Power System Component Protection System for Use With an Induction Heating System

Information

  • Patent Application
  • 20080051915
  • Publication Number
    20080051915
  • Date Filed
    August 24, 2007
    16 years ago
  • Date Published
    February 28, 2008
    16 years ago
Abstract
When a power system experiences a disruptive event, conditions may exist that threaten the survival of power devices used in the system. Embodiments described herein provide an improved means of protecting these devices under such circumstances.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated herein and form part of the specification, help illustrate various embodiments of the present invention. In the drawings, like reference numbers indicate identical or functionally similar elements.



FIG. 1 illustrates a system according to an embodiment of the invention.



FIG. 2 illustrates a process according to an embodiment of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS


FIG. 1 illustrates an induction heating system 100 according to an embodiment of the invention. System 100 includes a power system 102, a work coil 104, which is coupled to the power system and configured to produce an RF field for heating a work piece 106 when power is supplied to the coil, and a protection system 108 for protecting the various components of power system 102, including the switching devices (e.g., transistors) 190 of the power system 102.


As illustrated in FIG. 1, protection system 108 may include a data processing unit 121 (e.g., one or more microprocessors), a storage unit 122 for storing software 123 that is configured to be executed by the data processing unit 121, thereby causing the data processing unit to perform the operations specified by the software, and a plurality of sensors 131-133. In some embodiments, sensor 131 is configured to sense ambient temperature, sensor 132 is configured to sense the temperature switching devices 190, sensor 133 is configured to sense the temperature of the water (if any) that is used to cool components of the power system. Additionally, the protection system 108 is in communication with power system 102 such that protection system 102 may monitor the operating frequency of the power system and may determine whether a threat condition is present and the magnitude of the threat condition.


Referring to FIG. 2, FIG. 2 is a flow chart illustrating a process, according to one embodiment, that is defined by software 123. Process 200 may begin in step 201, where protection system monitors power system for the presence of a threat condition (e.g., a shorted output or mismatched load). If protection system 108 senses a threat condition, then process 200 may proceed to step 202, where protection system 108 reduces the output of power system 102 (e.g., causes power system 102 to cease providing power to work coil 104). Next (step 203) protection system may log the threat condition to an operating log 192 (e.g., a reset history log). As an example, protection system 108 may record an identifier representing the sensed threat condition and the time the condition was sensed (the time could be a relative time (e.g., 5 minutes after the beginning of operation) or an absolute time (e.g., 1:35 pm)).


Next (step 204), protection system 108 determines whether it should restart power system 102 or enter a non-operating protective mode. If the latter, then process 200 may end, otherwise process 200 may proceed to step 206.


In step 206, protection system 108 determines a length of time that it should wait before attempting to restart power system 102 (i.e., a “disable interval”). In step 208, after waiting the determined disable interval (e.g., a 0.1 second interval, a 0.5 second interval, a 1 second interval, a 2 second interval, etc), protection system 108 restarts power system 102 (e.g., causes power system 102 to resume providing power to work coil 104 or other RF field generator). After step 208, process 200 may return to step 202.


Referring to step 204, in determining whether to restart power system or enter the non-operating protective mode, protection system 108 may consider one or more of the following factors: (1) the temperature sensed by one or more of sensors 131-133, (2) the number of threat conditions that have occurred with the last X amount of time (e.g., the last 5 minutes) (X can be configurable) (this information can be determined from the reset history log) or since the occurrence of a certain event, (3) the specific threat condition that was sensed, (4) the operating frequency of the power system, (5) the magnitude of overload experienced by switching devices within the power system, etc.


Similarly, referring to step 206, in determining the disable interval, protection system 108 may consider one or more of the same factors listed immediately above.


As an example, in step 206, protection system 108 may determine the length of the waiting period based, at least in part, on a determination of the number of threat conditions that have occurred within the last X amount of time (X can be some predetermined period) or the number of threat conditions that have occurred since some predetermined event (e.g., the number of threat conditions that have occurred since initialization of power system 102). As a more specific example, upon detecting the first threat condition since initialization of power system 102, protection system may select a disable interval of 0.1 seconds, and upon detecting the second threat condition since initialization of power system 102, protection system may select a disable interval of 0.3 seconds. The disable interval may continue to increase for each subsequently detected threat condition. After detecting some number of threat conditions since initialization, protection system 108 may determine to enter the non-operating protective mode. As another specific example, in some embodiments, the disable interval is initially selected to be 0.1 seconds and is not increased unless 3 or more threat conditions occur within a period of 30 seconds.


While various embodiments/variations of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.


Additionally, while the process described above and illustrated in the drawings is shown as a sequence of steps, this was done solely for the sake of illustration. Accordingly, it is contemplated that some steps may be added, some steps may be omitted, the order of the steps may be re-arranged, and some steps may be performed simultaneously.

