Claims
- 1. A spindle lock for a power tool, the power tool including a housing, a motor supported by the housing and including a motor shaft, and a spindle supported by the housing for rotation about an axis, a driving connection being provided between the spindle and the motor shaft such that the spindle is drivingly connectable to the motor shaft, the spindle being selectively driven by the motor in a first direction about the axis and in a second direction about the axis, the second direction being opposite to the first direction, said spindle lock comprising:
a first locking member; a second locking member movable between a locked position, in which the second locking member engages the first locking member to prevent rotation of the spindle, and an unlocked position; a spring operable to delay movement of the second locking member from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection; and a detent arrangement including
a first recess and a second recess, and a projection engaged by the spring, the projection being selectively positioned in the first recess and in the second recess; wherein, when the spindle is rotated in the first direction relative to the driving connection, the projection is movable between a first position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the first recess, and a second position, in which the projection is positioned in the second recess, movement of the projection from the first recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the first direction relative to the driving connection; and wherein, when the spindle is rotated in the second direction relative to the driving connection, the projection is movable between the second position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the second recess, and the first position, in which the projection is positioned in the first recess, movement of the projection from the second recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the second direction relative to the driving connection.
- 2. The spindle lock as set forth in claim 1 wherein, when the spindle is rotated in the first direction relative to the motor shaft, the spring applies a first spring force to the projection to bias the projection into the first recess and to delay movement of the second locking member from the unlocked position to the locked position, and wherein, when the spindle is rotated in the second direction relative to the motor shaft, the spring applies a second spring force to the projection to bias the projection into the second recess and to delay movement of the second locking member from the unlocked position to the locked position, the second spring force and the first spring force being substantially equal.
- 3. The spindle lock as set forth in claim 2 wherein the spring includes a first spring member and a second spring member, wherein the first spring member applies a first portion of the first spring force and the second spring member applies a second portion of the first spring force, and wherein the first spring member applies a first portion of the second spring force and the second spring member applies a second portion of the second spring force.
- 4. The spindle lock as set forth in claim 1 wherein the first locking member includes a first locking member portion defining a first locking surface and a second locking member portion defining a second locking surface, wherein the second locking member is a wedge roller positioned between the first locking member portion and the second locking member portion and positionable in a locked position, in which the wedge roller is wedged between the first locking surface and the second locking surface to prevent rotation of the spindle, and in an unlocked position, and wherein the spring is operable to delay movement of the wedge roller from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection.
- 5. The spindle lock as set forth in claim 1 wherein the spring applies a spring force to the projection to bias the projection into a selected one of the first recess and the second recess.
- 6. The spindle lock as set forth in claim 5 wherein the spring applies the spring force to the projection in a radial direction to bias the projection into the selected one of the first recess and the second recess.
- 7. The spindle lock as set forth in claim 1 wherein the spring includes a spring arm having an arm end, the arm end providing the projection, the spring arm applying a spring force to bias the arm end into engagement with a selected one of the first recess and the second recess.
- 8. The spindle lock as set forth in claim 1 wherein, when the spindle is rotated in the first direction, the second position of the projection corresponds to the locked position of the second locking member; and wherein, when the spindle is rotated in the first direction, the projection engages the second recess to releasably maintain the second locking member in the locked position.
- 9. The spindle lock as set forth in claim 8 wherein, when the spindle is rotated in the second direction, the first position of the projection corresponds to the locked position of the second locking member; and wherein, when the spindle is rotated in the second direction the projection engages the first recess to releasably maintain the second locking member in the locked position.
- 10. The spindle lock as set forth in claim 1 wherein the first locking member includes a first locking member portion defining a first locking surface and a second locking member portion defining a second locking surface, wherein the second locking member is a brake shoe positioned between the first locking member portion and the second locking member portion and positionable in a locked position, in which the brake shoe is wedged between the first locking surface and the second locking surface to prevent rotation of the spindle, and in an unlocked position, and wherein the spring is operable to delay movement of the brake shoe from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection.
- 11. The spindle lock as set forth in claim 10 wherein the outer surface of the brake shoe and the inner circumference of the first locking member are provided with inter-engaging projections and recesses.
