Power tool communication system

Information

  • Patent Grant
  • 10339496
  • Patent Number
    10,339,496
  • Date Filed
    Wednesday, June 15, 2016
    8 years ago
  • Date Issued
    Tuesday, July 2, 2019
    5 years ago
Abstract
A mobile device and method for determining power tool attendance. The mobile device and method are able to generate a list of power tools that are missing based on being outside of communication range with the mobile device. For example, the mobile device includes a short-range transceiver, a memory, and a processor coupled to the memory and the short-range transceiver. The processor is configured to receive a list of a first plurality of power tools and receive, via a user interface, a selection to detect nearby tools. The processor is also configured to receive, via the short-range transceiver, identification signals from a second plurality of power tools and determine that a subset of the first plurality of power tools is missing based on the identification signals. The processor is further configured to generate an indication that the subset of the first plurality of power tools is missing.
Description
FIELD OF THE INVENTION

The present invention relates to methods and systems of maintaining inventory systems for power tool devices, and generating reports for power tool devices.


SUMMARY

In one embodiment, the invention provides a method of adding a power tool device to an inventory list. The method includes receiving, via a user interface, a request to add a nearby power tool device and receiving, via a short-range transceiver, identification from a plurality of power tool devices. The method also includes displaying, via the user interface, the identification information of the plurality of power tool device and receiving, via the user interface, a selection of a power tool device from the plurality of power tool devices. The method further includes adding, using a processor, the power tool device to the inventory list.


In one embodiment, the invention provides a method of analyzing metrics for a power tool device. The method includes receiving, via a short-range transceiver, identification signals from a plurality of power tool devices and displaying, via a user interface, identification information of the plurality of power tool devices. The method also includes receiving, via the user interface, a selection of a power tool device to be analyzed from the plurality of power tool devices and receiving, via the short-range transceiver, metrics information regarding the power tool device in response to the selection of the power tool device to be analyzed. The method further includes displaying, via the user interface, metrics information of the power tool device.


In one embodiment, the invention provides a method for determining power tool attendance. The method includes receiving a list of a first plurality of power tools and receiving, via a user interface, a selection to detect nearby tools. The method also includes receiving, via a short-range transceiver, identification signals from a second plurality of power tools and determining, using a processor, that a subset of the first plurality of power tools is missing based on the identification signals. The method further includes generating, using the processor, an indication that the subset of the first plurality of power tools is missing.


In one embodiment, the invention provides a communication system including a communicating power tool device and a non-communicating power tool device. The communicating power tool device can communicate wirelessly with a mobile external device. The mobile external device including a processor configured to receive information from an external server regarding the communicating power tool device, receive information from the user regarding the non-communicating power tool device, and group the communicating power tool wireless device and the non-communicating power tool device together as a single inventory.


In another embodiment the invention provides a method of determining whether any power tool devices are missing from an inventory. The method includes receiving a list of power tool devices from a remote server, directly communicating with a plurality of power tool devices, generating a list of the plurality of power tool devices; comparing the list of power tool devices received from the remote server and the plurality of devices, and determining whether a power tool device is missing.


Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a communication system according to one embodiment of the invention.



FIG. 2 illustrates a schematic diagram of a wireless communication module in communicating power tool devices.



FIG. 3 illustrates a schematic diagram of the communication system.



FIG. 4 illustrates an exemplary home page for the inventory and reporting application.



FIG. 5 is a flowchart illustrating a method implemented to add a new power tool device.



FIGS. 6A-B illustrate exemplary screenshots of pages for adding a power tool device from a connected manufacturer.



FIG. 7 illustrates an exemplary screenshot of pages for adding a power tool device from a disconnected manufacturer.



FIG. 8 illustrates an edit screen for one of the power tool devices.



FIG. 9 is a flowchart for the method of launching an application at a mobile electronic station.



FIG. 10 illustrates an exemplary inventory screen.



FIG. 11 illustrates an exemplary filters screen.



FIGS. 12A-C illustrate exemplary screenshots showing filters that can be applied on an inventory and reporting application.



FIG. 13 is a flowchart illustrating a method of adding a new power tool device on a mobile electronic device.



FIG. 14 illustrates an exemplary screen to add a power tool device.



FIG. 15 illustrates an exemplary list of nearby power tool devices that are not in the inventory.



FIG. 16 illustrates an exemplary screen including information received from a communicating power tool device.



FIG. 17 illustrates an exemplary screen to search for a power tool device from a connected manufacturer.



FIGS. 18A-G illustrate exemplary guide screens that allow the user to input information for adding a power tool device to the inventory.



FIGS. 19A-F illustrate exemplary editing screens to allow the user to edit information associated with a power tool device.



FIG. 20 is a flowchart illustrating a method for implementing a tool attendance feature.



FIG. 21 illustrates a schematic diagram illustrating the concept of inventory sectioning.



FIG. 22 is a flowchart illustrating a method for implementing an inventory sectioning feature.



FIG. 23 illustrates an exemplary home screen for a crimper.



FIG. 24 is a cross-sectional view of a crimper.



FIG. 25 is a flowchart illustrating a method for generating reports from the inventory and reporting application.



FIG. 26 illustrates a second exemplary home screen for the crimper.



FIG. 27 illustrates a start reporting page on a mobile external device.



FIG. 28 illustrates a start reporting page with an expanded date field.



FIG. 29 illustrates an exemplary information screen.



FIG. 30 illustrates an exemplary alert screen.



FIG. 31 illustrates an exemplary report screen.



FIG. 32 is a flowchart illustrating a method for determining power tool attendance.



FIG. 33 is a flowchart illustrating a method for adding power tool devices to an inventory list.



FIG. 34 is a flowchart illustrating a method for analyzing metrics for a power tool device.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.


It should be noted that a plurality of hardware and software based devices, as well as a plurality of different structural components may be utilized to implement the invention. Furthermore, and as described in subsequent paragraphs, the specific configurations illustrated in the drawings are intended to exemplify embodiments of the invention and that other alternative configurations are possible. The terms “processor” “central processing unit” and “CPU” are interchangeable unless otherwise stated. Where the terms “processor” or “central processing unit” or “CPU” are used as identifying a unit performing specific functions, it should be understood that, unless otherwise stated, those functions can be carried out by a single processor, or multiple processors arranged in any form, including parallel processors, serial processors, tandem processors or cloud processing/cloud computing configurations.



