Power system having voltage-based monitoring for over current protection

Information

  • Patent Grant
  • 8654483
  • Patent Number
    8,654,483
  • Date Filed
    Monday, November 9, 2009
    15 years ago
  • Date Issued
    Tuesday, February 18, 2014
    11 years ago
Abstract
A power control system reduces power losses by utilizing an over current protection method that detects an over current event based on a power utilization factor PUTIL and an output voltage of an output stage of the power control system. In at least one embodiment, the power control system detects the over current event without sensing an output current in an output stage of the power control system. Since the output current is not sensed, the power control system avoids power losses otherwise associated with sensing the output current. The power control system includes a power factor correction (PFC) stage and an isolation stage. A controller determines the power utilization factor PUTIL using voltages sensed from the PFC stage. In at least one embodiment, the controller responds to the over current event by entering an over current protection mode.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates in general to the field of electronics, and more specifically to a power control system and method with voltage-based monitoring for over current protection.


2. Description of the Related Art


Power control systems often utilize one or more power conversion stages to convert alternating current (AC) voltages to direct current (DC) voltages or perform DC-to-DC conversions. For example, power control systems often contain a power factor correction (PFC) stage to provide power factor correction and regulate a link voltage, an output stage to provide output power to a load, and an isolation stage to isolate the PFC stage from the output stage.


The PFC stage and the output stage of a power control system have a one hundred percent (100%) rated power and a maximum power. The rated power refers to power available from the power control system under nominal operation conditions. The maximum power refers to a percentage of the rated power that can be supplied by the power control system for at least a limited period of time while maintaining a regulated output voltage and without damaging the power control systems and/or the load. Once the load begins demanding more power than the maximum power of the power control system, an output current of the output stage will increase, and an output voltage of the output stage will decrease. A controller that controls the power control system monitors the output current. When the output current exceeds a predetermined threshold, the controller will enter an over-current protection mode. However, circuitry used to sense the current can cause overall power losses and, thus, lower the efficiency of the power control system.



FIG. 1 depicts a power control system 100, and power control system 100 includes a PFC stage 102, an output stage 104, and an isolation stage 106 to isolate the PFC stage 102 from the output stage 104. Voltage source 108 supplies an alternating current (AC) input voltage VIN to a full bridge diode rectifier 110. Capacitor 112 provides high frequency filtering. The voltage source 108 is, for example, a public utility, and the AC voltage VIN is, for example, a 60 Hz/110 V line voltage in the United States of America or a 50 Hz/220 V line voltage in Europe. The rectifier 110 rectifies the input voltage VIN and supplies a rectified, time-varying, line input voltage VX to the PFC stage 102.


The power control system 100 includes a controller 114 to regulate a link voltage VLINK of PFC stage 102 and control isolation stage 106. Controller 114 generates a pulse-width modulated control signal CS0 to control power factor correction and regulate the link voltage VLINK of PFC stage 102. In one embodiment, PFC stage 102 is a boost-type, switching power converter, and control signal CS0 is a switch control signal that controls conversion of input voltage VX to link voltage VLINK. Controller 114 monitors voltages VX and VLINK to generate switch control signal CS0.


Isolation stage 106 isolates the PFC stage 102 from the output stage 104. Depending upon the type of PFC stage 102, the link voltage VLINK is either a multiple or a fraction of the input voltage VX. In either situation, the load 116 may not be compatible with the value of the link voltage VLINK or compatible with a DC voltage in general. Isolation stage 106 includes a transformer 118 to convert the link voltage VLINK into the output voltage VOUT. Transformer 118 is a flyback type transformer that includes switch 124. Control signal CSF controls the conductivity of switch 124 to convert link voltage VLINK into a time-varying, primary-side voltage VP to allow the primary-side windings 120 of transformer 118 to alternately store energy and then transfer energy to the secondary-side windings 122. In one embodiment, switch 124 is a field effect transistor (FET). Transformer 118 converts the primary side voltage VP into a secondary voltage VS. A variety of other topologies are well-known for isolation stage 106, such as half-bridge and full-bridge topologies as discussed in chapter 6 of Fundamentals of Power Electronics—Second Edition by Erickson and Maksimović, publisher Springer Science+Business Media, LLC, copyright 2001 (“Fundamentals of Power Electronics”).


The output stage 104 converts the secondary voltage VS into the output voltage VOUT. The topology of output stage 104 is a matter of design choice. Exemplary topologies are a half-bridge buck converter and a full-bridge buck converter. Examples of output stage 104 are also discussed in chapter 6 of Fundamentals of Power Electronics.


Power control system 100 supplies load 116 with output voltage VOUT and output current iOUT. The load 116 is any device that can utilize the power provided by output stage 104. Controller 114 regulates the link voltage VLINK and the primary-side voltage VP to establish a particular value for the secondary-side load current iOUT. Controller 114 regulates the primary-side voltage VP by controlling the duty cycles of control signal CSF. Controller 114 obtains a value of the output current iOUT by sensing a feedback voltage VRSENSE across sense resistor 126. The output current iOUT equals VRSENSE/R, and R is the known resistance of sense resistor 126. Controller 114 regulates link voltage VLINK and the primary-side VP based on the value of output current iOUT. If the value of the output current iOUT is too large, controller 114 decreases the duty cycle of control signal CSF to reduce the value of output current iOUT. If the value of secondary side current iOUT is too small, controller 114 increases the duty cycle of control signal CSF to increase the value output current iOUT.


PFC stage 102 has a rated power of PRATED and a maximum power of PMAX. If load 116 demands more power than the maximum power PMAX, the output current iOUT increases and the output voltage VOUT decreases. If the output current iOUT exceeds a predetermined threshold value, the power control system 100 enters an over current protection mode. The particular over current protection mode involves, for example, turning the power control system 100 OFF to protect components of the power control system 100 from damage.


Power efficiency is generally a concern when designing and utilizing power control system 100. However, the voltage drop corresponding to the feedback voltage VRSENSE across sense resistor 126 represents a power loss. Such power loss is disadvantageous.


SUMMARY OF THE INVENTION

In one embodiment of the present invention, an apparatus includes a controller to control a power supply and provide over current protection. The controller is configured to provide over current protection for the power supply using power utilization information and an output voltage of an output stage of the power supply. The power utilization information represents power utilization of the power supply.


In another embodiment of the present invention, a method includes controlling a power supply. Controlling the power supply includes using power utilization information and an output voltage of an output stage of the power supply to provide over current protection for the power supply. The power utilization information represents power utilization of the power supply.


In a further embodiment of the invention, an apparatus includes a controller to control a switching power supply and provide over current protection. The controller is configured to monitor a link voltage of the switching power converter and to determine a power utilization factor. The controller is further configured to monitor an output voltage of the switching power converter and to determine if the power utilization factor is greater than a power utilization factor threshold value. The controller is further configured to determine if an output voltage of the switching power converter is greater than an output voltage threshold value. If the power utilization factor is greater than a power utilization factor threshold value and the output voltage is less than the output voltage threshold value, then enter an over current protection mode. The power utilization factor represents power utilization of the power supply.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.



FIG. 1 (labeled prior art) depicts a power control system that monitors for an over current event by sensing an output stage current across a sense resistor.



FIG. 2 depicts a power control system that monitors for an over current event using a power utilization factor and an output stage voltage.



FIG. 3 depicts an embodiment of the power control system of FIG. 2.



FIG. 4 depicts an over current protection algorithm.



FIG. 5 depicts an over current protection graph.





DETAILED DESCRIPTION

A power control system reduces power losses while monitoring for an over current event by utilizing an over current protection method that detects the over current event based on an output voltage of an output stage of the power control system and power utilization information. The power utilization information represents power utilization of a power supply of the power control system. In at least one embodiment, the power utilization of the power supply is represented as a normalized, power utilization factor. In at least one embodiment, the power control system detects the over current event by sensing only voltages and, in at least one embodiment, without sensing an output current in an output stage of the power control system. Since the output current is not sensed, the power control system avoids power losses otherwise associated with sensing the output current.


In at least one embodiment, addition to the output stage, the power control system includes the power factor correction (PFC) stage to provide power factor correction and, in at least one embodiment, to regulate an output voltage of the PFC stage. The power control system also includes an isolation stage to isolate the PFC stage from the output stage while allowing the PFC stage to transfer energy to the output stage. In at least one embodiment, the power control system also includes a controller to control the PFC stage and the isolation stage. The controller includes an over current protection module (“OCP module”). In at least one embodiment, the OCP module determines the power utilization factor PUTIL using voltages sensed from the PFC stage and/or the isolation stage. In at least one embodiment, the OCP module responds to the over current event by entering an over current protection mode.



