.
Embodiments of the invention are directed to a power conversion system movable within a waveguide. The system includes an energy source arranged at a fixed location within the waveguide to transmit energy within the structure; and at least one receiver, which is configured for movement through the waveguide, being structured to convert the transmitted energy to at least one of electrical power and thrust for movement of the at least one receiver.
According to embodiments, the energy source can be a microwave source.
In accordance with still yet other embodiments of the present invention, the at least one receiver may include a heat exchanger. The heat exchanger can include an absorber configured to absorb the received energy to generate heat. Further, the absorber may include a plurality of air channels and the at least one receiver may further include a compressor configured for supplying pressurized air into the air channels and a turbine for receiving heated pressurized air from the absorber, which imparts rotational energy to the turbine. The turbine may be configured to at least one of rotate the compressor and generate electricity. Further, at least some of the heated pressurized air can escape from the turbine to impart thrust to the at least one receiver. The compressor can be structured to receive air from outside of the at least one receiver. Further, a bypass fan can be provided for supplying air into the compressor.
Embodiments are directed to a power supply system for a vehicle movable within a structure. The power supply system includes at least one energy source arranged at a fixed location within the structure to transmit energy within the structure, and a receiver, arranged on the vehicle to receive the energy transmitted from the energy source, being configured to convert the energy to at least one of electrical power and thrust.
In accordance with other embodiments, an interior of the structure can be structured to act as a waveguide.
According to other embodiments, the energy source may be a microwave source.
According to still other embodiments, the receiver can include a heat exchanger. The beat exchanger may include an absorber configured to absorb the received energy to generate heat. Further, the absorber can include a plurality of air channels and the receiver may further include a compressor configured for supplying pressurized air into the air channels and a turbine configured for receiving heated pressurized air from the absorber, which imparts rotational energy to the turbine. The turbine may be configured to at least one of rotate the compressor and generate electricity. At least some of the heated pressurized air can escape from the turbine to impart thrust to the vehicle. The compressor can be structured to receive air from outside of the vehicle.
The power supply system can also include a bypass fan for supplying air into the compressor. A fluid supply may be coupled to supply a fluid to the absorber, and the fluid in the fluid supply can be one of nitrogen or air.
In embodiments, the power supply system can further include a ramjet engine having inlet and outlet nozzles configured as converging type, diverging type or any converging-diverging combination of nozzles. The absorber can be positioned between the inlet and exit nozzles.
In still other embodiments, microwave lenses and an internal waveguide are arranged to receive and guide the energy transmitted from the energy source from an end of the vehicle to the absorber. Further, the vehicle may include a dielectric shell located on at least one end of the vehicle, the dielectric shell being structured to be invisible to the energy transmitted from the energy source.
According to further embodiments, the receiver can include a plurality of rectennae structured and arranged to receive the energy transmitted from the energy source and to convert the received energy into electrical power.
In accordance with still other embodiments, the structure may include a tubular structure maintained at a near vacuum pressure and a track over or on which the vehicle moves. The at least one energy source may include a plurality of energy sources arranged along a length of the tubular structure.
In still other embodiments, the tubular structure may include at least one section having a reduced diameter, whereby, as the vehicle moves into the at least one reduced diameter section, a plug of air is created in front of the vehicle to impede forward motion of the vehicle.
According to other embodiments, the vehicle can include at least one section having an increasable exterior height, whereby, as the exterior height of the at least one section is increased, a plug of air is created in front of the vehicle to impede forward motion of the vehicle.
In accordance with further embodiments, a fluid supply is structured and arranged to selectively supply a fluid under pressure into the air channels.
In accordance with still other embodiments, the movable vehicle can be a capsule or a pod.
Embodiments are directed to a method of supplying power to a vehicle movable within a structure. The method includes transmitting energy within the structure from a location fixed within the structure; receiving the transmitted energy in the movable vehicle; and converting the received energy into at least one of electrical power and thrust.
In embodiments, an interior of the structure includes a waveguide.
According to other embodiments, the energy may be transmitted within the structure as microwave energy.