FIG. 1 illustrates a power tool communication system 100. The power tool communication system 100 includes, among other things, a plurality of power tool devices 104a-d, a mobile electronic device 108, a remote server 112, a network 114, and an external device 116. The power tool devices 104a-d include power tools and devices used in relation to the operation of power tools. For example, the power tool devices 104a-d can include a power tool battery charger 104a, a battery pack 104b, power tools 104c-d, as well as other devices used in conjunction with the power tools. Each power tool 104c-d may be the same tool or may be different tools. Accordingly, each power tool 104c-d is configured to perform one or more specific tasks (e.g., drilling, cutting, fastening, pressing, lubricant application, sanding, heating, grinding, bending, forming, impacting, polishing, lighting, etc.). The task associated with each of the power tools 104c-d may also be referred to as the primary function(s) of the power tool 104c-d. The power tool devices 104 in the communication system 100 are representative and exemplary. The communication system 100 may include more or fewer power tool devices 104 and various combinations of power tool devices 104. Similarly, the power tool devices 104 in the communication system 100 may be from the same or different manufacturers.


As shown in FIG. 2, some of the power tool devices 104a-c include, among other things, a wireless communication module 109 (also referred to as a wireless communication controller 109) and a back-up power supply 110. The wireless communication module 109 is coupled to a controller 118 of the power tool device 104, a main power source 119 for the power tool device 104 (e.g., a battery pack and/or a wall outlet), and to a back-up power supply 110. The wireless communication module 109 includes a radio transceiver and antenna 111, a memory 113, a processor 115, and, in some embodiments, a real-time clock (RTC) 117. The wireless communication module 109 is configured to receive data from the controller 118 of the power tool device 104, and relay the information to the mobile electronic device 108 via the antenna and transceiver 111. In a similar manner, the wireless communication module 109 is configured to receive information (e.g., configuration and programming information) from the mobile electronic device 108 via the antenna and transceiver 111 and relay the information to the power tool controller 118.


The memory 113 of the wireless communication module 109 can store data related to communications between the power tool 104 and the mobile electronic device 108. The processor 115 for the wireless communication module 109 controls wireless communications between the power tool 104 and the mobile electronic device 108. For example, the processor 115 associated with the wireless communication module 109 buffers incoming and/or outgoing data, communicates with the controller 118 of the power tool device 104, and determines the communication protocol and/or settings to use in wireless communications. The wireless communication module 109 receives electrical power from the main power source 119 and from the secondary power supply (e.g., back-up power supply 110) based on which power supply is available. When the main power source 119 is connected to the power tool device 104 and the main power source 119 holds sufficient power, the main power source 119 provides electrical power to the wireless communication module 109. If, on the other hand, the main power source 119 is not connected to the power supply, the back-up power supply 110 provides power to the wireless communication module 109. The back-up power supply 110, however, has limited supply of power and could be quickly drained if used to power significant electronic data exchange between the power tool devices 104 and the mobile electronic device 108. Therefore, in some embodiments, when the back-up power supply 110 powers the wireless communication module 109, the power tool device 104 outputs (e.g., broadcasts) only identification information for the power tool device 104, but does not enable further data exchange between the power tool device 104 and the mobile electronic device 108.


In some embodiments, the back-up power supply is a coin cell battery. The coin cell battery is removable from the power tool device 104 and is, therefore, located in an accessible area of the power tool device 104. In many embodiments, the back-up power supply 110 is accessed and replaced by the user/operator of the power tool device 104. In other embodiments, however, the back-up power supply 110 is located in a hard-to-access portion of the power tool device, and is replaced by a professional serviceman. For instance, rather than being located in a dedicated battery recess separate from the motor and other circuitry and accessible via a sliding or removable door on the tool housing, the back-up power supply 110 may require opening the main housing using one or more tools.


In the illustrated embodiment, the wireless communication module 109 is a Bluetooth® controller. The Bluetooth® controller communicates with the mobile electronic device 108 employing the Bluetooth® protocol. Therefore, in the illustrated embodiment, the mobile electronic device 108 and the power tool 104 are within a communication range (i.e., in proximity) of each other while they exchange data. In other embodiments, the wireless communication module 109 communicates using other protocols (e.g., Wi-Fi, cellular protocols, etc.) over a different type of wireless networks. For example, the wireless communication module 109 may be configured to communicate via Wi-Fi through a wide area network such as the Internet or a local area network, or to communicate through a piconet (e.g., using infrared or NFC communications). The communication via the communication module 109 may be encrypted to protect the data exchanged between the power tool 104 and the mobile electronic device 108 from third parties.


The RTC 117 increments and keeps time independently of the other power tool components. In the illustrated embodiment, the RTC 117 is powered through the wireless communication module 109 when the wireless communication module 109 is powered. In some embodiments, however, the RTC 117 is a separate component from the wireless communication module 109. In such embodiments, the RTC 117 receives power from the main power source 119 when the battery pack is connected to the power tool 104 and receives power from the back-up power supply 110 when the battery pack is not connected to the power tool 104. Therefore, the RTC 117 keeps track of time regardless of whether the power tool 104 is in operation, and regardless of whether the battery pack is connected to the power tool 104. When no power source is present (i.e., the battery pack is detached from the power tool 104 and the back-up power supply 110 is removed or depleted), the RTC 117 stores the last valid time. When a power source is replaced (i.e., the battery pack is attached to the power tool 104 or/and the coin cell 110 is replaced), the RTC 117 uses the stored time as a starting point to resume keeping time.


Other power tool devices (e.g., power tool 104d), however, do not communicate with the mobile electronic device 108, and therefore do not include the wireless communication module 109. In some embodiments, some of the power tool devices may include a wireless communication module 109, but may not be configured to communicate with the mobile electronic device 108 because, for example, the wireless communication module 109 utilizes a different communication protocol, and/or the power tool device 104 does not know how to interpret the instructions from the mobile electronic device 108.


In some embodiments, the mobile electronic device 108 is a dedicated electronic device. In other words, the mobile electronic device 108 is specifically manufactured to communicate with the power tool devices 104 and the remote server 112. In some embodiments, the dedicated electronic device may include a ruggedized exterior to withstand the environmental conditions of different worksites.


In other embodiments, the mobile electronic device 108 is not a dedicated electronic device and is configured to perform various functions not related to communicating with power tools 104. For example, the mobile electronic device 108 may be configured to place phone calls, play videos, share media, etc. The mobile electronic device 108 may be, for example, a laptop computer, a tablet computer, a smartphone, a cellphone, a personal digital assistant (PDA), or another electronic device capable of communicating wirelessly with the communicating power tool devices 104a-c and providing a graphical user interface.