- 12. A spindle lock for a power tool, the power tool including a housing, a motor supported by the housing and including a motor shaft, and a spindle supported by the housing for rotation about an axis, a driving connection being provided between the spindle and the motor shaft such that the spindle is drivingly connectable to the motor shaft, the spindle being selectively driven by the motor in a first direction about the axis and in a second direction about the axis, the second direction being opposite to the first direction, said spindle lock comprising:
a first locking member; a second locking member movable between a locked position, in which the second locking member engages the first locking member to prevent rotation of the spindle, and an unlocked position; a spring operable to delay movement of the second locking member from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection; and a detent arrangement including
a first recess and a second recess, and a projection engaged by the spring, the projection being selectively positioned in the first recess and in the second recess; wherein the spring applies a spring force to the projection to bias the projection into a selected one of the first recess and the second recess; wherein, when the spindle is rotated in the first direction relative to the motor shaft, the spring applies a first spring force to the projection to bias the projection into the first recess and to delay movement of the second locking member from the unlocked position to the locked position; and wherein, when the spindle is rotated in the second direction relative to the motor shaft, the spring applies a second spring force to the projection to bias the projection into the second recess and to delay movement of the second locking member from the unlocked position to the locked position, the second spring force and the first spring force being substantially equal.
- 13. The spindle lock as set forth in claim 12 wherein, when the spindle is rotated in the first direction, the projection is movable between a first position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the first recess, and a second position, in which the projection is positioned in the second recess, movement of the projection from the first recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the first direction relative to the driving connection; and wherein, when the spindle is rotated in the second direction relative to the driving connection, the projection is movable between the second position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the second recess, and the first position, in which the projection is positioned in the first recess, movement of the projection from the second recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the second direction relative to the driving connection.
- 14. The spindle lock as set forth in claim 12 wherein the spring includes a first spring member and a second spring member, wherein the first spring member applies a first portion of the first spring force and the second spring member applies a second portion of the first spring force, and wherein the first spring member applies a first portion of the second spring force and the second spring member applies a second portion of the second spring force.
- 15. The spindle lock as set forth in claim 12 wherein the spring applies the spring force to the projection in a radial direction to bias the projection into the selected one of the first recess and the second recess.
- 16. A spindle lock for a power tool, the power tool including a housing, a motor supported by the housing and including a motor shaft, and a spindle supported by the housing for rotation about an axis, a driving connection being provided between the spindle and the motor shaft such that the spindle is drivingly connectable to the motor shaft, the spindle being selectively driven by the motor in a first direction about the axis and in a second direction about the axis, the second direction being opposite to the first direction, said spindle lock comprising:
a first locking member; a second locking member movable between a locked position, in which the second locking member engages the first locking member to prevent rotation of the spindle, and an unlocked position; a spring operable to delay movement of the second locking member from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection, the spring including a first spring member and a second spring member; and a detent arrangement including
a first recess and a second recess, and a projection engaged by the spring, the projection being selectively positioned in the first recess and in the second recess; wherein the spring applies a spring force to the projection to bias the projection into a selected one of the first recess and the second recess; wherein, when the spindle is rotated in the first direction relative to the motor shaft, the spring applies a first spring force to the projection to bias the projection into the first recess and to delay movement of the second locking member from the unlocked position to the locked position; wherein, when the spindle is rotated in the second direction relative to the motor shaft, the spring applies a second spring force to the projection to bias the projection into the second recess and to delay movement of the second locking member from the unlocked position to the locked position, the second spring force and the first spring force being substantially equal; and wherein the first spring member applies a first portion of the first spring force and the second spring member applies a second portion of the first spring force, and wherein the first spring member applies a first portion of the second spring force and the second spring member applies a second portion of the second spring force.
- 17. The spindle lock as set forth in claim 16 wherein the spring applies the spring force to the projection in a radial direction to bias the projection into the selected one of the first recess and the second recess.
- 18. The spindle lock as set forth in claim 16 wherein the first portion of the first spring force applied by the first spring member and the second portion of the first spring force applied by the second spring member are different spring forces.
- 19. The spindle lock as set forth in claim 18 wherein the first portion of the second spring force applied by the first spring member and the second portion of the second spring force applied by the second spring member are different spring forces.
