1. Technical Field
The present disclosure relates to power supply system and rechargeable battery that is being used in the system.
2. Description of Related Art
Functions of portable electronic devices such as smart phones have become more versatile and more powerful. The powerful electronic devices consume more power, and time of use is therefore shortened. Such that, users usually need to carry one or more spare batteries. However, the capacity stored in these batteries is limited, and it is difficult for user to learn how much residual capacity all these batteries keep. As well these batteries do not support hot swapping, so users need to turn off the electronic device first, and then detach and replace batteries for these electronic devices, which interrupt the user's work and affect working efficiency.
Therefore, a power supply system, which overcomes the afore mentioned limitations is required.
Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
a) is a block diagram of the charge apparatus of
a) is another block diagram of the charge apparatus,
The charge apparatus 40 further includes a second socket 401, and an unoccupied plug 311 of the battery pack 30 is plugged in the second socket 401, to connect the battery pack 30 to the charge apparatus 40.
An unoccupied first socket of the battery pack 30 is coupled to a power input port 201 of the electronic device 20. In the embodiment, the power supply system 100 further includes a connecting apparatus 50, which includes a data transmission cable 503, and a first connector 501 and a second connector 502 electrically connected to two opposite ends of the data transmission cable 503. The first connector 501 is plugged in the first socket 312a of the rechargeable battery 31a, and the second connector 502 is plugged in the power input port 201 of the electronic device 20, then the battery pack 30 can supply power to the electronic device 20 via the connecting apparatus 50.
In the embodiment, the data transmission cable 503 is a USB cable, the plug 311, the first connector 501, and the second connector 502 are USB connectors, the first socket 312 and the second socket 401 are USB sockets. each of the USB connector and the USB socket includes a power pin VCC, a first data pin Data+, a second data pin Data-and a ground pin GND.
Referring to
The power processing module 405 is electrically connected to the voltage output pins 4031 and 4032 of the AC/DC converter 403 and the first data pin Data+ and the second data pin Data− of the second socket 401. The power display module 406 is provided on the surface of the charge apparatus 40, and is electrically connected to the power processing module 405.
Referring to
In the embodiment, the charge control module 313 is electrically connected to the power pin VCC and the ground pin GND of the plug 311. The charge control module 313 is configured for receiving the low-voltage direct current output from the charge apparatus 40, and charging the capacity storage module 314. The discharge control module 315 is electrically connected to the power pin VCC and the ground pin GND of the first socket 312, and is configured for controlling the capacity storage module 314 to supply power to the electronic device 20 when the rechargeable battery 31 is electrically connected to the electronic device 20. In the embodiment, inside each battery, the power pin VCC and the ground pin GND of the plug 311 are electrically connected to the power pin VCC and the ground pin GND of the first socket 312 correspondingly. With such structure, a number of these rechargeable batteries, for example, as shown in
Referring again to
In the embodiment, the power measurement module 316 is also electrically connected to the first date pin Data+ and the second data pin Data− of the first socket 312. When a number of these rechargeable batteries are plugged together, the power measurement modules 316 of the battery pack 30 communicate with each other via the first data pin Data+ and the second data pin Data− of the plug 311 and the first socket 312, and the one which is directly connected to the charge apparatus 40, feedbacks a total reference capacity value and the total measured actual residual capacity value of the battery pack 30 to the power processing module 405 of the charge apparatus 40.
a) also shows that the power processing module 405 is configured to receive the total reference capacity value and the total actual residual capacity value of the battery pack 30. In addition, calculate a ratio of the total actual residual capacity value with respect to the total reference capacity value of the battery pack 30, and output a corresponding control signal to control the power display module 406 to display the ratio.
In the embodiment, the power display module 406 is a light-emitting diode (LED) pack, and includes a number of LEDs. All or part of these LEDs may be illumined to indicate the ratio.
In an alternative embodiment, the power display module 406 can be a liquid crystal display module or other type display module.
In an alternative embodiment, as shown in
Moreover, it is to be understood that the disclosure may be embodied in other forms without departing from the spirit thereof. Thus, the present examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the disclosure is not to be limited to the details given herein.
Number | Date | Country | Kind |
---|---|---|---|
201120550492.3 | Dec 2011 | CN | national |