The communicating power tool devices 104a-c may communicate power tool status, power tool operation statistics, power tool identification, stored power tool usage information, power tool maintenance data, battery pack identification, battery pack stored voltage, battery pack charge and discharge characteristics, and the like to the mobile electronic device 108. Therefore, by using the mobile electronic device 108, a user can access stored power tool device usage or power tool device maintenance data. The mobile electronic device 108 can also transmit data to each of the communicating power tool devices 104a-c for power tool configuration, firmware updates, or to send commands (e.g., turn on work light). The mobile electronic device 108 also allows a user to set operational parameters, safety parameters, select operating modes, and the like for the communicating power tool devices 104a-c.


The mobile electronic device 108 can also establish wireless communication with the remote server 112 through the network 114. The mobile electronic device 108 can forward to the remote server 112 at least some of the information received from the communicating power tool devices 104a-c. For example, the mobile electronic device 108 can forward new user-defined tool modes, power tool usage information, new identification information, power tool device status, and the like. The remote server 112 provides additional storage and processing power and thereby enables the communication system 100 to encompass more power tool devices 104a-d without being limited to the storage and processing capabilities of the mobile electronic device 108. Furthermore, the remote server 112 can also communicate with the external device 116 through the network 114 or through a different network to provide additional functionality.


The external device 116 may be, for example, a laptop computer, a desktop computer, a workstation from a local network, or another device configured to communicate with the remote server 112 through the network 114. The remote server 112 can forward the information received from the mobile electronic device 108 to the external device 116 through the network 114. Forwarding the information allows other users, who may, for example, be at a remote location from the power tool devices 104a-d and the mobile electronic device 108, to receive information regarding various parameters, characteristics, and status of the power tool devices 104a-d. The external device 116 can also generate and send new information to update data on the server 112, the mobile electronic device 108, and the communicating power tool devices 104a-c. For example, the external device 116 can assign locations for the specific tool devices, and the like.


In some implementations, the power tool devices 104a-d are owned by a larger entity (e.g., a contracting company). The larger entity then allows specific users (e.g., operators) to use the power tool devices 104a-d to perform specific tasks related to a project. Establishing the communication system 100 between power tool devices 104a-d and the electronic devices 108, 112, 116 allows individual users and/or larger entities to accurately control, manage, maintain, and operate large groups of power tool devices without cumbersome tracking, inventory, and programming methods.


In particular, the communication system 100 implements an inventory system. The inventory system provides information regarding the number of power tool devices 104a-d in the communication system 100, the location of the power tool devices 104a-d, the status of the power tool devices 104a-d, the purchasing information of the power tool devices 104a-d, and the like. The inventory information gathered and provided by the inventory system allows users (e.g., buyers) to buy desired and/or necessary tool devices, arrange for maintenance of tool devices, and track the power tool devices 104a-d.


For the inventory system, the server 112 stores an inventory database 145 (as shown in FIG. 3). The inventory database 145 includes user profiles and power tool device information. The inventory database 145 stores information regarding each power tool device 104 such as, for example, serial and/or model number, a customized name associated with the power tool device 104, a digital photograph or image associated with the power tool device 104, a category for the power tool device 104 (e.g., drill, impact wrench, power generator, etc.), maintenance information, purchasing information, location information, tool device usage data associated it the power tool device 104, and the like. The inventory database 145 also stores user profiles that indicate which power tool devices 104 are associated with each user. The inventory database 145 may also store additional settings information for the user profile such as identification information for each user (e.g., username and password) to properly identify each user, power tool devices the user has been associated with in the past, sub-inventories associated with the user, information regarding power tool device purchases and the like. In some embodiments, the inventory database 145 may also store settings for the graphical user interface generated by the mobile electronic device 108 and/or the external device 116. For example, the inventory database 145 may store display options or settings for to display power tool devices associated with a particular user.


Both the mobile electronic device 108 and the external device 116 execute the inventory system and provide desired information to the user. The mobile electronic device 108 and the external device 116 are able to synchronize the inventory information by communicating with the remote server 112 through the network 114. Therefore, a user can add and/or remove power tool devices from the inventory through the mobile electronic device 108 and/or through the external device 116. Stated another way, the mobile electronic device 108 and the external device 116 provide user interfaces into an inventory database 145 primarily stored on the server 112.



FIG. 3 illustrates a schematic diagram of the components of the communication system 100. As shown in FIG. 3, the external device 116 includes, among other things, a processor 120, a display 124, an external wireless communication controller 128 (e.g., a Wi-Fi communication controller), and a memory 132. The external wireless communication controller 128 allows the external device 116 to connect to the remote server 112 and exchange information regarding the power tools devices 104a-d. The memory 132 stores a core application software 134 that enables the external device 116 to execute an inventory and reporting application. The processor 120 accesses the core application software 134 in memory 132 to generate a graphical user interface shown on the display 124. The processor 120 is also coupled to the external wireless communication controller 128 to control the communication to and from the remote server 112.


The external device 116 launches the inventory and reporting application in response to a user input (e.g., selecting an icon, opening a webpage, etc.). When the external device 116 launches the inventory and reporting application, the external device 116 requests a user to input a username (e.g., e-mail address) and a password, thereby identifying him/herself to the external device 116, to the inventory and reporting application, and to the server 112. Once the user has inputted his/her account information, the external wireless communication controller 128 communicates with the remote server 112 to ensure that the user is an authorized user and to obtain information regarding the power tool devices 104 that are specifically associated with the identified user.


As shown in FIG. 3, the remote server 112 includes a processor 136, a network interface 140, and a memory 144. The processor 136 is coupled to the network interface 140 to allow communication with the mobile electronic device 108 and the external device 116 through the network 114. The processor 136 is also coupled to the memory 144 to store and access information associated with various users (for example, user profiles 146) and information associated with various power tool devices (for example, power tool device information 147). In particular, the external device 116 receives a list of power tool devices and associated information that are associated with the identified user.


As shown in FIG. 3, the power tools 104a-c include a processor 105, a memory 106 and a short-range transceiver 149. In some embodiments, the transceiver 149 is implemented as the wireless communication controller 109. The memory 106 stores usage data 150, sensor data 151 and maintenance data 153 of the power tools 104a-c.