In accordance with still other embodiments, the received energy may be converted into heat by an absorber. The absorber can include a plurality of air channels and the method can further include pressurizing air from outside of the vehicle; supplying the pressurized air into the air channels; and transmitting the heated pressurized air to impart rotational energy to a turbine. The turbine rotates the compressor and/or generates electricity. At least some of the heated pressurized air can escape from the turbine to impart thrust to the vehicle. The air from outside of the vehicle that is pressurized can be forced into the receiver by a bypass fan. The method can also include supplying a fluid into the absorber, where the fluid may be one of nitrogen or air.
In still other embodiments, the absorber may be positioned between an inlet nozzle of a ramjet, which performs mostly compression and an exit nozzle of the ramjet, which performs mostly expansion.
According to further embodiments, the method can also include receiving and guiding the energy transmitted from the energy source from an end of the vehicle to the absorber. Further, the vehicle may include comprises a dielectric shell located on at least one end of the vehicle, the dielectric shell being structured to be invisible to the energy transmitted from the energy source.
In embodiments, the energy transmitted from the energy source can be converted directly into electrical power.
According to further embodiments, the structure may include a tubular structure maintained at a near vacuum pressure and a track over or on which the vehicle moves. The at least one energy source can include a plurality of energy sources arranged along a length of the tubular structure. Further, the tubular structure may include at least one section having a reduced diameter, whereby, as the vehicle moves into the at least one reduced diameter section, a plug of air is created in front of the vehicle to impede forward motion of the vehicle.
In accordance with still other embodiments, the vehicle can include at least one section having an increasable diameter, and the method further may further include increasing the diameter of the at least one section to create a plug of air in front of the vehicle to impede forward motion of the vehicle.
In accordance with still yet other embodiments of the invention, the method can further include supplying a fluid into the structure to at least in part be pressurized and supplied into the air channels.
Embodiments are directed to a system for conveying a vehicle powered via microwave energy. The system includes an elongated tubular structure having a track; a movable vehicle structured and arranged to move at least one of over and on the track; a plurality of microwave sources arranged at fixed locations within and along the elongated structure to supply microwave energy within the structure; and a receiver, carried by the movable vehicle, being configured to receive the microwave energy from at least one of the plurality of microwave sources and to convert the received microwave energy into at least one of electrical power and thrust.
Other exemplary embodiments and advantages of the present invention may be ascertained by reviewing the present disclosure and the accompanying drawing.
The novel features which are characteristic of the systems, both as to structure and method of operation thereof, together with further aims and advantages thereof, will be understood from the following description, considered in connection with the accompanying drawings, in which embodiments of the system are illustrated by way of example, it is to be expressly understood, however, that the drawings are for the purpose of illustration and description only, and they are not intended as a definition of the limits of the system. For a more complete understanding of the disclosure, as well as other aims and farther features thereof, reference may be had to the following detailed description of the disclosure in conjunction with the following exemplary and non-limiting drawings wherein:
6C illustrate embodiments for effecting a braking or slowing of the movable vehicle;
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
An embodiment of a power supply system and method for a movable vehicle for pod or capsule) V is illustrated in
In accordance with embodiments,
While only a single source S is shown in the exemplary embodiment, it is to be understood that a number of sources S can be arranged along track K to transmit energy E to vehicle V as it traverses over or on track K of conveyor C. Sources S can be spaced along track K at distances between every several meters to every several kilometers, depending upon the power of source S. By way of non-limiting example, for smaller sources S having power corresponding to a conventional microwave oven, sources S can be spaced every few meters, while more powerful sources S, such as gyrotrons, can be spaced every several kilometers. Distances between sources are preferably set to ensure that adequate microwave energy is received by vehicle V. By way of non-limiting example, a vehicle or pod receiving energy from, e.g., 250 kW microwave sources spaced every 10 km over 50 km would receive over 2 MW of power.