- 20. The spindle lock as set forth in claim 16 wherein the first portion of the first spring force applied by the first spring member and the first portion of the second spring force applied by the first spring member are different spring forces.
- 21. The spindle lock as set forth in claim 20 wherein the second portion of the first spring force applied by the second spring member and the second portion of the second spring force applied by the second spring member are different spring forces.
- 22. The spindle lock as set forth in claim 16 wherein the first spring member includes a first spring arm having a first arm end, the first arm end providing a first projection, wherein the second spring member includes a second spring arm having a second arm end, the second arm end providing a second projection, the first projection and the second projection being selectively positioned in the first recess and in the second recess.
- 23. The spindle lock as set forth in claim 22 wherein the first spring member includes a first spring body, the first spring arm extending arcuately in a first direction from the first spring body, wherein the second spring member includes a second spring body, the second spring arm extending arcuately in a second direction from the second spring body, the second direction being different than the first direction.
- 24. The spindle lock as set forth in claim 23 wherein the first spring member and the second spring member are substantially identical, the second spring member being supported in a reversed orientation relative to the first spring member.
- 25. A spindle lock for a power tool, the power tool including a housing, a motor supported by the housing and including a motor shaft, and a spindle supported by the housing for rotation about an axis, a driving connection being provided between the spindle and the motor shaft such that the spindle is drivingly connectable to the motor shaft, the spindle being selectively driven by the motor in a first direction about the axis and in a second direction about the axis, the second direction being opposite to the first direction, said spindle lock comprising:
a first locking member defining a first locking surface; a second locking member defining a second locking surface; a wedge roller positioned between the first locking member and the second locking member and positionable in a locked position, in which the wedge roller is wedged between the first locking surface and the second locking surface to prevent rotation of the spindle, and in an unlocked position; a spring operable to delay movement of the wedge roller from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection; and a detent arrangement including
a first recess and a second recess, and a projection engaged by the spring, the projection being selectively positioned in the first recess and in the second recess; wherein, when the spindle is rotated in the first direction relative to the driving connection, the projection is movable between a first position, which corresponds to the unlocked position of the wedge roller and in which the projection is positioned in the first recess, and a second position, in which the projection is positioned in the second recess, movement of the projection from the first recess delaying movement of the wedge roller from the unlocked position to the locked position when the spindle is rotated in the first direction relative to the driving connection; and wherein, when the spindle is rotated in the second direction relative to the driving connection, the projection is movable between the second position, which corresponds to the unlocked position of the wedge roller and in which the projection is positioned in the second recess, and the first position, in which the projection is positioned in the first recess, movement of the projection from the second recess delaying movement of the wedge roller from the unlocked position to the locked position when the spindle is rotated in the second direction relative to the driving connection.
- 26. The spindle lock as set forth in claim 25 wherein the wedge roller defines a roller axis, and wherein said spindle lock further comprises an alignment member engageable with the wedge roller to maintain the wedge roller in an orientation in which the roller axis is parallel to the spindle axis.
- 27. The spindle lock as set forth in claim 26 wherein the wedge roller has an outer roller surface and a length, wherein the first locking surface and the second locking surface extend parallel to the spindle axis, and wherein the alignment member maintains the wedge roller in an orientation in which the roller axis is parallel to the first locking surface and the second locking surface such that, in the locked position, a first portion of the outer surface roller surface engages the first locking surface along a substantial portion of the length of the wedge roller and a second portion of the outer surface roller surface engages the second locking surface along a substantial portion of the length of the wedge roller.
- 28. The spindle lock as set forth in claim 25 and further comprising:
a second wedge roller positioned between the first locking member and the second locking member and positionable in a locked position, in which the wedge roller is wedged between the first locking surface and the second locking surface to prevent rotation of the spindle, and in an unlocked position; and a synchronizing member engageable with the first-mentioned wedge roller and the second wedge roller such that the first-mentioned wedge roller and the second wedge roller simultaneously move to the respective locked positions.