Claims
  • 1. An RF heating system, comprising: an radio frequency (RF) field generator;a power system coupled to the RF field generator and configured to provide power to the RF field generator; anda protection system coupled to the power system, the protection system being configured to: (a) monitor the power system for the presence of a threat condition; (b) automatically reduce the amount of power delivered to the RF field generator by the power system for a determined amount of time in response to detecting a threat condition; and (c) automatically increase the amount of power delivered to the RF field generator by the power system after the determined amount of time has elapsed, whereinthe determined amount of time is based, at least in part, on one or more of the following: (a) a sensed temperature, (b) the number of threat conditions that have occurred (i) within the last X seconds, wherein X is greater than zero, and/or (ii) since the occurrence of a certain event, (c) the specific threat condition that was detected, (d) an operating frequency of the power system, and (e) a magnitude of overload experienced by switching devices within the power system.
  • 2. The RF heating system of claim 1, wherein the protection system is configured to automatically record a detected threat condition to an operating log.
  • 3. The RF heating system of claim 2, wherein the operating log is maintained remotely from the RF heating system.
  • 4. The RF heating system of claim 1, wherein the determined amount of time is determined based, at least in part, on the number of threat conditions that have occurred within the last X seconds or since the occurrence of a certain event, wherein X is greater than zero.
  • 5. The RF heating system of claim 4, wherein the protection system is configured to monitor an operating frequency of the power system, and the determined amount of time is dependent on the operating frequency and the number of threat conditions that have occurred within the last X seconds or since the occurrence of the certain event.
  • 6. The RF heating system of claim 1, wherein the protection system is configured to monitor the temperature of a component of the power system, and the determined amount of time is dependent on the temperature of said component.
  • 7. The RF heating system of claim 1, wherein the determined amount of time is based, at least in part, on the magnitude of overload experienced by switching devices within the power system.
  • 8. The RF heating system of claim 1, wherein the RF field generator is a coil.
  • 9. The RF heating system of claim 1, wherein the protection system is configured to cause the power system to enter a non-operating mode in response to detecting Y number of threat conditions within a predetermined amount of time, wherein Y is greater than or equal to 2.
  • 10. The RF heating system of claim 1, wherein the determined amount of time is less than about 0.5 second.
  • 11. The RF heating system of claim 1, wherein the RF field generator comprises two electrodes for generating the RF field.
  • 12. A power system protection method, comprising: monitoring a power system for the presence of a threat condition;reducing the output of the power system if a threat condition is detected;selecting a disable interval for the power system; andafter waiting the determined disable interval, increasing the output of the power system, wherein the selection of the disable interval is based, at least in part, on one or more of the following: (a) a sensed temperature, (b) the number of threat conditions that have occurred (i) within the last X seconds, wherein X is greater than zero, and/or (ii) since the occurrence of a certain event, (c) the specific threat condition that was detected, (d) an operating frequency of the power system, (e) a magnitude of overload experienced by switching devices within the power system, and (f) a set of rules.
  • 13. The method of claim 12 further comprising logging the detected threat condition to an operating log.
  • 14. The method of claim 12, wherein the selection of the disable interval is based, at least in part, on the number of threat conditions that have occurred within the last X seconds or since the occurrence of a certain event, wherein X is greater than zero.
  • 15. The method of claim 14, further comprising monitoring the current operating frequency of the power system, wherein the selection of the disable interval is further based on said current operating frequency.
  • 16. The method of claim 12, further comprising monitoring the temperature of a component of the power system, wherein the selection of the disable interval is based, at least in part, on said temperature of said component.
  • 17. An RF heating method, comprising: (a) using a power system comprising switching devices to provide a desired amount of power to an RF field generator;(b) while the power system is providing the desired power to the RF field generator, automatically detecting a condition that may be harmful to the switching devices;(c) in response to detecting the condition, automatically causing the power system to reduce the amount of power provided to the RF field generator;(d) after causing the power system to reduce the amount of power provided to the RF field generator, automatically waiting for a determined amount of time to elapse; and(e) immediately after the determined amount of time has elapsed, automatically causing the power system to resume providing the desired amount of power to the RF field generator.
  • 18. The RF heating method of claim 17, wherein the step of causing the power system to reduce the amount of power provided to the RF field generator consists of configuring the power system such that it provides less or no power to the RF field generator.
  • 19. The RF heating method of claim 17, further comprising: (f) after step (e), detecting the condition that may be harmful to the switching devices;(g) in response to detecting the condition, causing the power system to reduce the amount of power provided to the RF field generator;(h) after step (g), waiting for a second determined amount of time to elapse; and(i) immediately after the second determined amount of time has elapsed, causing the power system to increase the amount of power provided to the RF field generator, wherein the second determined amount of time is greater then the first determined amount of time.
  • 20. The RF heating method of claim 19, further comprising: (j) after step (i), detecting the condition that may be harmful to the switching devices;(k) in response to detecting the condition, causing the power system to enter into a persistent protective mode.
  • 21. The RF heating system of claim 17, wherein the determined amount of time is less than about 1 second.
Provisional Applications (1)
Number Date Country
60840047 Aug 2006 US