In the exemplary embodiment illustrated in
Behind dielectric shell DS an absorber A1 can be arranged to receive the microwave energy MW passing through dielectric shell DS. Absorber A1, which is structured to operate as a heat exchanger, can be made from a material that absorbs microwaves and can withstand high temperatures. Further, it is understood that in the foregoing embodiments, a heat exchanger and the absorber A1 can be built into one single device or as two separate and distinct devices. By way of example, absorber A1 can be made to include a material, e.g., ceramic, that absorbs the impinging microwave energy to generate heat. Further, the specific material can preferably be selected so that absorber A1 is tuned to the frequency of the microwave energy supplied by source S. Absorber A1 can be coupled to a compressor P mounted in or on vehicle V, e.g., at a front of vehicle V. Compressor P is structured and arranged to draw in or ingest air (depicted as arrows) from conveyor C, increase the pressure of the ingested air and push the pressurized air into absorber A1. By way of non-limiting example, absorber A1 can be formed with air channels (not shown) to receive the pressurized air from compressor P and these air channels can be sized to optimize in a known manner for maximum surface area of contact between the air and the absorber material. In this way, as absorber A1 converts microwave energy MW into heat, the pressurized air in the air channels is heated, thereby adding energy to it. Further, absorber A1 is also coupled to a turbine T so that the heated pressurized air in absorber A1 is routed into turbine T. In operation, the hot pressurized air expands through turbine T, which imparts rotational energy to turbine T.
Turbine T, absorber A1, and compressor P are designed and arranged so that turbine T liberates enough energy from the hot pressurized air stream to power compressor P via a mechanical linkage, such as a shaft, and/or to power an electrical generator. Some of the rotational energy from turbine T can drive an alternator A2 to provide electrical power for onboard systems, e.g., via a buffer battery B. Moreover, the hot air exiting turbine T can have enough energy to impart sufficient thrust to vehicle V to compensate for drag.
The exemplary embodiment converts microwave power directly into thermal power, which optimizes transmission efficiency. By way of example, thermal absorbers A1 can achieve, e.g., 1,000 kW/m2, which is substantially higher than other conventional devices used with microwave power transmission. For example, thermal absorber A1 have 10 times the energy density of rectennae, which convert microwaves into DC current. Accordingly, less vehicle surface area is needed to receive power and/or more power can be transmitted to vehicle V. Further, with this embodiment, a thermal cycle is run in which all related heat rejection takes place at very high temperatures in the form of the exhaust through turbine T. As no radiators are required to remove heat, the weight of vehicle V can be reduced.
As it may not be practicable to locate absorber A1 at an end of vehicle V to receive the transmitted microwave energy,
In a variant of the embodiment shown in
In a variation applicable to the previously described embodiments of
Other embodiments contemplate braking of vehicle V as it traverses over or on track K. These exemplary embodiments, as shown in
Propulsion stations, which can include, e.g., linear motors, can also be arranged along conveyor C in order to impart a general motive force onto vehicle V or V′, in particular at locations along conveyor C at which a change of velocity of vehicle V is desired. However, the air injection embodiment of
In another embodiment illustrated in
With a plurality of operating frequencies and a plurality of rectennae tuned to those frequencies, modulating the power output on the frequencies will result in a plurality of independent phases of current on the vehicle. Moreover, as rectennae are lighter than conventionally used variable frequency drives (VFD), this embodiment represents a substantial mass reduction for a vehicle or pod with onboard propulsion.
Moreover, this exemplary embodiment allows a vehicle to change its velocity at any point in the route. The vehicle-side propulsion system can act as a supplement to a corresponding track-side propulsion system and can work together with a corresponding track-side propulsion system to allow the vehicle to independently control acceleration, including coming to a complete stop and then accelerating again in any part of the system. Given the greater than linear scaling of track-side propulsion, it may be more economical to have some limited thrust capability on the vehicle.
In a further variant, a receiver R′ including absorber A1, as described in the embodiment in
In another ramjet embodiment, the vehicle V (or pod) and the inner surface of the tube, which acts as a microwave waveguide WG, can be arranged to work in conjunction with the vehicle's outer surface to form the inlet nozzle of the ramjet RJ′ and compress the incoming air. In the exemplary embodiment of
Although the present specification describes components and functions that may be implemented in particular embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same or similar functions are considered equivalents thereof.
The illustrations of the embodiments described herein are intended to provide a general understanding of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while other proportions may be minimized. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.
Accordingly, the present disclosure provides various systems, structures, methods, and apparatuses. Although the disclosure has been described with reference to several exemplary embodiments, it is understood that the words that have been used are words of description and illustration, rather than words of limitation. Changes may be made within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the disclosure in its aspects. Although the disclosure has been described with reference to particular materials and embodiments, embodiments of the invention are not intended to be limited to the particulars disclosed; rather the invention extends to all functionally equivalent structures, methods, and uses such as are within the scope of the appended claims.