FIG. 4 illustrates an exemplary screenshot of a home screen 148 of the inventory and reporting application launched by the external device 116. As shown in FIG. 4, the inventory and reporting application displays a list 152 of power tool devices 104 associated with a particular user. The power tool devices 104 are arranged by category. For example, all the batteries associated with the identified user are listed under batteries, while the impact power tools are listed under the category “Drivers & Impacts.” In the illustrated embodiment, the user can create and delete categories according to his/her preferences. Listing the power tool devices 104 according to their category allows a user to easily identify particular power tool devices and gain a better understanding of the variety of the power tool devices in his/her possession. As shown in FIG. 4, the list 152 of power tool devices 104 also indicates a number of power tool devices 104 per category. For example, a user can easily determine how many impact drills are in the inventory and compare that to the number of battery packs compatible with the impact drills. Such easy access to the inventory information may allow the user to make more informed decisions regarding the purchases, maintenance, and general tracking of the power tool devices 104.


As also shown in FIG. 4, the inventory and reporting application also receives other information associated with the power tool devices 104 from the remote server 112. For example, the inventory and reporting application displays an image (e.g., a photograph) of the power tool device, a manufacturer, a description (e.g., what the power tool device is and/or specific characteristics of the power tool device), a model and/or serial number, a specific device number (e.g., a tool number by which the manufacturer identifies the type of power tool device), and a location (e.g., an assigned location, a last known location, a purchase location, etc.). In some embodiments, the inventory and reporting application also receives a customized name for the power tool device 104 (e.g., Bob's Tool) that allows a user to more readily identify the power tool device listed by the inventory and reporting application.


The home screen 148 illustrates the list 152 of the power tool devices associated with the identified user, a search bar 156, a filters option 160, and an add item option 164. The search bar 156 allows a user to search for a particular power tool device by keywords (e.g., impact drill or 18V pack). The filters option 160 allows the user to restrict the display of the power tool devices 104 to only those power tool devices that meet certain criteria. In the illustrated embodiment, a filter can be applied according to a manufacturer, a category, and a location. In other embodiments, other filters can be used in addition or instead of the filters in the illustrated embodiment. In some embodiments, the user can select which filters are available. A user can select the add item option 164 to add a new power tool device 104 to the inventory associated with the identified user.



FIG. 5 is a flowchart of the process 165 of adding a new power tool device to the inventory using the external device 116. First, the user is requested to identify the manufacturer of the power tool device (step 170). In some embodiments, the user is requested to specify the manufacturer for the power tool device 104. In other embodiments, identifying the manufacturer includes using a particular search box applicable only to some or to one manufacturer. The external device 116 communicates and/or has access to a server associated with at least one manufacturer. If the external device 116 can communicate with the server of a specific manufacturer or a server having power tool device information of the manufacturer (e.g., maintained by a third party), this manufacturer is referred to as a connected manufacturer. If the user adds a power tool device 104 associated with a connected manufacturer, the user searches for a particular tool device 104 using, for example, a tool device number (step 174) as shown in FIG. 6A. The external device 116 (e.g., the inventory and control application) receives a query for a particular power tool device and then communicates with the server of the connected manufacturer to obtain a list of power tool devices matching the search query. The inventory and reporting application then receives power tool device information from the connected server and displays a list of power tool devices to the user on the external device 116. The user can then select the desired power tool device from the search results provided by the inventory and reporting application (step 176). The external device 116 (e.g., the inventory and control application) receives an indication of the user's selection and communicates with the connected server to obtain some of the power tool device information from the manufacturer (step 178). In the illustrated embodiment, the external device 116 obtains an image of the power tool device, a model number, and a description of the power tool device. The external device 116 may also automatically categorize the power tool device based on the information received from the server. In the illustrated example, the power tool device selected to be added to the inventory is an impact driver. Accordingly, the external device 116 categorizes the impact driver under the “Drivers and Impacts” category. In some embodiments, the category to which the power tool device belongs is also communicated from the manufacturer to the external device 116.


As shown in FIG. 6B, a user can add further information regarding the selected power tool device 104 (step 182). For example, the user can select a quantity of the same power tool devices that are being added, a purchase location, a value (e.g., purchasing price), a location (e.g., an assigned location for the power tool device), and order and itemization information. Once the user has entered the requested information, or the necessary information, the user can save the entered information by clicking a save button (step 186). After the user has saved all of the entered information for the power tool device 104, the external device 116 displays the new power tool device on the list 152 of power tool devices associated with the identified user (step 190).


In some embodiments, some of the information received by the inventory and reporting application is required to save a new power tool device (e.g., a device number associated with the power tool device), and some of the information is optional (e.g., a customized name for the power tool device). In other words, while a minimum set of information is required to add a new power tool device 104 to the inventory, some of the information is optional and the power tool device can be added with or without the additional information. For example, a user may be required to enter a tool number and a tool name, but may not be required to enter a location and/or purchasing price. In such embodiments, the external unit 116 may receive the required information from the manufacturer server and allow the user to add in any optional information. Such embodiments allow a user to search, select the desired power tool device, and save without further data entry, which makes the process of adding power tool devices 104 to the inventory faster.


If, on the other hand, the user wishes to add a power tool device from a manufacturer that is not connected to the external device 116 (e.g., power tool device 104d), the inventory and control application displays a screen with empty text boxes to be filled by the user (step 194). The user then inputs the information for the power tool device (step 198). Notably, in such embodiments, the external device 116 does not populate the text boxes with information received from the remote server 112. Rather, the text boxes remain blank for the user to fill them in, as shown in FIG. 7. Once the user inputs the information for the power tool device, the user saves the information by, for example, clicking a save button (step 186). The new power tool device is then displayed on the inventory list 152 (step 190).


When the inventory has been altered (e.g., due to an addition of a power tool device and/or due to loss of a power tool device), the inventory and control application on the external device 116 communicates with the server 112 to update the stored information regarding the inventory. The remote server 112 stores the new information for the inventory associated with the user. The next time the user accesses the inventory and reporting application on the external device 116 or on the mobile electronic device 108, the inventory and reporting application would display the most recent inventory information for the user.


Referring back to FIG. 4, each power tool device 104 also includes an edit icon 195 and a delete icon 196. Even after the power tool device 104 has been added to the user's inventory, a user can edit the information associated with the power tool device 104 by selecting the edit icon 195. When the user selects the edit icon 195, the inventory and reporting application displays an edit screen 197 as shown in FIG. 8. The user can change the category, the location, the tool number, the serial number, the purchase location, the purchase value, and the notes associated with the power tool device. Some of the fields such as, for example, the description or the model number are only editable when other fields such as, for example, the serial number and/or the tool number are changed. In other words, when the serial number and/or the tool number is changed, the description and the model number fields become editable.