FIG. 2 depicts a power control system 200 that includes a power supply and a controller 202. The controller 202 provides over current protection and controls conversion of an input voltage VX into an output voltage VOUT. In at least one embodiment, controller 202 includes a power utilization module 203 that determines power utilization information in the form of a power utilization factor PUTIL. In at least one embodiment, the power utilization factor PUTIL is a normalized value ranging from 0-1. The power utilization factor PUTIL represents the power demanded of power control system 200 by load 212. In at least one embodiment, the power utilization factor PUTIL is expressed as a normalized percentage of the rated power PRATED (as defined below) of power control system 200. For example, when the power utilization factor PUTIL is 0, the power demand of load 212 is zero. When the power utilization factor PUTIL is 1, the power demand of load 212 is 100% of rated power PRATED.


In at least one embodiment, the OCP module 204 determines the power utilization factor PUTIL using the link voltage VLINK and a reference voltage VREF. The OCP module 204 utilizes the output voltage VOUT of output stage 210 of power supply 201 and the power utilization factor PUTIL to determine when to enter an over current protection mode to, for example, protect power control system 200 from an over current event. In at least one embodiment, an over current event refers to an increase in the output current iOUT above a predetermined output current threshold iOUTTH. In at least one embodiment, the OCP module 204 does not utilize sensed currents to protect the power control system 200 from an over current event, and, thus, avoids power losses associated with current sensing.


As subsequently described in more detail, the rated power PRATED of power control system 200 represents an amount of power that power supply 201 can nominally supply to load 212. For example, a rated power PRATED of 100 W indicates that the power supply 201 can nominally supply load 212 with up to 100 W of power. Power supply 201 also has a maximum power PMAX. The maximum power PMAX is generally a percentage increase of, for example 25%, over the rated power PRATED. Thus, in at least one embodiment, for a rated power PRATED of 100 W and a 25% increase, a maximum power PMAX is 125% of the rated power PRATED, which equals 125 W. The maximum power PMAX represents an amount of power that power supply 201 can supply to load 212 while maintaining an approximately constant output voltage VOUT. Equation [1] represents an exemplary relationship between the output power P of power supply 201, the output current iOUT, and the output voltage VOUT:

P=VOUT·iOUT  [1],

where P represents the power supplied by power supply 201, VOUT represents the output voltage of output stage 210, and iOUT represents the output current of output stage 210.


Power control system 200 maintains an approximately constant output voltage VOUT if the power demand of load 212 is less than or equal to the maximum power PMAX of power supply 201. If load 212 begins to demand more power from power supply 201 than the maximum power PMAX, then P equals PMAX in Equation [1], output current iOUT will increase in proportion to the power demand increase, and the output voltage VOUT will decrease in accordance with Equation [1]. In at least one embodiment, when power utilization factor PUTIL equals 1 (indicating that the power control system is generating 100% of rated power) and the output voltage VOUT decreases to a predetermined threshold voltage VOUTTH. In at least one embodiment, the threshold voltage VOUTTH is set to correspond with a maximum allowable output current iOUT, as described below. The OCP module 204 generates an output signal OCP indicating entry into over current protection mode. The particular operation(s) associated with the over current protection mode is a matter of design choice. In at least one embodiment, in over current protection mode, controller 202 turns PFC stage 206 OFF. In another embodiment, controller 202 turns PFC stage 206 OFF and, then, restarts PFC stage 206.


For the power control system 200 to convert the input voltage VX into the output voltage VOUT, the PFC stage 206 receives the input voltage VX. In at least one embodiment, the input voltage VX is a rectified alternating current (AC) voltage, such as a rectified 60 Hz/110 V line voltage in the United States of America or a rectified 50 Hz/220 V line voltage in Europe. The particular topology of the PFC stage 206 is a matter of design choice. For example, PFC stage 206 can be a switching type boost, buck, buck-boost, or Cúk converter. The PFC stage 206 generates a link voltage VLINK. In at least one embodiment, the link voltage VLINK is a regulated, approximately DC voltage.


The power supply 201 also includes an isolation stage 208 that isolates the PFC stage 206 from an output stage 210 and converts the link voltage VLINK into a secondary voltage VS. The particular topology of the isolation stage 208 is a matter of design choice. For example, the isolation stage 208 can be a transformer based isolation stage such as a flyback, full bridge, or half bridge transformer.


The output stage 210 receives the secondary voltage VS and provides an output voltage VOUT and an output current iOUT to load 212. The particular topology of the output stage 210 is also a matter of design choice. For example, output stage 210 can have a flyback topology. The load 212 can be any load for which power control system 200 can provide power. Examples of load 212 include lamps, such as light emitting diode and gas discharge type lamps, cellular telephones, personal computer (PCs) computing devices including personal digital assistants, and other electronic devices. Additionally, in at least one embodiment, isolation stage 208 and output stage 210 are separate and distinct as shown in FIG. 2. In at least one embodiment, isolation stage 208 and output stage 210 are combined into a single circuit. For example, in at least one embodiment, isolation stage 208 and output stage 210 are configured together as a single, flyback converter.


In addition to providing over current protection, controller 202 generates a control signal CS1 for PFC stage 206 to control power factor correction of PFC stage 206 and, in at least one embodiment, to also regulate the link voltage VLINK to a particular value. U.S. patent application Ser. No. 11/967,269, entitled “POWER CONTROL SYSTEM USING A NONLINEAR DELTA-SIGMA MODULATOR WITH NONLINEAR POWER CONVERSION PROCESS MODELING”, filed Dec. 31, 2007, inventor John L. Melanson, and assignee Cirrus Logic, Inc. (referred to herein as “Melanson I”) describes exemplary generation of control signal, such as control signal CS1, and control of PFC stage implemented as a switching power converter. Controller 202 also generates control signals CS2 through CSN to control isolation stage 208, and N is an integer index and is greater than or equal to 2. Melanson I describes exemplary generation of control signals CS2 through CSN. In at least one embodiment, controller 202 can be implemented as one or more physically distinct circuits. For example, in at least one embodiment, controller 202 is a single integrated circuit. In at least one embodiment, controller 202 is implemented as two embodiments with one embodiment controlling PFC stage 206 and one embodiment controlling isolation stage 208. Melanson I is hereby incorporated by reference in its entirety.



FIG. 3 depicts power control system 300, which represents one embodiment of power control system 200. Power control system 300 includes a power supply 301, and power supply 301 includes a PFC stage 302, an output stage 304, and an isolation stage 306 to isolate the PFC stage 302 from the output stage 304. Voltage source 308 supplies an alternating current (AC) input voltage VIN to a full bridge diode rectifier 310. Capacitor 312 provides high frequency filtering. The voltage source 308 is, for example, a public utility, and the AC voltage VIN is, for example, a 60 Hz/110 V line voltage in the United States of America or a 50 Hz/220 V line voltage in Europe. The rectifier 310 rectifies the input voltage Vin and supplies a rectified, time-varying, line input voltage VX to the PFC stage 302.


The power control system 300 includes a controller 314 to regulate a link voltage VLINK of PFC stage 302 and control isolation stage 306. Controller 314 also protects power control system 300 when load 332 is demanding more than the rated power PRATED of power supply 301 and the output voltage decreases below a predetermined threshold value VOUTTH. Controller 314 generates a pulse-width modulated switch control signal CS1 to control power factor correction and regulate the link voltage VLINK of PFC stage 302. PFC stage 302 is a boost-type, switching power converter, and switch control signal CS1 is a switch control signal that controls switch 316. In at least one embodiment, switch control signal CS1, is a duty cycle modulated signal, and switch 316 is a field effect transistor (FET). Controller 314 monitors voltages VX and VLINK to generate switch control signal CS1. In at least one embodiment, controller 314 generates switch control signal CS1 as described in Melanson I.


The PFC stage 302 includes an inductor 318 that conducts a current iL. When switch 316 is ON, diode 320 is reverse biased, and inductor current iL energizes inductor 318. When switch 316 is OFF, diode 320 is forward biased, and inductor current iL charges link capacitor 322. The link voltage VLINK across link capacitor 322 remains approximately constant during operation of PFC stage 302. Controller 314 operates PFC stage 302 in discontinuous conduction mode (DCM). In DCM, the inductor current iL decreases to zero while switch 316 is OFF and remains at zero for a finite time before switch 316 turns ON.