- 29. The spindle lock as set forth in claim 28 wherein the first-mentioned wedge roller has a first outer roller surface and a length, wherein the second wedge roller has a second outer roller surface and a length, wherein the first wedge surface and the second wedge surface extend parallel to the spindle axis, wherein the synchronizing member maintains the first-mentioned wedge roller in an orientation in which the first roller axis is parallel to the first wedge surface such that, in the locked position, the first outer surface roller surface engages the first wedge surface along a substantial portion of the length of the first wedge roller, and wherein the synchronizing member maintains the second wedge roller in an orientation in which the second roller axis is parallel to the second wedge surface such that, in the locked position, the second outer surface roller surface engages the second wedge surface along a substantial portion of the length of the second wedge roller.
- 30. The spindle lock as set forth in claim 25 and further comprising a release member selectively engageable with the locking member to move the locking member from the locked position to the unlocked position.
- 31. A power tool comprising:
a housing; a motor supported by the housing and including a motor shaft; a spindle supported by the housing for rotation about an axis, a driving connection being provided between the spindle and the motor shaft such that the spindle is drivingly connectable to the motor shaft, the spindle being selectively driven by the motor in a first direction about the axis and in a second direction about the axis, the second direction being opposite to the first direction; and a spindle lock including
a first locking member, a second locking member movable between a locked position, in which the second locking member engages the first locking member to prevent rotation of the spindle, and an unlocked position, a spring operable to delay movement of the second locking member from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection, and a detent arrangement including
a first recess and a second recess, and a projection engaged by the spring, the projection being selectively positioned in the first recess and in the second recess; wherein, when the spindle is rotated in the first direction relative to the driving connection, the projection is movable between a first position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the first recess, and a second position, in which the projection is positioned in the second recess, movement of the projection from the first recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the first direction relative to the driving connection; and wherein, when the spindle is rotated in the second direction relative to the driving connection, the projection is movable between the second position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the second recess, and the first position, in which the projection is positioned in the first recess, movement of the projection from the second recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the second direction relative to the driving connection.
- 32. The power tool as set forth in claim 31 and further comprising a battery power source selectively connectable to the motor to operate the motor.
- 33. The power tool as set forth in claim 31 wherein the spring is positioned between the spindle and the locking member.
- 34. The power tool as set forth in claim 32 wherein the spindle lock further includes a release member selectively engageable with the locking member to move the locking member from the locked position to the unlocked position.
- 35. The power tool as set forth in claim 34 wherein, when the locking member is in the locked position, operation of the motor to rotatably drive the spindle causes the release member to engage and move the locking member from the locked position to the unlocked position.
- 36. The power tool as set forth in claim 31 wherein, when the spindle is rotated in the first direction relative to the motor shaft, the spring applies a first spring force to the projection to bias the projection into the first recess and to delay movement of the second locking member from the unlocked position to the locked position, and wherein, when the spindle is rotated in the second direction relative to the motor shaft, the spring applies a second spring force to the projection to bias the projection into the second recess and to delay movement of the second locking member from the unlocked position to the locked position, the second spring force and the first spring force being substantially equal.
- 37. The power tool as set forth in claim 36 wherein the spring includes a first spring member and a second spring member, wherein the first spring member applies a first portion of the first spring force and the second spring member applies a second portion of the first spring force, and wherein the first spring member applies a first portion of the second spring force and the second spring member applies a second portion of the second spring force.
- 38. The power tool as set forth in claim 31 wherein the first locking member includes a first locking member portion defining a first locking surface and a second locking member portion defining a second locking surface, wherein the second locking member is a wedge roller positioned between the first locking member portion and the second locking member portion and positionable in a locked position, in which the wedge roller is wedged between the first locking surface and the second locking surface to prevent rotation of the spindle, and in an unlocked position, and wherein the spring is operable to delay movement of the wedge roller from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection.
- 39. The power tool as set forth in claim 31 wherein the spring applies a spring force to the projection to bias the projection into a selected one of the first recess and the second recess.
- 40. The power tool as set forth in claim 39 wherein the spring applies the spring force to the projection in a radial direction to bias the projection into the selected one of the first recess and the second recess.
- 41. The power tool as set forth in claim 31 wherein the spring includes a spring arm having an arm end, the arm end providing the projection, the spring arm applying a spring force to bias the arm end into engagement with a selected one of the first recess and the second recess.
- 42. The power tool as set forth in claim 31 wherein, when the spindle is rotated in the first direction, the second position of the projection corresponds to the locked position of the second locking member, and wherein, when the spindle is rotated in the first direction, the projection engages the second recess to releasably maintain the second locking member in the locked position.