A user can alternatively or additionally access the inventory and reporting application via the mobile electronic device 108. For example, a user can add power tool devices to his/her inventory through the mobile electronic device 108. As shown in FIG. 3, the mobile electronic device 108 includes a processor 200, a short-range transceiver 204, a network communication interface 208, a touch display 212, and a memory 216. The processor 200 is coupled to the short-range transceiver 204, the network communication interface 208, the touch display 212, and the memory 216. The short-range transceiver 204 is configured to communicate with a compatible transceiver within the power tool devices 104a-c. The short-range transceiver 204 can also communicate with other electronic devices. The network communication interface 208 communicates with the network 114 to enable communication with the remote server 112. The communication interface 208 may include circuitry that enables the mobile electronic device 108 to communicate with the network 114. In some embodiments, the network 114 may be an Internet network, a cellular network, another network, or a combination thereof.


The memory 216 of the mobile electronic device 108 also stores core application software 220. FIG. 9 illustrates the process 223 executed by the processor 200 when launching the mobile inventory and reporting application. The processor 200 accesses the core application software 220 in memory 216, and launches a mobile version of the inventory and reporting application (step 224). When the mobile electronic device 108 launches the mobile inventory and reporting application, the mobile electronic device 108 communicates with the remote server 112 to provide a user identification (e.g., username and password). The server 112 accesses the inventory database 113 with the user identification information to generate a list of power tool devices 104 associated with the user, and provides the list of power tool devices 104 to the mobile electronic device 108. The mobile electronic device 108, in turn, receives the list of power tool devices 104 associated with a particular user (step 228). In the illustrated embodiment, the user does not provide a username and password each time the mobile inventory and reporting application is launched. Rather, when an initial install of the mobile inventory and reporting application is performed to download the core application software 220 to the memory 216, a user provides his/her identification information. The mobile inventory and reporting application may then store identification information for the particular mobile electronic device 108 and associate the mobile electronic device with a particular user.


Once the mobile electronic device 108 receives the list of power tool devices 104 associated with the user from the server 112, the mobile electronic device 108 displays the list of associated power tool devices on the touch display 212 (step 232). Similar to the list 152 shown in FIG. 4, the mobile electronic device 108 also categorizes the power tool devices to provide the user with readily accessible information regarding the inventory of power tool devices associated with the user, as shown in the exemplary inventory screen 236 in FIG. 10. In the illustrated embodiment, the inventory includes two power tool devices 104 that are uncategorized. As with the external device 116, the mobile electronic device 108 also includes a total count of the power tool devices 104 under any one category. In other embodiments, the inventory may include more or less power tool devices that may be categorized differently.


When the mobile electronic device 108 receives information from the server 112 regarding the power tool devices 104 associated with the identified user, the mobile electronic device 108 also determines the state of the power tool devices 104. The mobile electronic device 108 determines the state or status of the power tool devices 104 based on communication with the power tool devices 104 themselves. The power tool devices 104 can be in a connectable state, an advertisement state, an out of range state, or an unconnectable state. When the power tool device 104 is in the connectable state, the power tool device 104 has sufficient energy (e.g., because the power tool device 104 is connected to a battery pack) to begin data exchange between the power tool device 104 and the mobile electronic device 108. In the connectable state, the power tool device 104 communicates a tool number, a customized name, and an indication that sufficient power for data exchange is available. The inventory and reporting application indicates that the power tool device is in the connectable state by showing a communication symbol 238 next to the power tool device 104. The power tool device 104 is in an advertisement state when the power tool device is not connected to a main power source (e.g., a battery pack) that may provide sufficient energy to sustain data exchange. Rather, in the advertisement state, the power tool device 104 receives power only through the back-up power supply 110. When the power tool device 104 is in the advertisement state, the power tool device 104 does not have sufficient energy to sustain data exchange, but the power tool device 104 communicates the customized name, a tool device number, and/or a state of charge of a secondary battery. The inventory and reporting application indicates that the power tool device is in the advertisement state by graying out or not showing the communication symbol 238 and/or by graying out the power tool device.


When the power tool device 104 is out of range, the inventory and reporting application also show the power tool device 104 grayed out. Finally, when the power tool device 104 is in the unconnectable state, the power tool device 104 is not configured to communicate with the mobile electronic device 108. For example, power tool 104d is not configured to communicate with the mobile electronic device and would therefore be in the unconnectable state. The inventory and reporting application also show unconnectable power tool devices 104 in a grayed out form. In other embodiments, different ways of indicating the status of the power tool devices 104 are implemented. In particular, in some embodiments, each state of the power tool device is illustrated (e.g., using different colors for the symbol 238, showing different symbols, and/or including an information column that explicitly indicates the state of the power tool device 104) differently than another state of the power tool device 104 to readily be able to identify the state of the power tool device 104.


The inventory screen 236 includes a search box 240, a menu option 244, and an add item option 248. The search box 240 allows a user to search within his/her inventory for a particular tool using keywords. The keywords may be associated with a customized name of the power tool, a description of the power tool, a location, a model or serial number, etc. The menu option 244 may allow the user to select how to display the list of associated power tool devices 104. For example, the menu option 244 may allow the user to display the power tool devices according to the location, the manufacturer, etc. As shown in FIG. 11, the menu option 244 may allow the user to set different filters to display only a portion of the associated power tool devices. In the illustrated embodiment, the user may set filters according to manufacturer (see FIG. 12A), category (see FIG. 12B), location (see FIG. 12C), etc.


The user may select the add item option 248 to add a power tool device to his/her inventory through the mobile inventory and reporting application. FIG. 13 illustrates the process 249 of adding a new power tool device using the mobile electronic device 108. First, the user selects the add item option 248 from the inventory screen 236 (step 250). In response to the selection of the add item option 248, the mobile electronic device 108, in particular the inventory and reporting application, displays an add item screen 252 as shown in FIG. 14. The add item screen 252 provides the user two methods for adding a new power tool device. The user can identify the manufacturer of the power tool device 104 similar to how a manufacturer was identified through the external device 116 (options 256 and 260), or the user can add a communicating power tool device 104 that is nearby by establishing communication with the nearby power tool device 104 (option 264).