Isolation stage 306 isolates the PFC stage 302 from the output stage 304 and converts the DC link voltage VLINK into an AC voltage so that transformer 328 can transfer energy from link capacitor 322 via the primary side windings 324 to the secondary-side windings 326 of transformer 328. Isolation stage 306 also includes a primary-side transformer interface 330. The primary-side transformer interface 330 can be any type of interface. In at least one embodiment, primary-side transformer interface 330 is a half-bridge interface as described in U.S. patent application Ser. No. 12/415,830, entitled “PRIMARY-SIDE BASED CONTROL OF SECONDARY-SIDE CURRENT FOR A TRANSFORMER,” inventor John L. Melanson, Attorney Docket No. 1812-IPD, and filed on Mar. 31, 2009 describes exemplary methods and systems and is incorporated by reference in its entirety and referred to herein as Melanson II. Control signals CS2 through CSN control isolation stage 306, and N is an integer index that is greater than or equal to 2. A variety of other topologies are well-known for isolation stage 306, such as full-bridge topologies as discussed in chapter 6 of Fundamentals of Power Electronics.


The output stage 304 converts the secondary voltage VS into the output voltage VOUT. The topology of output stage 304 is a matter of design choice. In at least one embodiment, the output stage 304 is a half-bridge, buck converter as described in Melanson II. Other exemplary topologies, such as a full-bridge buck converter, are also discussed in chapter 6 of Fundamentals of Power Electronics.


Power supply 301 supplies load 332 with output voltage VOUT and output current iOUT. Controller 314 regulates the link voltage VLINK and the primary-side voltage VP to establish a particular value for the secondary-side load current iOUT. Controller 314 includes a power utilization module (“PUTIL, module”) 333 which represents one embodiment of power utilization module 203. The PUTIL module 333 generates the power utilization factor PUTIL. The power utilization factor PUTIL varies as the difference between the reference voltage VREF and the link voltage VLINK, as represented by error signal ev from error generator 336 varies. The link voltage VLINK varies in proportion to the power demand by load 332. Accordingly, the power utilization factor PUTIL also varies in proportion to power demand by load 332. As previously described, the power utilization factor PUTIL is a normalized representation of the power demand of load 332. In at least one embodiment, the reference voltage VREF is set to a desired value of the link voltage VLINK. For example, in at least one embodiment, the desired value of link voltage VLINK is 100V, so the reference voltage VREF is set to 100 V. The PUTIL module 333 includes an integral signal path 338 and a proportional signal path 340.


The integral signal path 338 includes an integrator 342 to integrate the error signal ev and also includes a gain module 344 to multiply the integral of error signal ev by a gain factor g2 and generate the integrated output signal IPW. The proportional path 340 includes a gain module 346 to multiply the error signal ev by a gain factor g1 and generate the proportional output signal PPW. Adder 348 adds the integrated output signal IPW and the proportional output signal PPW to generate the power utilization factor PUTIL. The values of gain factors g1 and g2 are a matter of design choice. The gain factors g1 and g2 affect the responsiveness of OCP module 314 in tracking changes in power demand by load 332. Exemplary values of gain factors g1 and g2 are set forth in the emulation code of FIGS. 8-31 in Melanson I. Additionally, in at least one embodiment, the link voltage VLINK, the reference voltage VREF, and the output voltage VOUT monitored by the PUTIL module 333 are scaled versions of the actual voltages.


Controller 314 also includes OCP module 334 to detect an over current event in power supply 301. The OCP module 334 also provides an over current protection signal OCP that causes power control system 300 to enter an over current protection mode. In at least one embodiment, over current protection signal OCP causes power control system 300 to enter an over current protection mode when power supply 301 is operating above 100% rated power PRATED.



FIG. 4 depicts an exemplary over current protection algorithm 400. Referring to FIGS. 3 and 4, in at least one embodiment, the OCP module 314 determines whether to cause power control system 300 to enter over current protection mode in accordance with the over current protection algorithm 400. In operation 402, the PUTIL module 333 monitors the link voltage VLINK, and in operation 404, power utilization factor PUTIL is determined.


In operation 406, OCP mode module 334 monitors the output voltage VOUT. The OCP module 334 stores a power utilization factor threshold PUTILTH. In at least one embodiment, the power utilization factor threshold PUTILTH is set to a value that indicates the power demand of load 332 is at or close to 100% of the rated power PRATED of power supply 301. In at least one embodiment, the power utilization factor threshold PUTILTH is set to a value that reflects a margin of error in the determination of the power utilization factor PUTIL. For example, in at least one embodiment, power utilization factor threshold PUTILTH is 0.95, which reflects a margin of error of 5% in the determination of power utilization factor PUTIL.


In operation 408, the OCP mode module 334 determines whether the power utilization factor PUTIL is greater than the power utilization factor threshold PUTILTH. If power utilization factor PUTIL is less than the power utilization factor threshold PUTILTH, then load 332 is not demanding more than 100% of the rated power PRATED of power supply 301. OCP module 334 then returns to operation 402 and continues therefrom. If the power utilization factor PUTIL is greater than the power utilization factor threshold PUTILTH, then load 332 is demanding more power than the power corresponding to the power utilization factor threshold PUTILTH. For example, if power utilization factor threshold PUTILTH is 0.95, then load 332 is demanding at least 95% (+/− a margin of error) of the rated power PRATED of power supply 301. If the response to operation 408 is “YES”, OCP module 334 proceeds to operation 410. In operation 410, OCP mode module 334 determines whether the output voltage VOUT is less than the threshold voltage VOUTTH.



FIG. 5 depicts an exemplary over current protection graph 500, which depicts the relationship between the output voltage VOUT (FIG. 3), the output current iOUT, and entry into over current protection mode by power control system 300. Referring to FIGS. 3, 4, and 5. If the power demand of load 332 exceeds the maximum power PMAX of power supply 301, the output current iOUT will increase and the output voltage VOUT will decrease in accordance with Equation [1]. In at least one embodiment, the threshold voltage VOUTTH is set to correspond with a maximum allowable output current iOUT. For example, if the maximum power PMAX of power supply 301 is 100 W, and the maximum allowable output current iOUTTH is 10 A, then the threshold voltage VOUTTH is set to 10V. Thus, if operation 410 determines that the output voltage VOUT is greater than the threshold voltage VOUTTH, then: (1) from operation 408, load 332 is demanding more power than the maximum power PMAX of power supply 301 and (2) the output current iOUT exceeds the maximum allowable output current iOUTTH.


To protect power control system 300 from an output current iOUT exceeding the maximum allowable output current iOUTTH, in operation 412, OCP mode module 334 generates the OCP signal indicating an over current protection event, and controller 314 enters over current protection mode. The particular over current protection mode is a design choice. In at least one embodiment, in over current protection mode, controller 314 turns PFC stage 302 OFF. In another embodiment, controller 314 turns PFC stage 302 OFF and, then, restarts PFC stage 206.


Thus, in at least one embodiment, a power control system can provide overcurrent protection using sensed voltages without incurring current sensing power losses.


Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. An apparatus comprising: a controller to control a power supply and provide over current protection for an output current of the power supply, wherein the controller is configured to provide the over current protection for the power supply using power utilization information and an output voltage of an output stage of the power supply, wherein the power utilization information represents power utilization of the power supply and the controller is configured to enter an over current protection mode if the power utilization information indicates power demanded from the power supply exceeds a maximum power of the power supply and an output voltage of the power supply is below a threshold voltage.
  • 2. The apparatus of claim 1 wherein the power utilization information is derived from a comparison between a link voltage of a power factor correction stage of the power supply and a reference voltage, and the reference voltage represents a desired value for the link voltage.
  • 3. The apparatus of claim 1 wherein the controller is configured to provide over current protection for the power supply without sensing a current in an output stage of the power supply.
  • 4. The apparatus of claim 3 wherein the controller is configured to provide over current protection for the power supply without sensing a current.
  • 5. The apparatus of claim 1 wherein the threshold voltage relates to a predetermined maximum threshold output current of the power supply.
  • 6. The apparatus of claim 1 wherein the over current protection mode comprises the controller turning the power supply OFF.
  • 7. The apparatus of claim 1 further comprising: the power supply coupled to the controller.
  • 8. The apparatus of claim 7 wherein the power supply comprises a switching power converter and the controller is further configured to control power factor correction of the switching power converter.
  • 9. The apparatus of claim 1 wherein to control a power supply and provide over current protection for an output current of the power supply, the controller is further configured to: determine the power utilization information representing an amount of power demanded of the power supply by a load coupled to the power supply;monitor an output voltage of the power supply;determine when the power utilization information exceeds a predetermined threshold value and when the output voltage decreases to a predetermined threshold voltage; andprovide the over current protection for the power supply when the controller determines that the power utilization information exceeds the predetermined threshold value and the output voltage decreases to a predetermined threshold voltage.
  • 10. A method comprising: controlling a power supply, wherein controlling the power supply includes using power utilization information and an output voltage of an output stage of the power supply to provide over current protection for an output current of the power supply wherein the power utilization information represents power utilization of the power supply; andentering an over current protection mode if the power utilization information indicates power demanded from the power supply exceeds a maximum power of the power supply and an output voltage of the power supply is below a threshold voltage.
  • 11. The method of claim 10 further comprising: comparing a link voltage of a power factor correction stage of the power supply and a reference voltage, wherein the reference voltage represents a desired value for the link voltage; andderiving the power utilization information from an outcome of comparing the link voltage and the reference voltage.
  • 12. The method of claim 10 further comprising: providing over current protection for the power supply without sensing a current in an output stage of the power supply.
  • 13. The method of claim 12 further comprising: providing over current protection for the power supply without sensing a current.
  • 14. The method of claim 10 wherein the threshold voltage relates to a predetermined maximum threshold output current of the power supply.
  • 15. The method of claim 10 wherein entering the over current protection mode comprises turning the power supply OFF.
  • 16. The method of claim 10 wherein the power supply comprises a switching power converter, the method further comprising: controlling power factor correction of the switching power converter.
  • 17. The method of claim 10 wherein controlling the power supply further includes: determining the power utilization information representing an amount of power demanded of the power supply by a load coupled to the power supply;monitoring an output voltage of the power supply;determining when the power utilization information exceeds a predetermined threshold value and when the output voltage decreases to a predetermined threshold voltage; andproviding the over current protection for the power supply when the controller determines that the power utilization information exceeds the predetermined threshold value and the output voltage decreases to a predetermined threshold voltage.
  • 18. An apparatus comprising: a controller to control a switching power supply and provide over current protection, wherein the controller is configured to:monitor a link voltage of a switching power converter;determine a power utilization factor representing an amount of power demanded of the power supply by a load coupled to the power supply; monitor an output voltage of the switching power converter;determine if the power utilization factor is greater than a power utilization factor threshold value;determine if an output voltage of the switching power converter is greater than an output voltage threshold value; andif the power utilization factor is greater than a power utilization factor threshold value and the output voltage is less than the output voltage threshold value, then enter an over current protection mode.
  • 19. The apparatus of claim 18 wherein the over current protection mode comprises the controller turning the power supply OFF.
  • 20. The apparatus of claim 18 further comprising: the switching power supply coupled to the controller.
  • 21. The apparatus of claim 20 wherein the switching power supply further comprises a power factor correction stage, an isolation stage, and an output stage.
  • 22. The apparatus of claim 18 wherein to control a switching power supply and provide over current protection further comprises to control a switching power supply and provide over current protection for an output current of the power supply.
  • 23. A method comprising: providing over current protection for an output current of a switching power supply, wherein providing over current protection for an output current of the switching power supply comprises: monitoring a link voltage of a stage of the switching power supply coupled to an output stage of the switching power supply;determining a power utilization factor, wherein the power utilization factor represents an amount of power demanded of the switching power supply by a load coupled to the switching power supply;monitoring an output voltage of the switching power supply;determining if the power utilization factor is greater than a power utilization factor threshold value;determining if an output voltage of the switching power supply is greater than an output voltage threshold value; andif the power utilization factor is greater than a power utilization factor threshold value and the output voltage is less than the output voltage threshold value, then entering an over current protection mode.