- 43. The power tool as set forth in claim 42 wherein, when the spindle is rotated in the second direction, the first position of the projection corresponds to the locked position of the second locking member; and wherein, when the spindle is rotated in the second direction the projection engages the first recess to releasably maintain the second locking member in the locked position.
- 44. A spindle lock for a power tool, the power tool including a housing, a motor supported by the housing and including a motor shaft, and a spindle supported by the housing for rotation in a direction about an axis, a driving connection being provided between the spindle and the motor shaft such that the spindle is drivingly connectable to the motor shaft, said spindle lock comprising:
a first locking member defining a first locking surface; a second locking member defining a second locking surface; a wedge roller positioned between the first locking member and the second locking member and positionable in a locked position, in which the wedge roller is wedged between the first locking surface and the second locking surface to prevent rotation of the spindle, and in an unlocked position, the wedge roller defining a roller axis, the wedge roller being movable in the direction and having a leading portion and a trailing portion; and an alignment member engageable with the trailing portion of the wedge roller from the unlocked position toward the locked position to maintain the wedge roller in an orientation in which the roller axis is parallel to the spindle axis, the leading portion of the wedge roller not being engaged by a structure from the unlocked position toward the locked position.
- 45. The spindle lock as set forth in claim 44 wherein the wedge roller has an outer roller surface and a length, wherein the first locking surface and the second locking surface extend parallel to the spindle axis, and wherein the alignment member maintains the wedge roller in an orientation in which the roller axis is parallel to the first locking surface and the second locking surface such that, in the locked position, a first portion of the outer surface roller surface engages the first locking surface along a substantial portion of the length of the wedge roller and a second portion of the outer surface roller surface engages the second locking surface along a substantial portion of the length of the wedge roller.
- 46. The spindle lock as set forth in claim 44 wherein the wedge roller has an outer roller surface, a first axial end and a second axial end, and wherein the alignment member engages the outer roller surface adjacent the first axial end and the second axial end.
- 47. The spindle lock as set forth in claim 44 wherein the alignment member engages the trailing portion of the wedge roller from the unlocked position to the locked position.
- 48. The spindle lock as set forth in claim 47 wherein the alignment member engages the trailing portion of the wedge roller in the locked position.
- 49. A spindle lock for a power tool, the power tool including a housing, a motor supported by the housing and including a motor shaft, and a spindle supported by the housing for rotation about an axis, a driving connection being provided between the spindle and the motor shaft such that the spindle is drivingly connectable to the motor shaft, the spindle being selectively driven by the motor in a first direction about the axis and in a second direction about the axis, the second direction being opposite to the first direction, said spindle lock comprising:
a first locking member; a second locking member movable between a locked position, in which the second locking member engages the first locking member to prevent rotation of the spindle, and an unlocked position; a spring operable to delay movement of the second locking member from the unlocked position to the locked position when a force is applied to the spindle to cause the spindle to rotate relative to the driving connection; and a detent arrangement including
a recess, and a projection engaged by the spring, the projection being selectively positioned in the recess; wherein, when the spindle is rotated in the first direction relative to the driving connection, the projection is movable from a first position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the recess, in the first direction to a second position, in which the projection is positioned outside of the recess, movement of the projection from the recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the first direction relative to the driving connection; and wherein, when the spindle is rotated in the second direction relative to the driving connection, the projection is movable from the first position, which corresponds to the unlocked position of the second locking member and in which the projection is positioned in the recess, in the second direction to a third position, in which the projection is positioned outside of the recess, movement of the projection from the recess delaying movement of the second locking member from the unlocked position to the locked position when the spindle is rotated in the second direction relative to the driving connection.
Priority Claims (2)
Number |
Date |
Country |
Kind |
TOKUGAN2001-71814 |
Mar 2001 |
JP |
|
TOKUGAN2001276044 |
Sep 2001 |
JP |
|
RELATED APPLICATIONS
[0001] The present application is a continuation-in-part of co-pending application Ser. No. 09/995,256, filed Nov. 27, 2001.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09995256 |
Nov 2001 |
US |
Child |
10096441 |
Mar 2002 |
US |