When the user wishes to add a nearby power tool device 104, the user selects the nearby device option 264. In response to receiving the nearby device option 264, the mobile inventory and reporting application broadcasts a ping signal from the mobile electronic device 108 to the power tool devices within the communication range of the mobile electronic device 108 (step 270). Only those power tool devices 104 that are within the communication range of the mobile electronic device 108 and that are configured to communicate wirelessly with the mobile electronic device 108 (e.g., the communicating power tool devices 104a-c) respond to the ping signal from the mobile electronic device 108. The inventory and reporting application then receives responses from the communicating power tool devices 104a-c within the communication range (step 274). The responses from the communicating power tool devices 104a-c include identification information for each power tool device. The identification information includes, for example, a customized name associated with the power tool device, a model number, a unique identifier, a tool number, etc. In some embodiments, the power tool devices 104 periodically broadcast the identification information for the power tool device 104 without requiring a ping signal from the mobile electronic device 108 to be received. In such embodiments, step 270 in which the mobile electronic device 108 sends a ping signal to the power tool devices 104 nearby is bypassed.


The inventory and reporting application then compares the received responses to the power tool devices already in the inventory (step 278). If a received response corresponds to a power tool device 104 that is already part of the inventory, the inventory and reporting application does not display that power tool device 104 to the user and continues to check the rest of the responses (step 282). If, on the other hand, the received response corresponds to a power tool device 104 that is not part of the inventory, the inventory and reporting application displays the power tool device 104 to the user (step 286). Thereby, the inventory and reporting application only displays those power tool devices 104 that are nearby and that are not already part of the inventory for the user.



FIG. 15 illustrates a list generated by the inventory and reporting application that identifies the power tool devices that are nearby and not yet part of the user's inventory. The user can then select the new power tool device 104 that he/she wishes to add to his/her inventory (step 290). The mobile electronic device 108 then communicates with the selected communicating power tool device 104a-c to obtain information for the selected communicating power tool device 104a-c (step 294). The communicating power tool device 104a-c then forwards identification and other information to the mobile electronic device 108 to add the selected communicating power tool device 104a-c to the user's inventory (step 298). The mobile inventory and reporting application, upon receipt of the identification and other information from the communicating power tool device 104a-c, displays the received information to the user as shown in FIG. 16 (step 302). The user can verify the information received from the selected communicating power tool device 104a-c, and click save. The mobile inventory and reporting application then saves the received information and adds the power tool device to the user's inventory (step 326). If the information received from the power tool device is not complete (e.g., the power tool device 104 may not communicate a category), the user can add and/or edit information received from the communicating power tool device. In some embodiments, the identification information provided in step 274 is sufficient to generate a new entry (i.e., add the power tool device 104) to the user's inventory, and steps 294-302 are bypassed.


Enabling the user to add power tool devices that are nearby saves a significant amount of time because the user no longer has to manually search for a particular power tool device, input necessary information, etc. Instead, the mobile inventory and reporting application automatically determines which of the nearby power tool devices 104 are not yet part of the user's inventory and requests information for the inventory from the power tool devices 104 directly.


Referring back to FIG. 13, the user can alternatively choose to add a power tool device 104 without using the nearby device option 264. Rather, the user can add a power tool device 104 from a connected manufacturer by selecting the connected manufacturer option 256. In response to detecting the selection of the connected manufacturer option 256, the inventory and reporting application (e.g., the processor executing the core application software) displays a search bar 306 (FIG. 17). The user then searches for the desired power tool device using a model number, serial number, tool number, etc. (step 310). The mobile electronic device 108 communicates with the remote server 112. The remote server 112 communicates with a server associated with the connected manufacturer. Based on the search criteria from the user, the mobile electronic device 108 receives a set of search results including various power tool devices. The user then selects the desired power tool device from the search results (step 314). The mobile electronic device 108 then communicates the user's selection to the remote server 112 and receives information regarding the selected power tool device from the remote server 112 (step 318). The mobile electronic device 108 populates text boxes or selections with the information received from the remote server 112.


The user can then add more information regarding the selected power tool device 104, if the user, for example, wishes to input more information or additional notes (step 322). When the information has been gathered regarding the new power tool device 104, the user selects a “save” option, and the inventory and reporting application saves the information and adds the new power tool device to the user's inventory (step 326). The inventory and reporting application then displays the new power tool device 104 as part of the list 152 of power tool devices in the user's inventory (step 330).


Referring back to FIG. 13 again, the user can alternatively select to add a power tool device from a disconnected manufacturer by selecting the disconnected manufacturer option 260 (FIG. 14). In response to detecting that the user selected the disconnected manufacturer option 260, the inventory and reporting application guides the user by displaying various guide screens shown in FIGS. 18A-G for the user to input information regarding the new power tool device (step 334). The inventory and reporting application receives information such as a name 338 for the power tool and the tool number 342 (FIG. 18A), purchase information such as, for example, purchase location 346, a value (e.g., price) 350 (FIGS. 18B-C). When entering purchase information, the user can also take a picture of, for example, a purchase order or a purchase receipt and save the image under the purchasing information for that power tool device 104 (FIG. 18C). The inventory and reporting application also receives an indication of the category for the power tool device 104 (FIGS. 18D-E). The user can also incorporate other notes for the power tool device 104 (FIG. 18F) and take a picture of the power tool device 104 to readily identify it (FIG. 18G). Once the user inputs the information regarding the new power tool device 104, the inventory and reporting application saves the information and adds the power tool device 104 to the user's inventory (step 354).


Once the power tool devices 104 have been added to the user's inventory, the power tool devices are displayed as part of the user's inventory. Referring back to FIG. 10, a user can select each power tool device 104 in his/her inventory and view/edit information regarding the power tool device 104. For example, as shown in FIGS. 18A-F, the user can edit the information associated with a power tool device 104 already part of the inventory. In the illustrated embodiment, the user selects a power tool device 104 (e.g., Bob's Tool). In response to the user selection of the power tool device 104, the inventory and reporting application shows limited information regarding the power tool device 104. For example, as shown in FIG. 19A, the mobile inventory and reporting application display the name 338 of the power tool device, the date 358 the power tool device was added, and the assigned or current location 362 of the power tool device. As shown in FIG. 19A, the user can select to see more information associated with the selected power tool device by selecting the arrow 366 in FIG. 19A. In other embodiments, the inventory and reporting application may use different symbols and icons to indicate that more information is available to the user.


In response to selecting the arrow 366, the inventory and reporting application displays a product information screen 370 for the selected power tool device as shown in FIG. 19B. The product information screen 370 provides a summary of the product information associated with a selected power tool device 104. In the illustrated embodiment, the product information screen 370 includes information regarding the power tool device name 338, the model number 374, the assigned category 378, the assigned location 362, and an option to view more purchase information 382. The product information screen 370 also includes an edit selector 386 that enables the user to edit the information associated with the power tool device 104.