  • 24. An apparatus comprising: a controller to control a power supply and provide over current protection for an output current of the power supply, wherein the controller is configured to provide the over current protection for the power supply using power utilization information and an output voltage of an output stage of the power supply, wherein the power utilization information represents power utilization of the power supply and to control a power supply and provide over current protection for an output current of the power supply, the controller is further configured to: determine the power utilization information representing an amount of power demanded of the power supply by a load coupled to the power supply;monitor an output voltage of the power supply;determine when the power utilization information exceeds a predetermined threshold value and when the output voltage decreases to a predetermined threshold voltage; andprovide the over current protection for the power supply when the controller determines that the power utilization information exceeds the predetermined threshold value and the output voltage decreases to a predetermined threshold voltage.
  • 25. A method comprising: controlling a power supply, wherein controlling the power supply includes using power utilization information and an output voltage of an output stage of the power supply to provide over current protection for an output current of the power supply wherein the power utilization information represents power utilization of the power supply, and controlling the power supply further includes: determining the power utilization information representing an amount of power demanded of the power supply by a load coupled to the power supply;monitoring an output voltage of the power supply;determining when the power utilization information exceeds a predetermined threshold value and when the output voltage decreases to a predetermined threshold voltage; andproviding the over current protection for the power supply when the controller determines that the power utilization information exceeds the predetermined threshold value and the output voltage decreases to a predetermined threshold voltage.
US Referenced Citations (254)
Number Name Date Kind
3316495 Sherer Apr 1967 A
3423689 Miller et al. Jan 1969 A
3586988 Weekes Jun 1971 A
3725804 Langan Apr 1973 A
3790878 Brokaw Feb 1974 A
3881167 Pelton et al. Apr 1975 A
4075701 Hofmann Feb 1978 A
4334250 Theus Jun 1982 A
4409476 Lofgren et al. Oct 1983 A
4414493 Henrich Nov 1983 A
4476706 Hadden et al. Oct 1984 A
4523128 Stamm Jun 1985 A
4677366 Wilkinson et al. Jun 1987 A
4683529 Bucher Jul 1987 A
4700188 James Oct 1987 A
4737658 Kronmuller et al. Apr 1988 A
4797633 Humphrey Jan 1989 A
4937728 Leonardi Jun 1990 A
4940929 Williams Jul 1990 A
4973919 Allfather Nov 1990 A
4979087 Sellwood et al. Dec 1990 A
4980898 Silvian Dec 1990 A
4992919 Lee et al. Feb 1991 A
4994952 Silva et al. Feb 1991 A
5001620 Smith Mar 1991 A
5055746 Hu et al. Oct 1991 A
5109185 Ball Apr 1992 A
5121079 Dargatz Jun 1992 A
5206540 de Sa e Silva et al. Apr 1993 A
5264780 Bruer et al. Nov 1993 A
5278490 Smedley Jan 1994 A
5323157 Ledzius et al. Jun 1994 A
5359180 Park et al. Oct 1994 A
5383109 Maksimovic et al. Jan 1995 A
5424932 Inou et al. Jun 1995 A
5430635 Liu Jul 1995 A
5477481 Kerth Dec 1995 A
5479333 McCambridge et al. Dec 1995 A
5481178 Wilcox et al. Jan 1996 A
5565761 Hwang Oct 1996 A
5589759 Borgato et al. Dec 1996 A
5638265 Gabor Jun 1997 A
5691890 Hyde Nov 1997 A
5747977 Hwang May 1998 A
5757635 Seong May 1998 A
5764039 Choi et al. Jun 1998 A
5768111 Zaitsu Jun 1998 A
5781040 Myers Jul 1998 A
5783909 Hochstein Jul 1998 A
5798635 Hwang et al. Aug 1998 A
5900683 Rinehart et al. May 1999 A
5912812 Moriarty, Jr. Jun 1999 A
5929400 Colby et al. Jul 1999 A
5946202 Balogh Aug 1999 A
5946206 Shimizu et al. Aug 1999 A
5952849 Haigh et al. Sep 1999 A
5960207 Brown Sep 1999 A
5962989 Baker Oct 1999 A
5963086 Hall Oct 1999 A
5966297 Minegishi Oct 1999 A
5994885 Wilcox et al. Nov 1999 A
6016038 Mueller et al. Jan 2000 A
6043633 Lev et al. Mar 2000 A
6072969 Yokomori et al. Jun 2000 A
6083276 Davidson et al. Jul 2000 A
6084450 Smith et al. Jul 2000 A
6091233 Hwang Jul 2000 A
6125046 Jang et al. Sep 2000 A
6150774 Mueller et al. Nov 2000 A
6181114 Hemena et al. Jan 2001 B1
6211626 Lys et al. Apr 2001 B1
6211627 Callahan Apr 2001 B1
6229271 Liu May 2001 B1
6229292 Redl et al. May 2001 B1
6246183 Buonavita Jun 2001 B1
6259614 Ribarich et al. Jul 2001 B1
6300723 Wang et al. Oct 2001 B1
6304066 Wilcox et al. Oct 2001 B1
6304473 Telefus et al. Oct 2001 B1
6343026 Perry Jan 2002 B1
6344811 Melanson Feb 2002 B1
6369525 Chang et al. Apr 2002 B1
6385063 Sadek et al. May 2002 B1
6407514 Glaser et al. Jun 2002 B1
6407515 Hesler Jun 2002 B1
6407691 Yu Jun 2002 B1
6441558 Muthu et al. Aug 2002 B1
6445600 Ben-Yaakov Sep 2002 B2
6452521 Wang Sep 2002 B1
6469484 L'Hermite et al. Oct 2002 B2
6495964 Muthu et al. Dec 2002 B1
6509913 Martin, Jr. et al. Jan 2003 B2
6531854 Hwang Mar 2003 B2
6580258 Wilcox et al. Jun 2003 B2
6583550 Iwasa et al. Jun 2003 B2
6628106 Batarseh et al. Sep 2003 B1
6636003 Rahm et al. Oct 2003 B2
6646848 Yoshida et al. Nov 2003 B2
6657417 Hwang Dec 2003 B1
6688753 Calon et al. Feb 2004 B2
6713974 Patchornik et al. Mar 2004 B2
6724174 Esteves et al. Apr 2004 B1
6727832 Melanson Apr 2004 B1
6737845 Hwang May 2004 B2
6741123 Melanson et al. May 2004 B1
6753661 Muthu et al. Jun 2004 B2
6756772 McGinnis Jun 2004 B2
6768655 Yang et al. Jul 2004 B1
6781351 Mednik et al. Aug 2004 B2
6788011 Mueller et al. Sep 2004 B2
6806659 Mueller et al. Oct 2004 B1
6839247 Yang Jan 2005 B1
6860628 Robertson et al. Mar 2005 B2
6870325 Bushell et al. Mar 2005 B2
6873065 Haigh et al. Mar 2005 B2
6882552 Telefus et al. Apr 2005 B2
6888322 Dowling et al. May 2005 B2
6894471 Corva et al. May 2005 B2
6933706 Shih Aug 2005 B2
6940733 Schie et al. Sep 2005 B2
6944034 Shteynberg et al. Sep 2005 B1
6956750 Eason et al. Oct 2005 B1
6958920 Mednik et al. Oct 2005 B2
6963496 Bimbaud Nov 2005 B2
6967448 Morgan et al. Nov 2005 B2
6970503 Kalb Nov 2005 B1
6975079 Lys et al. Dec 2005 B2
6975523 Kim et al. Dec 2005 B2
6980446 Simada et al. Dec 2005 B2
7003023 Krone et al. Feb 2006 B2
7034611 Oswal et al. Apr 2006 B2
7050509 Krone et al. May 2006 B2
7064498 Dowling et al. Jun 2006 B2
7064531 Zinn Jun 2006 B1
7072191 Nakao et al. Jul 2006 B2
7075329 Chen et al. Jul 2006 B2
7078963 Andersen et al. Jul 2006 B1
7088059 McKinney et al. Aug 2006 B2
7099163 Ying Aug 2006 B1
7102902 Brown et al. Sep 2006 B1
7106603 Lin et al. Sep 2006 B1
7109791 Epperson et al. Sep 2006 B1
7126288 Ribarich et al. Oct 2006 B2
7135824 Lys et al. Nov 2006 B2
7145295 Lee et al. Dec 2006 B1
7158633 Hein Jan 2007 B1
7161816 Shteynberg et al. Jan 2007 B2
7180250 Gannon Feb 2007 B1
7183957 Melanson Feb 2007 B1
7221130 Ribeiro et al. May 2007 B2
7233135 Noma et al. Jun 2007 B2
7246919 Porchia et al. Jul 2007 B2
7255457 Ducharm et al. Aug 2007 B2
7266001 Notohamiprodjo et al. Sep 2007 B1
7276861 Shteynberg et al. Oct 2007 B1
7288902 Melanson Oct 2007 B1
7292013 Chen et al. Nov 2007 B1
7310244 Yang et al. Dec 2007 B2
7345458 Kanai et al. Mar 2008 B2
7375476 Walter et al. May 2008 B2
7388764 Huynh et al. Jun 2008 B2
7394210 Ashdown Jul 2008 B2
7511437 Lys et al. Mar 2009 B2
7538499 Ashdown May 2009 B2
7545130 Latham Jun 2009 B2
7554473 Melanson Jun 2009 B2
7569996 Holmes et al. Aug 2009 B2
7583136 Pelly Sep 2009 B2
7656103 Shteynberg et al. Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7710047 Shteynberg et al. May 2010 B2
7719246 Melanson May 2010 B2
7719248 Melanson May 2010 B1
7746043 Melanson Jun 2010 B2
7746671 Radecker et al. Jun 2010 B2
7750738 Bach Jul 2010 B2
7756896 Feingold Jul 2010 B1
7777563 Midya et al. Aug 2010 B2
7804256 Melanson Sep 2010 B2
7804480 Jeon et al. Sep 2010 B2
20020065583 Okada May 2002 A1
20020145041 Muthu et al. Oct 2002 A1
20020150151 Krone et al. Oct 2002 A1
20020166073 Nguyen et al. Nov 2002 A1
20030095013 Melanson et al. May 2003 A1
20030174520 Bimbaud Sep 2003 A1
20030223255 Ben-Yaakov Dec 2003 A1
20040004465 McGinnis Jan 2004 A1
20040046683 Mitamura et al. Mar 2004 A1
20040085030 Laflamme et al. May 2004 A1
20040085117 Melbert et al. May 2004 A1
20040169477 Yancie et al. Sep 2004 A1
20040227571 Kuribayashi Nov 2004 A1
20040228116 Miller et al. Nov 2004 A1
20040232971 Kawasake et al. Nov 2004 A1
20040239262 Ido et al. Dec 2004 A1
20050057237 Clavel Mar 2005 A1
20050156770 Melanson Jul 2005 A1