One or more embodiments of the disclosure may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any particular invention or inventive concept. Moreover, although specific embodiments have been illustrated and described herein, it should be appreciated that any subsequent arrangement designed to achieve the same or similar purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all subsequent adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the description.
The Abstract of the Disclosure is provided to comply with 37 C.F.R. § 1.72(b) and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, in addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all of the features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining separately claimed subject matter.
The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments which fall within the true spirit and scope of the present disclosure. Thus, to the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Accordingly, the novel architecture is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
While the invention has been described with reference to specific embodiments, those skilled in the art will understand that various changes may be made and equivalents may be substituted for elements thereof without departing from the true spirit and scope of the invention. While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure. In addition, modifications may be made without departing from the essential teachings of the invention. Furthermore, the features of various implementing embodiments may be combined to form further embodiments of the invention.
The present application is a Continuation of Non-provisional U.S. application Ser. No. 15/007,974 filed Jan. 27, 2016 claiming the benefit of U.S. Provisional Application No. 62/243,903 filed Oct. 20, 2015 and claiming the benefit of U.S. Provisional Application No. 62/113,511 filed Feb. 8, 2015. The disclosures of U.S. application Ser. No. 15/007,974, U.S. Provisional Application No. 62/243,903 and U.S. Provisional Application No. 62/113,511 are expressly incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
131322 | Anderson | Sep 1872 | A |
2296771 | Crawford et al. | Sep 1942 | A |
2488287 | Goddard | Nov 1949 | A |
2511979 | Goddard | Jun 1950 | A |
2791633 | Sindzinski | Sep 1956 | A |
2956823 | Benjamin, Jr. et al. | Oct 1960 | A |
3006288 | Brown | Oct 1961 | A |
3083528 | Brown | Apr 1963 | A |
3100454 | Dennis | Aug 1963 | A |
3132416 | Hait | May 1964 | A |
3233559 | Smith et al. | Feb 1966 | A |
3605629 | Edwards | Sep 1971 | A |
3610163 | Edwards | Oct 1971 | A |
3738281 | Waidelich | Jun 1973 | A |
3750803 | Paxton | Aug 1973 | A |
3768417 | Thornton et al. | Oct 1973 | A |
3776141 | Gelhard et al. | Dec 1973 | A |
3854411 | Lichtenberg | Dec 1974 | A |
3952667 | Kovanov et al. | Apr 1976 | A |
3954064 | Minovitch | May 1976 | A |
4015540 | Roxberry | Apr 1977 | A |
4023500 | Diggs | May 1977 | A |
4075948 | Minovitch | Feb 1978 | A |
4108077 | Laing | Aug 1978 | A |
4148260 | Minovitch | Apr 1979 | A |
4175414 | Peytavin | Nov 1979 | A |
4202272 | Teodorescu et al. | May 1980 | A |
4400655 | Curtiss et al. | Aug 1983 | A |
4427740 | Stackhouse et al. | Jan 1984 | A |
4603640 | Miller et al. | Aug 1986 | A |
4636666 | Meins | Jan 1987 | A |
4636667 | Holzinger et al. | Jan 1987 | A |
4676294 | Samuelson | Jun 1987 | A |
4718459 | Adorjan | Jan 1988 | A |
5053654 | Augsburger et al. | Oct 1991 | A |
5282424 | O'Neill | Feb 1994 | A |
5388527 | Thornton et al. | Feb 1995 | A |
5619930 | Alimanestiano | Apr 1997 | A |
5712514 | Fischperer et al. | Jan 1998 | A |
5899635 | Kuja et al. | May 1999 | A |