In the illustrated embodiment, the selected power tool device (e.g., Bob's Tool) does not include information regarding the category 378 of power tool device and the location 362 of the power tool device. The user then selects the edit selector 386 to add in a category and a location for the power tool device (e.g., Bob's Tool). In response to detecting that the user clicked on the edit selector 386, the mobile inventory and reporting application displays an editable version of the product information screen 370. As shown in FIG. 19C, a user can then edit the information associated with the power tool device. In the illustrated example, the user specifies a category 378 and a location 362 for the power tool device, as shown in FIG. 19D. Once the user has edited the desired information for the power tool device, the user can select “save” to finalize editing the power tool device information. FIG. 19E shows an updated version of the product information screen 370 with the edited information included (e.g., the category 378 and the location 362). FIG. 19F illustrates an updated version of the inventory screen 236 showing the edited power tool device (e.g., Bob's Tool) under a different category.


Executing the inventory and reporting application on the mobile electronic device 108 also provides other features such as tool device attendance, inventory sectioning, and location tracking. Tool device attendance is a feature that allows users to determine whether the tool devices 104 in his/her inventory are within a communication range of the mobile electronic device 108, thus allowing a user to quickly identify whether power tool devices 104 are missing and if so, which ones.



FIG. 20 illustrates a flowchart of a method 389 implementing tool device attendance. From the inventory screen 236, the user can select a “tool attendance” selector (step 390). In response to the user selecting the “tool attendance” selector, the mobile inventory and reporting application broadcasts a ping signal to the communicating power tool devices 104a-c (step 394). The communicating power tool devices 104a-c, in response to the ping signal, send a response signal to the mobile electronic device 108 (step 398). The mobile electronic device 108 then receives the response signals from each of the communicating power tool devices 104a-c that are within the communication range of the mobile electronic device 108 (step 402). In some embodiments, the power tool devices 104 periodically broadcast identification information for the power tool device 104 without requiring a ping signal from the mobile electronic device 108. In such embodiments, the mobile electronic device 108 detects which power tool devices 104 are nearby based on the broadcast signals from the power tool devices 104.


The mobile inventory and reporting application then generates a list of the power tool devices 104 that sent a response signal (or those that broadcasted the power tool device identification information) to the mobile electronic device 108 (step 406). The mobile inventory and reporting application compares the list of power tool devices 104 that sent a response signal to the power tool devices 104 that are part of the user's inventory (step 410). Based on the comparison of the two lists, the mobile inventory and reporting application determines which power tool devices 104 from the user's inventory are not within a communication range of the mobile electronic device 108 (step 414). The mobile inventory and reporting application displays a list of the “missing” power tool devices to the user (step 418). Since the user's inventory may also include power tool devices that do not communicate wirelessly with the mobile electronic device 108 (e.g., power tool 104d), the inventory and reporting application also displays a list of the power tool devices 104 that are not configured to communicate with the mobile electronic device 108 (step 422). The inventory and control application can also display, in response to a user selection, a separate list of these power tool devices 104 that were found.


The user can determine, based on the list provided by the inventory and reporting application, how many power tool devices 14 are missing and which power tool devices 104 are missing. The user can also delete these power tool devices 104 from the inventory, or edit the information associated with these power tool devices 104. The tool attendance feature can be implemented, for example, at the beginning of the work day to establish which tools are present at the particular worksite, at the end of the work day to ensure that the tools which were present at the beginning of the day are returned at the end of the day, and when transporting tools from one jobsite to another to ensure that the power tool devices 104 were delivered to the appropriate jobsite. The user can also save an attendance log including a time, date, and location stamp. The attendance log includes a listing of the power tool devices 104 that were nearby (e.g., found), and a separate listing the power tool devices 104 that were in the user's inventory, but were not nearby (e.g., missing).


Running the inventory and reporting application on the mobile electronic device 108 also enables inventory sectioning. While a large entity (e.g., a contracting company) may have too many power tool devices for a mobile inventory and reporting application to conveniently track, an administrator can divide and assign particular power tool devices 104 to particular users (e.g., operators, foreman, crib manager, etc.). The administrator (e.g., a buyer) can run the inventory and reporting application on the external device 116 displaying the power tool devices 104 owned by the large entity. However, to accurately and efficiently track the power tool devices 104, the administrator may separate the power tool devices 104 into subsets, as illustrated in FIG. 21. Each jobsite, for example, may be assigned a particular set of power tool devices 104. A user (e.g., a foreman or crib manager) at the jobsite may manage the inventory of the power tool devices 104 within the jobsite. The user at the jobsite may not have access to the other power tool devices 104 that are owned by the large entity. Rather he/she can focus on the present jobsite and on efficiently managing the power tool devices 104 within that jobsite. For example, operator X has sub-inventory including all tools shown in FIG. 21. Operator Y has sub-inventory including the tools shown as connected via dashed lines to operator Y's mobile device 108. Operator Z has sub-inventory including the tools shown as connected via dashed lines to operator Z's mobile device 108.



FIG. 22 is flowchart illustrating an exemplary method 429 of sectioning a large inventory. First, an administrator at the external device 116 launches the inventory and reporting application (step 430). The administrator at the external device 116 generates a sub-inventory based on the entire inventory (step 434). The inventory and reporting application at the external device 116 generates the sub-inventory by grouping specific power tool devices 104 together in response to receiving a selection from a user of some power tool devices 104. The sub-inventory is assigned a name so that the user can identify and distinguish each sub-inventory from other sub-inventories. The inventory and control application then assigns the sub-inventory to a particular user (step 438), based on the administrator identifying the user for the sub-inventory. Once the inventory and reporting application generates the sub-inventory and assigns the sub-inventory to a particular user, the external device 116 communicates with the remote server 112 to update the inventory information (step 442). The server 112 stores the sub-inventory and the user to which it is assigned. A user at the mobile electronic device 108 then launches the mobile inventory and reporting application (step 446). When the mobile inventory and reporting application is launched, the mobile electronic device 108 communicates with the remote server 112 to identify the user associated with the mobile electronic device 108 (step 450). The server 112 then determines that the user associated with the mobile electronic device 108 is the same as the user to which the sub-inventory is assigned (step 454). The server 112 then sets the sub-inventory as the inventory for the user (step 458). The user interacts with the mobile inventory and reporting application as described previously, being able to add power tool devices 104 to the sub-inventory, edit information of the power tool devices 104 in the sub-inventory, etc. (step 462).