20050168492 Hekstra et al. Aug 2005 A1
20050184895 Petersen et al. Aug 2005 A1
20050197952 Shea et al. Sep 2005 A1
20050207190 Gritter Sep 2005 A1
20050218838 Lys Oct 2005 A1
20050222881 Booker Oct 2005 A1
20050253533 Lys et al. Nov 2005 A1
20050270813 Zhang et al. Dec 2005 A1
20050275354 Hausman, Jr. et al. Dec 2005 A1
20050275386 Jepsen et al. Dec 2005 A1
20060002110 Dowling Jan 2006 A1
20060022648 Ben-Yaakov et al. Feb 2006 A1
20060022916 Aiello Feb 2006 A1
20060023002 Hara et al. Feb 2006 A1
20060116898 Peterson Jun 2006 A1
20060125420 Boone et al. Jun 2006 A1
20060184414 Pappas et al. Aug 2006 A1
20060214603 Oh et al. Sep 2006 A1
20060226795 Walter et al. Oct 2006 A1
20060238136 Johnson, III et al. Oct 2006 A1
20060261754 Lee Nov 2006 A1
20060285365 Huynh et al. Dec 2006 A1
20070024213 Shteynberg et al. Feb 2007 A1
20070029946 Yu et al. Feb 2007 A1
20070040512 Jungwirth et al. Feb 2007 A1
20070053182 Robertson Mar 2007 A1
20070055564 Fourman Mar 2007 A1
20070103949 Tsuruya May 2007 A1
20070124615 Orr May 2007 A1
20070126656 Huang et al. Jun 2007 A1
20070182699 Ha et al. Aug 2007 A1
20070285031 Shteynberg et al. Dec 2007 A1
20080012502 Lys Jan 2008 A1
20080027841 Eder Jan 2008 A1
20080043504 Ye et al. Feb 2008 A1
20080054815 Kotikalapoodi et al. Mar 2008 A1
20080116818 Shteynberg et al. May 2008 A1
20080130322 Artusi et al. Jun 2008 A1
20080130336 Taguchi Jun 2008 A1
20080150433 Tsuchida et al. Jun 2008 A1
20080154679 Wade Jun 2008 A1
20080174291 Hansson et al. Jul 2008 A1
20080174372 Tucker et al. Jul 2008 A1
20080175029 Jung et al. Jul 2008 A1
20080192509 Dhuyvetter et al. Aug 2008 A1
20080224635 Hayes Sep 2008 A1
20080232141 Artusi et al. Sep 2008 A1
20080239764 Jacques et al. Oct 2008 A1
20080259655 Wei et al. Oct 2008 A1
20080278132 Kesterson et al. Nov 2008 A1
20090067204 Ye et al. Mar 2009 A1
20090070188 Scott et al. Mar 2009 A1
20090147544 Melanson Jun 2009 A1
20090174479 Yan et al. Jul 2009 A1
20090218960 Lyons et al. Sep 2009 A1
20100141317 Szajnowski Jun 2010 A1
Foreign Referenced Citations (26)
Number Date Country
19713814 Oct 1998 DE
0585789 Mar 1994 EP
0632679 Jan 1995 EP
0838791 Apr 1998 EP
0910168 Apr 1999 EP
1014563 Jun 2000 EP
1164819 Dec 2001 EP
1213823 Jun 2002 EP
1460775 Sep 2004 EP
1528785 May 2005 EP
2204905 AL Jul 2010 EP
2069269 Aug 1981 GB
WO9725836 Jul 1997 WO
0115316 Jan 2001 WO
0197384 Dec 2001 WO
0215386 Feb 2002 WO
WO0227944 Apr 2002 WO
02091805 Nov 2002 WO
WO 2006022107 Mar 2006 WO
2006067521 Jun 2006 WO
WO2006013557 Jun 2006 WO
WO2006135584 Dec 2006 WO
2007026170 Mar 2007 WO
2007079362 Jul 2007 WO
WO2008072160 Jun 2008 WO
WO2008152838 Dec 2008 WO
Non-Patent Literature Citations (169)
Entry
Infineon, CCM-PFC Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM), Version 2.1, Feb. 6, 2007.
International Rectifier, IRAC1150-300W Demo Board, User's Guide, Rev 3.0, Aug. 2, 2005.
International Rectifier, Application Note AN-1077,PFC Converter Design with IR1150 One Cycle Control IC, rev. 2.3, Jun. 2005.
International Rectifier, Data Sheet PD60230 revC, Feb. 5, 2007.
Lu et al., International Rectifier, Bridgeless PFC Implementation Using One Cycle Control Technique, 2005.
Linear Technology, LT1248, Power Factor Controller, Apr. 20, 2007.
On Semiconductor, AND8123/D, Power Factor Correction Stages Operating in Critical Conduction Mode, Sep. 2003.
On Semiconductor, MC33260, GreenLine Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions, Sep. 2005.
On Semiconductor, NCP1605, Enhanced, High Voltage and Efficient Standby Mode, Power Factor Controller, Feb. 2007.
On Semconductor, NCP1606, Cost Effective Power Factor Controller, Mar. 2007.
On Semiconductor, NCP1654, Product Review, Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters, Mar. 2007.
Philips, Application Note, 90W Resonant SMPS with TEA1610 SwingChip, AN99011, 1999.
NXP, TEA1750, GreenChip III SMPS control IC Product Data Sheet, Apr. 6, 2007.
Renesas, HA16174P/FP, Power Factor Correction Controller IC, Jan. 6, 2006.
Renesas Technology Releases Industry's First Critical-Conduction-Mode Power Factor Correction Control IC Implementing Interleaved Operation, Dec. 18, 2006.
Renesas, Application Note R2A20111 EVB, PFC Control IC R2A20111 Evaluation Board, Feb. 2007.
STMicroelectronics, L6563, Advanced Transition-Mode PFC Controller, Mar. 2007.
Texas Instruments, Application Note SLUA321, Startup Current Transient of the Leading Edge Triggered PFC Controllers, Jul. 2004.
Texas Instruments, Application Report, SLUA309A, Avoiding Audible Noise at Light Loads when using Leading Edge Triggered PFC Converters, Sep. 2004.
Texas Instruments, Application Report SLUA369B, 350-W, Two-Phase Interleaved PFC Pre-Regulator Design Review, Mar. 2007.
Unitrode, High Power-Factor Preregulator, Oct. 1994.
Texas Instruments, Transition Mode PFC Controller, SLUS515D, Jul. 2005.
Unitrode Products From Texas Instruments, Programmable Output Power Factor Preregulator, Dec. 2004.
Unitrode Products From Texas Instruments, High Performance Power Factor Preregulator, Oct. 2005.
Texas Instruments, UCC3817 BiCMOS Power Factor Preregulator Evaluation Board User's Guide, Nov. 2002.
Unitrode, L. Balogh, Design Note UC3854A/B and UC3855A/B Provide Power Limiting with Sinusoidal Input Current for PFC Front Ends, SLUA196A, Nov. 2001.
A. Silva De Morais et al., A High Power Factor Ballast Using a Single Switch with Both Power Stages Integrated, IEEE Transactions on Power Electronics, vol. 21, No. 2, Mar. 2006.
M. Ponce et al., High-Efficient Integrated Electronic Ballast for Compact Fluorescent Lamps, IEEE Transactions on Power Electronics, vol. 21, No. 2, Mar. 2006.
A. R. Seidel et al., A Practical Comparison Among High-Power-Factor Electronic Ballasts with Similar Ideas, IEEE Transactions on Industry Applications, vol. 41, No. 6, Nov.-Dec. 2005.
F. T. Wakabayashi et al., An Improved Design Procedure for LCC Resonant Filter of Dimmable Electronic Ballasts for Fluorescent Lamps, Based on Lamp Model, IEEE Transactions on Power Electronics, vol. 20, No. 2, Sep. 2005.
J. A. Vilela Jr. et al., An Electronic Ballast with High Power Factor and Low Voltage Stress, IEEE Transactions on Industry Applications, vol. 41, No. 4, Jul./Aug. 2005.
S. T.S. Lee et al., Use of Saturable Inductor to Improve the Dimming Characteristics of Frequency-Controlled Dimmable Electronic Ballasts, IEEE Transactions on Power Electronics, vol. 19, No. 6, Nov. 2004.
M. K. Kazimierczuk et al., Electronic Ballast for Fluorescent Lamps, IEEETransactions on Power Electronics, vol. 8, No. 4, Oct. 1993.
S. Ben-Yaakov et al., Statics and Dynamics of Fluorescent Lamps Operating at High Frequency: Modeling and Simulation, IEEE Transactions on Industry Applications, vol. 38, No. 6, Nov.-Dec. 2002.
H. L. Cheng et al., A Novel Single-Stage High-Power-Factor Electronic Ballast with Symmetrical Topology, IEEE Transactions on Power Electronics, vol. 50, No. 4, Aug. 2003.
J.W.F. Dorleijn et al., Standardisation of the Static Resistances of Fluorescent Lamp Cathodes and New Data for Preheating, Industry Applications Conference, vol. 1, Oct. 13-Oct. 18, 2002.
Q. Li et al., An Analysis of the ZVS Two-Inductor Boost Converter under Variable Frequency Operation, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007.
H. Peng et al., Modeling of Quantization Effects in Digitally Controlled DC-DC Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007.
G. Yao et al., Soft Switching Circuit for Interleaved Boost Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007.
C. M. De Oliviera Stein et al., A ZCT Auxiliary Communication Circuit for Interleaved Boost Converters Operating in Critical Conduction Mode, IEEE Transactions on Power Electronics, vol. 17, No. 6, Nov. 2002.
W. Zhang et al., A New Duty Cycle Control Strategy for Power Factor Correction and FPGA Implementation, IEEE Transactions on Power Electronics, vol. 21, No. 6, Nov. 2006.
H. Wu et al., Single Phase Three-Level Power Factor Correction Circuit with Passive Lossless Snubber, IEEE Transactions on Power Electronics, vol. 17, No. 2, Mar. 2006.