5950543 | Oster | Sep 1999 | A |
6279485 | Schlienger | Aug 2001 | B1 |
6311476 | Frye et al. | Nov 2001 | B1 |
6373153 | Hazelton et al. | Apr 2002 | B1 |
6374746 | Fiske | Apr 2002 | B1 |
6418857 | Okano et al. | Jul 2002 | B1 |
6502517 | Groening et al. | Jan 2003 | B1 |
6510799 | Lamb et al. | Jan 2003 | B2 |
6584671 | Miller et al. | Jul 2003 | B2 |
6684794 | Fiske et al. | Feb 2004 | B2 |
6899036 | Lamb et al. | May 2005 | B2 |
7068991 | Parise | Jun 2006 | B2 |
7096794 | Post | Aug 2006 | B2 |
7204192 | Lamb et al. | Apr 2007 | B2 |
7478598 | Post | Jan 2009 | B2 |
7835830 | Ellmann et al. | Nov 2010 | B2 |
7841564 | Ellmann et al. | Nov 2010 | B2 |
8006625 | Yang | Aug 2011 | B2 |
8118266 | Zheng et al. | Feb 2012 | B2 |
8171859 | Loser et al. | May 2012 | B2 |
8214957 | Miettinen | Jul 2012 | B2 |
8250990 | Kunz | Aug 2012 | B2 |
8281723 | Loeser et al. | Oct 2012 | B2 |
8297195 | Loser et al. | Oct 2012 | B2 |
8402899 | Loeser et al. | Mar 2013 | B2 |
8430037 | Miller et al. | Apr 2013 | B2 |
8430039 | Zheng et al. | Apr 2013 | B2 |
8459188 | Miller et al. | Jun 2013 | B2 |
8468949 | Kwon et al. | Jun 2013 | B2 |
8500373 | Epps | Aug 2013 | B1 |
8534197 | Miller | Sep 2013 | B2 |
8578860 | Post | Nov 2013 | B2 |
8734139 | Burns et al. | May 2014 | B2 |
8915192 | Zhou | Dec 2014 | B2 |
8917086 | Post | Dec 2014 | B2 |
8985030 | Post | Mar 2015 | B2 |
9085304 | Oster | Jul 2015 | B2 |
9228298 | Oster | Jan 2016 | B2 |
9290187 | Dalrymple | Mar 2016 | B2 |
9290278 | Dillon | Mar 2016 | B2 |
9302577 | Catalan | Apr 2016 | B2 |
9457687 | Brier et al. | Oct 2016 | B2 |
9764648 | Finodeyev | Sep 2017 | B2 |
20010037747 | Svensson | Nov 2001 | A1 |
20020197135 | Arntzen et al. | Dec 2002 | A1 |
20030205163 | Lamb et al. | Nov 2003 | A1 |
20040056538 | Du et al. | Mar 2004 | A1 |
20040139723 | Parkin | Jul 2004 | A1 |
20040144096 | Wollenweber | Jul 2004 | A1 |
20040155031 | Toyooka et al. | Aug 2004 | A1 |
20050076802 | Pullium | Apr 2005 | A1 |
20060032063 | Tomasello et al. | Feb 2006 | A1 |
20060235589 | Deng et al. | Oct 2006 | A1 |
20060236890 | Lamb et al. | Oct 2006 | A1 |
20070187556 | Yoshitake | Aug 2007 | A1 |
20070192000 | Ellmann et al. | Aug 2007 | A1 |
20080236973 | Hahn et al. | Oct 2008 | A1 |
20080275572 | Tillotson | Nov 2008 | A1 |
20080277534 | Ellmann et al. | Nov 2008 | A1 |
20090101040 | Yang | Apr 2009 | A1 |
20090158955 | Pulliam | Jun 2009 | A1 |
20100005997 | Tozoni | Jan 2010 | A1 |
20100031846 | Loser et al. | Feb 2010 | A1 |
20100092243 | Bauder | Apr 2010 | A1 |
20100115947 | Galbraith | May 2010 | A1 |
20100143044 | Kadaster et al. | Jun 2010 | A1 |
20100183407 | Kim | Jul 2010 | A1 |
20100192799 | Miller | Aug 2010 | A1 |
20110226764 | Smith et al. | Sep 2011 | A1 |
20110283914 | Kwon et al. | Nov 2011 | A1 |
20120019235 | Post | Jan 2012 | A1 |
20120089525 | Kley et al. | Apr 2012 | A1 |
20120153744 | Criswell et al. | Jun 2012 | A1 |
20120174901 | Post | Jul 2012 | A1 |
20120285575 | Catha | Nov 2012 | A1 |
20120299684 | Won | Nov 2012 | A1 |
20130174757 | Post | Jul 2013 | A1 |
20130276665 | Dalrymple | Oct 2013 | A1 |
20140000473 | Miller | Jan 2014 | A1 |
20140116406 | Post | May 2014 | A1 |
20140261055 | Oster | Sep 2014 | A1 |
20140354064 | Tseliakhovich | Dec 2014 | A1 |
20160009196 | Allard | Jan 2016 | A1 |
20160023668 | Shetty | Jan 2016 | A1 |
20160033970 | Henderson et al. | Feb 2016 | A1 |
20160059868 | Allaire | Mar 2016 | A1 |
20160229297 | Finodeyev et al. | Aug 2016 | A1 |
20160229416 | Bambrogan et al. | Aug 2016 | A1 |
20160229417 | Bambrogan et al. | Aug 2016 | A1 |
20160229418 | Bambrogan et al. | Aug 2016 | A1 |