O. Garcia et al., High Efficiency PFC Converter to Meet EN61000-3-2 and A14, Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, vol. 3, 2002.
P. Lee et al., Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors, IEEE Transactions on Industrial Electronics, vol. 47, No. 4, Aug. 2000.
D.K.W. Cheng et al., A New Improved Boost Converter with Ripple Free Input Current Using Coupled Inductors, Power Electronics and Variable Speed Drives, Sep. 21-23, 1998.
B.A. Miwa et al., High Efficiency Power Factor Correction Using Interleaved Techniques, Applied Power Electronics Conference and Exposition, Seventh Annual Conference Proceedings, Feb. 23-27, 1992.
Z. Lai et al., A Family of Power-Factor-Correction Controllers, Twelfth Annual Applied Power Electronics Conference and Exposition, vol. 1, Feb. 23-Feb. 27, 1997.
L. Balogh et al., Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode, Eighth Annual Applied Power Electronics Conference and Exposition, 1993. APEC '93. Conference Proceedings, Mar. 7-Mar. 11, 1993.
Fairchild Semiconductor, Application Note 42030, Theory and Application of the ML4821 Average Current Mode PFC Controller, Oct. 25, 2000.
Unitrode Products From Texas Instruments, BiCMOS Power Factor Preregulator, Feb. 2006.
Mamano, Bob, “Current Sensing Solutions for Power Supply Designers”, Unitrode Seminar Notes SEM1200, 1999.
http://toolbarpdf.com/docs/functions-and-features-of-inverters.html printed on Jan. 20, 2011.
Freescale Semiconductor, Inc., Dimmable Light Ballast with Power Factor Correction, Design Reference Manual, DRM067, Rev. 1, Dec. 2005.
J. Zhou et al., Novel Sampling Algorithm for DSP Controlled 2 kW PFC Converter, IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001.
A. Prodic, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007.
M. Brkovic et al., “Automatic Current Shaper with Fast Output Regulation and Soft-Switching,” S.15.C Power Converters, Telecommunications Energy Conference, 1993.
Dallas Semiconductor, Maxim, “Charge-Pump and Step-Up DC-DC Converter Solutions for Powering White LEDs in Series or Parallel Connections,” Apr. 23, 2002.
Freescale Semiconductor, AN3052, Implementing PFC Average Current Mode Control Using the MC9S12E128, Nov. 2005.
D. Maksimovic et al., “Switching Converters with Wide DC Conversion Range,” Institute of Electrical and Electronic Engineer's (IEEE) Transactions on Power Electronics, Jan. 1991.
V. Nguyen et al., “Tracking Control of Buck Converter Using Sliding-Mode with Adaptive Hysteresis,” Power Electronics Specialists Conference, 1995. PESC apos; 95 Record., 26th Annual IEEE vol. 2, Issue , Jun. 18-22, 1995 pp. 1086-1093.
S. Zhou et al., “A High Efficiency, Soft Switching DC-DC Converter with Adaptive Current-Ripple Control for Portable Applications,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 53, No. 4, Apr. 2006.
K. Leung et al., “Use of State Trajectory Prediction in Hysteresis Control for Achieving Fast Transient Response of the Buck Converter,” Circuits and Systems, 2003. ISCAS apos;03. Proceedings of the 2003 International Symposium, vol. 3, Issue , May 25-28, 2003 pp. III-439-III-442 vol. 3.
K. Leung et al., “Dynamic Hysteresis Band Control of the Buck Converter with Fast Transient Response,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 52, No. 7, Jul. 2005.
Y. Ohno, Spectral Design Considerations for White LED Color Rendering, Final Manuscript, Optical Engineering, vol. 44, 111302 (2005).
S. Skogstad et al., A Proposed Stability Characterization and Verification Method for High-Order Single-Bit Delta-Sigma Modulators, Norchip Conference, Nov. 2006 http://folk.uio.no/sayskogs/pub/A—Proposed—Stability—Characterization.pdf.
J. Turchi, Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using the NCP1653, ON Semiconductor, Publication Order No. AND184/D, Nov. 2004.
Megaman, D or S Dimming ESL, Product News, Mar. 15, 2007.
J. Qian et al., New Charge Pump Power-Factor-Correction Electronic Ballast with a Wide Range of Line Input Voltage, IEEE Transactions on Power Electronics, vol. 14, No. 1, Jan. 1999.
P. Green, A Ballast that can be Dimmed from a Domestic (Phase-Cut) Dimmer, IRPLCFL3 rev. b, International Rectifier, http://www.irf.com/technical-info/refdesigns/cfl-3.pdf, printed Mar. 24, 2007.
J. Qian et al., Charge Pump Power-Factor-Correction Technologies Part II: Ballast Applications, IEEE Transactions on Power Electronics, vol. 15, No. 1, Jan. 2000.
Chromacity Shifts in High-Power White LED Systems due to Different Dimming Methods, Solid-State Lighting, http://www.Irc.rpi.edu/programs/solidstate/completedProjects.asp?ID=76, printed May 3, 2007.
S. Chan et al., Design and Implementation of Dimmable Electronic Ballast Based on Integrated Inductor, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007.
M. Madigan et al., Integrated High-Quality Rectifier-Regulators, IEEE Transactions on Industrial Electronics, vol. 46, No. 4, Aug. 1999.
T. Wu et al., Single-Stage Electronic Ballast with Dimming Feature and Unity Power Factor, IEEE Transactions on Power Electronics, vol. 13, No. 3, May 1998.
F. Tao et al., “Single-Stage Power-Factor-Correction Electronic Ballast with a Wide Continuous Dimming Control for Fluorescent Lamps,” IEEE Power Electronics Specialists Conference, vol. 2, 2001.
Azoteq, IQS17 Family, IQ Switch®—ProxSense™ Series, Touch Sensor, Load Control and User Interface, IQS17 Datasheet V2.00.doc, Jan. 2007.
C. Dilouie, Introducing the LED Driver, EC&M, Sep. 2004.
S. Lee et al., TRIAC Dimmable Ballast with Power Equalization, IEEE Transactions on Power Electronics, vol. 20, No. 6, Nov. 2005.
L. Gonthier et al., EN55015 Compliant 500W Dimmer with Low-Losses Symmetrical Switches, 2005 European Conference on Power Electronics and Applications, Sep. 2005.
Why Different Dimming Ranges? The Difference Between Measured and Perceived Light, 2000 http://www.lutron.com/ballast/pdf/LutronBallastpg3.pdf.
D. Hausman, Real-Time Illumination Stability Systems for Trailing-Edge (Reverse Phase Control) Dimmers, Technical White Paper, Lutron, version 1.0, Dec. 2004, http://www.lutron.com/technical—info/pdf/RTISS-TE.pdf.
Light Dimmer Circuits, www.epanorama.net/documents/lights/lightdimmer.html, printed Mar. 26, 2007.
Light Emitting Diode, http://en.wikipedia.org/wiki/Light-emitting—diode, printed Mar. 27, 2007.
Color Temperature, www.sizes.com/units/color—temperature.htm, printed Mar. 27, 2007.
S. Lee et al., A Novel Electrode Power Profiler for Dimmable Ballasts Using DC Link Voltage and Switching Frequency Controls, IEEE Transactions on Power Electronics, vol. 19, No. 3, May 2004.
Y. Ji et al., Compatibility Testing of Fluorescent Lamp and Ballast Systems, IEEE Transactions on Industry Applications, vol. 35, No. 6, Nov./Dec. 1999.
National Lighting Product Information Program, Specifier Reports, “Dimming Electronic Ballasts,” vol. 7, No. 3, Oct. 1999.
Supertex Inc., Buck-based LED Drivers Using the HV9910B, Application Note AN-H48, Dec. 28, 2007.
D. Rand et al., Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps, Power Electronics Specialists Conference, 2007.
Supertex Inc., HV9931 Unity Power Factor LED Lamp Driver, Application Note AN-H52, Mar. 7, 2007.
Supertex Inc., 56W Off-line LED Driver, 120VAC with PFC, 160V, 350mA Load, Dimmer Switch Compatible, DN-H05, Feb. 2007.
ST Microelectronics, Power Factor Corrector L6561, Jun. 2004.
Fairchild Semiconductor, Application Note 42047 Power Factor Correction (PFC) Basics, Rev. 0.9.0 Aug. 19, 2004.
M. Radecker et al., Application of Single-Transistor Smart-Power IC for Fluorescent Lamp Ballast, Thirty-Fourth Annual Industry Applications Conference IEEE, vol. 1, Oct. 3-Oct. 7, 1999.
M. Rico-Secades et al., Low Cost Electronic Ballast for a 36-W Fluorescent Lamp Based on a Current-Mode-Controlled Boost Inverter for a 120-V DC Bus Power Distribution, IEEE Transactions on Power Electronics, vol. 21, No. 4, Jul. 2006.
Fairchild Semiconductor, FAN4800, Low Start-up Current PFC/PWM Controller Combos, Nov. 2006.
Fairchild Semiconductor, FAN4810, Power Factor Correction Controller, Sep. 24, 2003.
Fairchild Semiconductor, FAN4822, ZVS Average Current PFC Controller, Aug. 10, 2001.
Fairchild Semiconductor, FAN7527B, Power Factor Correction Controller, 2003.
Fairchild Semiconductor, ML4821, Power Factor Controller, Jun. 19, 2001.
Freescale Semiconductor, AN1965, Design of Indirect Power Factor Correction Using 56F800/E, Jul. 2005.
International Search Report for PCT/US2008/051072, mailed Jun. 4, 2008.
Power Integrations, Inc., “TOP200-4/14 TOPSwitch Family Three-terminal Off-line PWM Switch”, XP-002524650, Jul. 1996, Sunnyvale, California.
Texas Instruments, SLOS318F, “High-Speed, Low Noise, Fully-Differential I/O Amplifiers,” THS4130 and THS4131, US, Jan. 2006.
International Search Report and Written Opinion, PCT US20080062387, dated Feb. 5, 2008.
International Search Report and Written Opinion, PCT US200900032358, dated Jan. 29, 2009.
Hirota, Atsushi et al, “Analysis of Single Switch Delta-Sigma Modulated Pulse Space Modulation PFC Converter Effectively Using Switching Power Device,” IEEE, US, 2002.
Prodic, Aleksandar, “Digital Controller for High-Frequency Rectifiers with Power Factor Correction Suitable for On-Chip Implementation,” IEEE, US, 2007.
International Search Report and Written Opinion, PCT US20080062378, dated Feb. 5, 2008.
International Search Report and Written Opinion, PCT US20090032351, dated Jan. 29, 2009.
Erickson, Robert W. et al, “Fundamentals of Power Electronics,” Second Edition, Chapter 6, Boulder, CO, 2001.
Allegro Microsystems, A1442, “Low Voltage Full Bridge Brushless DC Motor Driver with Hall Commutation and Soft-Switching, and Reverse Battery, Short Circuit, and Thermal Shutdown Protection,” Worcester MA, 2009.
Texas Instruments, SLUS828B, “8-Pin Continuous Conduction Mode (CCM) PFC Controller”, UCC28019A, US, revised Apr. 2009.
Analog Devices, “120 kHz Bandwidth, Low Distortion, Isolation Amplifier”, AD215, Norwood, MA, 1996.
Burr-Brown, ISO120 and ISO121, “Precision Los Cost Isolation Amplifier,” Tucson AZ, Mar. 1992.
Burr-Brown, ISO130, “High IMR, Low Cost Isolation Amplifier,” SBOS220, US, Oct. 2001.
International Search Report and Written Report PCT US20080062428 dated Feb. 5, 2008.
Prodic, A. et al, “Dead Zone Digital Controller for Improved Dynamic Response of Power Factor Preregulators,” IEEE, 2003.
Texas Instruments, Interleaving Continuous Conduction Mode PFC Controller, UCC28070, SLUS794C, Nov. 2007, revised Jun. 2009, Texas Instruments, Dallas TX.
Linear Technology, “Single Switch PWM Controller with Auxiliary Boost Converter,” LT1950 Datasheet, Linear Technology, Inc. Milpitas, CA, 2003.
Yu, Zhenyu, 3.3V DSP for Digital Motor Control, Texas Instruments, Application Report SPRA550 dated Jun. 1999.
International Rectifier, Data Sheet No. PD60143-O Current Sensing Single Channel Driver, El Segundo, CA, dated Sep. 8, 2004.
Balogh, Laszlo, “Design and Application Guide for High Speed MOSFET Gate Drive Circuits” [Online] 2001, Texas Instruments, Inc., SEM-1400, Unitrode Power Supply Design Seminar, Topic II, TI literature No. SLUP133, XP002552367, Retrieved from the Internet: URL:htt/://focus.ti.com/lit/ml/slup169/slup169.pdf the whole document.
“HV9931 Unity Power Factor LED Lamp Driver, Initial Release”, Supertex Inc., Sunnyvale, CA USA 2005.
“AN-H52 Application Note: HV9931 Unity Power Factor Led Lamp Driver” Mar. 7, 2007, Supertex Inc., Sunnyvale, CA, USA.
Dustin Rand et al: “Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps” Power Electronics Specialists Conferrence, 2007. PESC 2007. IEEE, IEEE, P1, Jun. 1, 2007, pp. 1398-1404.
Spiazzi G et al: “Analysis of a High-Power Factor Electronic Ballast for High Brightness Light Emitting Diodes” Power Electronics Specialists, 2005 IEEE 36TH Conference on Jun. 12, 2005, Piscatawa, NJ, USA, IEEE, pp. 1494-1499.
International Search Report PCT/US2008/062381 dated Feb. 5, 2008.
International Search Report PCT/US2008/056739 dated Dec. 3, 2008.
Written Opinion of the International Searching Authority PCT/US2008/062381 dated Feb. 5, 2008.
Ben-Yaakov et al, “The Dynamics of a PWM Boost Converter with Resistive Input” IEEE Transactions on Industrial Electronics, IEEE Service Center, Piscataway, NJ, USA, vol. 46, No. 3, Jun. 1, 1999.
International Search Report PCT/US2008/062398 dated Feb. 2, 2008.
Partial International Search Report PCT/US2008/062387 dated Feb. 5, 2008.
Noon, Jim “UC3855A/B High Performance Power Factor Preregulator”, Texas Instruments, SLUA146A, May 1996, Revised Apr. 2004.
International Search Report PCT/GB2006/003259 dated Jan. 12, 2007.
Written Opinion of the International Searching Authority PCT/US2008/056739 dated Dec. 3, 2008.
International Search Report PCT/US2008/056606 dated Dec. 3, 2008.
Written Opinion of the International Searching Authority PCT/US2008/056606 dated Dec. 3, 2008.
International Search Report PCT/US2008/056608 dated Dec. 3, 2008.
Written Opinion of the International Searching Authority PCT/US2008/056608 dated Dec. 3, 2008.
International Search Report PCT/GB2005/050228 dated Mar. 14, 2006.
International Search Report PCT/US2008/062387 dated Jan. 10, 2008.
Data Sheet LT3496 Triple Output LED Driver, Linear Technology Corporation, Milpitas, CA 2007.
Linear Technology, News Release,Triple Output LED, LT3496, Linear Technology, Milpitas, CA, May 24, 2007.
International Search Report for PCT/US2010/054036, dated Mar. 1, 2011.
D. Hausman, Lutron, RTISS-TE Operation, Real-Time Illumination Stability Systems for Trailing-Edge (Reverse Phase Control) Dimmers, v. 1.0 Dec. 2004.
International Rectifier, Data Sheet No. PD60230 revC, IR1150(S)(PbF), uPFC One Cycle Control PFC IC Feb. 5, 2007.
Texas Instruments, Application Report SLUA308, UCC3817 Current Sense Transformer Evaluation, Feb. 2004.
Texas Instruments, Application Report SPRA902A, Average Current Mode Controlled Power Factor Correctiom Converter using TMS320LF2407A, Jul. 2005.
Unitrode, Design Note DN-39E, Optimizing Performance in UC3854 Power Factor Correction Applications, Nov. 1994.
Fairchild Semiconductor, Application Note 42030, Theory and Application of the ML4821 Average Currrent Mode PFC Controller, Aug. 1997.
Fairchild Semiconductor, Application Note AN4121, Design of Power Factor Correction Circuit Using FAN7527B, Rev.1.0.1, May 30, 2002.
Fairchild Semiconductor, Application Note 6004, 500W Power-Factor-Corrected (PFC) Converter Design with FAN4810, Rev. 1.0.1, Oct. 31, 2003.
Fairchild Semiconductor, FAN4822, ZVA Average Current PFC Controller, Rev. 1.0.1 Aug. 10, 2001.
Fairchild Semiconductor, ML4821, Power Factor Controller, Rev. 1.0.2, Jun. 19, 2001.
Fairchild Semiconductor, ML4812, Power Factor Controller, Rev. 1.0.4, May 31, 2001.
Linear Technology, 100 Watt LED Driver, Linear Technology, 2006.
Fairchild Semiconductor, FAN7544, Simple Ballast Controller, Rev. 1.0.0, 2004.
Fairchild Semiconductor, FAN7532, Ballast Controller, Rev. 1.0.2, Jun. 2006.
Fairchild Semiconductor, FAN7711, Ballast Control IC, Rev. 1.0.2, Mar. 2007.
Fairchild Semiconductor, KA7541, Simple Ballast Controller, Rev. 1.0.3, 2001.
ST Microelectronics, L6574, CFL/TL Ballast Driver Preheat and Dimming, Sep. 2003.
ST Microelectronics, AN993, Application Note, Electronic Ballast with PFC Using L6574 and L6561, May 2004.
International Search Report and Written Opinion for PCT/US2008/062384 dated Jan. 14, 2008.
S. Dunlap et al., Design of Delta-Sigma Modulated Switching Power Supply, Circuits & Systems, Proceedings of the 1998 IEEE International Symposium, 1998.
ST Datasheet L6562, Transition-Mode PFC Controller, 2005, STMicroelectronics, Geneva, Switzerland.
Maksimovic, Regan Zane and Robert Erickson, Impact of Digital Control in Power Electronics, Proceedings of 2004 International Symposium on Power Semiconductor Devices & Ics, Kitakyushu,, Apr. 5, 2010, Colorado Power Electronics Center, ECE Department, University of Colorado, Boulder, CO.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated May 15, 2012, issued in corresponding PCT Patent Application No. PCT/US2010/054036.
PCT US2010/54036 International Search Report dated Feb. 22, 2011.
Related Publications (1)
Number Date Country
20110110000 A1 May 2011 US