20160229419 | Brambrogan et al. | Aug 2016 | A1 |
20160229420 | Coutre et al. | Aug 2016 | A1 |
20160229427 | Avetian et al. | Aug 2016 | A1 |
20160229646 | Bambrogan et al. | Aug 2016 | A1 |
20160230350 | Bambrogan et al. | Aug 2016 | A1 |
20160230768 | Bambrogan et al. | Aug 2016 | A1 |
20160230899 | Cothern et al. | Aug 2016 | A1 |
20160230915 | Cothern et al. | Aug 2016 | A1 |
20160233754 | Dorris et al. | Aug 2016 | A1 |
20160233809 | Jetti et al. | Aug 2016 | A1 |
20160325761 | Preussmeier | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2371613 | Oct 2011 | EP |
WO2003002370 | Jan 2003 | WO |
WO2003003389 | Jan 2003 | WO |
WO2007087028 | Aug 2007 | WO |
WO2009135389 | Nov 2009 | WO |
Entry |
---|
Musk, E., “Hyperloop White Paper,” dated Aug. 12, 2013. |
Wright, I., “Engineering the Hyperloop: Testing 4 Core Elements,” dated Feb. 16, 2016. |
Protalinski, E., “Hyperloop's intro video claims the future is now,” dated Sep. 17, 2015. |
GNB Corporation Product Catalog, 20 pages, (Mar. 14, 2013). |
Khatait, J., et al., “Design and development of orifice-type aerostatic thrust bearing,” SIMTech technical reports, vol. 6, No. 1 (Jan. 2005). |
Barsikow, B., et al., “Noise Characteristics of the Transrapid TRO8 Maglev System,” US Department of Transportation, 338 pages (Jul. 2002). |
Brecher, A., et al., “Electromagnetic Field Characteristics of the Transrapid TRO8 Maglev System,” US Department of Transportation, 224 pages (May 2002). |
Chan, L., et al., “Vibration Characteristics of the Transrapid TR08 Maglev System,” US Department of Transportation, 143 pages (Mar. 2002). |
Todorovich et al., “High-Speed Rail—International Lessons for U.S. Policy Makers,” Lincoln Institute of Land Policy, 64 pages (2011). |
Peterman, D., et al., “The Development of High Speed Rail in the United States: Issues and Recent Events,” Congressional Research Service, 35 pages (Dec. 20, 2013). |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/U52016/015231, dated Mar. 25, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US16/15228, dated Apr. 8, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US16/15215, dated Apr. 8, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015234, dated Apr. 4, 2016. |
Barboza, D., “A New Port in Shanghai, 20 Miles Out to Sea,” The New York Times, Dec. 12, 2005. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015221, dated Mar. 31, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015224, dated Apr. 11, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015229, dated Apr. 4, 2016. |
Thornton. R., “The Future of Maglev,” Magnemotion, Nov. 5, 2007. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015206, dated Apr. 1, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015236, dated Mar. 29, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015238, dated Apr. 1, 2016. |
International Search Report and Written Opinion of International Searching Authority for related Application No. PCT/US2016/015239, dated Mar. 30, 2016. |
Reddy, M., et al., “Microwave Power Transmission—A Next Generation Power Transmission System,” IOSR Journal of Electrical and Electronics Engineering, vol. 4, Issue 5, pp. 24-28 (2013). |
Garcia, E., “Microwave Energy Transmission for Aircraft,” NASA Tech Briefs, 3 pages (Aug. 1, 2010). |
Lin, J., “Wireless Power Transmission: From Far-Field to Near-Field,” Proceedings of the IEEE, vol. 101, Issue 6, 42 pages (Apr. 4, 2013). |
Number | Date | Country | |
---|---|---|---|
20180022219 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62243903 | Oct 2015 | US | |
62113511 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15007974 | Jan 2016 | US |
Child | 15689860 | US |