Launching the inventory and reporting application on the mobile electronic device 108 also allows for location tracking of the power tool devices 104. As discussed above, each of the power tool devices 104 is associated with a location. The location is an assigned location (e.g., where the power tool device is supposed to be). If a transfer of power tool devices 104 is desired, a user can use the inventory and reporting application to change the assigned location to track where the power tool device 104 is being transported. The inventory and reporting application can also save, display, and output information regarding a particular power tool device's location history. In other words, a user may determine where the power tool device has been before and may be able to better determine a probable location for the power tool device if, for example, the power tool device 104 is misplaced.


For example, the location tracking would also enable a user at the external device 116 to determine that power tool devices 104 are to be transported from jobsite A to jobsite B. The users at both jobsite A and jobsite B may be notified via communication from the remote server 112 that at least some of the power tool devices 104 from jobsite A are to be transported to jobsite B. A user at jobsite A may then arrange for the transportation of the power tool devices 104 according to the received notification.


In the illustrated embodiment, when a user launches the mobile inventory and reporting application at the mobile electronic device 108, the inventory and reporting application also indicates the status of each of the power tool devices 104 to the user. The power tool devices 104 may be in an advertisement state in which the power tool device 104 provides minimal identification information, but may not engage in further electronic data transfer between the power tool device 104 and the mobile electronic device 108. The power tool devices 104 may alternatively be in the connectable state in which the power tool device 104 provides identification information and may readily engage in electronic data transfer between the power tool device 104 and the mobile electronic device 108. Additionally, the mobile inventory and reporting application may indicate when a power tool is in use.


The inventory and reporting application also allows a user to analyze the operation of a particular power tool device and generate technical reports regarding the operation of the power tool device 104 or a group of power tool devices 104. In the illustrated embodiment, the operation of a hydraulic crimper is analyzed and the user receives information regarding the performance of the hydraulic crimper on both the mobile electronic device 108 and the external device 116.


As discussed above, the mobile electronic device 108 can wirelessly communicate with communicating power tool devices 104a-c. As also discussed above, the mobile inventory and reporting application can display a list of nearby power tool devices. A user can select one of these devices, and the mobile inventory and reporting application displays a power tool device home screen 500 (FIG. 23) in response to detecting the user selection. The power tool device home screen 500 varies based on the specific power tool device 104 selected by the user. For at least some of the power tool devices 104, the power tool device home screen 500 illustrates metrics on the performance of the specific power tool device 104. The following example illustrates a home screen 500 for a hydraulic crimper. The home screen 500 for the hydraulic crimper provides metrics information 502 regarding the performance and operation of the hydraulic crimper. Similar aspects of the home screen 500 may be available for other power tool devices 104.


As shown in FIG. 24, the hydraulic crimper 510 includes an electric motor 512, a pump 514 driven by the motor 512, a housing 522 defining a cylinder 526 therein, and an extensible piston 530 disposed within the cylinder 526. The crimper 510 also includes electronic control and monitoring circuitry (not shown) for controlling and/or monitoring various functions of the hydraulic power tool. As is described in more detail below, the pump 514 provides pressurized hydraulic fluid to the piston cylinder 526, causing the piston 530 to extend from the housing 522 and thereby actuate a pair of jaws 532 for crimping a workpiece. The jaws 532 are a part of a crimper head 572, which also includes a clevis 574 for attaching the head 572 to a body of the crimper 510, which otherwise includes the motor 512, pump 514, housing 522, and piston 530. The crimper head 572 can include different types of dies depending on the size, shape, and material of the workpiece. For example, the dies can be used for electrical applications (e.g., wire and couplings) or plumbing applications (e.g., pipe and couplings). The size of the die can depend on the size of the wire, pipe, or coupling. The shape formed by the die can be circular or another shape. The dies can be configured to crimp various malleable materials and metals, such as copper (Cu) and aluminum (Al). Although FIG. 24 illustrates a hydraulic crimper 510, the inventions described herein and the interaction of the power tool device with the inventory and reporting application are applicable to a wide range of power tool devices (e.g., cutters, knockout punches, drills, etc.).


The crimper 510 also includes a wireless communication module 109 and a back-up power supply 110 as discussed with respect to FIG. 2. In the illustrated embodiment, however, the back-up power supply 110 is positioned at a hard-to-access location of the crimper 510. To replace the back-up power supply 110 on the crimper 510, a professional service person takes apart some portions of the crimper 510 and replaces the back-up power supply 110. The crimper 510 transmits power tool operation data to the mobile electronic device 108 through the wireless communication module 109. In particular, the crimper 510 sends pressure data and other sensor data for each operation (e.g., crimping) the crimper 510 performs. The mobile electronic device 108 receives the pressure and sensor data from the crimper 510 and forwards the data to the remote server 112. Referring back to FIG. 23, the home screen 500 for the crimper 510 provides some overview information regarding the crimper 510. In particular, the metrics information 502 of the home screen 500 indicates a battery voltage/energy remaining on the back-up power supply 110 of the crimper 510 and a number of cycles performed by the crimper 510 since the last service was performed on the crimper 510. The home screen can alternatively or additionally provide other metric information to the user. For example, the home screen 500 can indicate total number of cycles completed by the crimper 510 and/or the total number of full pressure cycles completed by the crimper 510, as shown in FIG. 26. In the illustrated embodiment, the user can select which information is presented on the home screen 500 of the power tool device (e.g., by swiping left or right across the displayed information). In other words, the mobile electronic device 108 may provide the user with display options and store the user selected display options such that the next time the user enters the crimper home screen 500, the mobile electronic device 108 displays the user's most recently elected choices.


The home screen 500 of the crimper 510, or any other power tool device, also includes a sync tool data selector 580 and a view tool details selector 585. Selecting the sync tool data selector 580 initiates electronic data transfer from the crimper 510 to the mobile electronic device 108. The electronic data includes pressure and other sensor data associated with each operation the crimper 510 has performed since the last sync. Selecting the view tool details selector 585 allows a user to change tool information as discussed above with respect to the inventory feature. In some embodiments, the view tool details selector 585 also enables the user to configure modes for the crimper 510, change operating parameters, etc.


When the crimper 510 sends the operational data to the mobile electronic device 108, the mobile electronic device 108 compares the pressure data to a predetermined full pressure range (e.g., a high pressure threshold and a low pressure threshold). For each operation completed by the crimper 510, the mobile electronic device 108 determines whether the final pressure reached by the crimper 510 is within the predetermined full pressure range. If the final pressure is within the predetermined full pressure range, the crimper 510 is considered to have completed a full pressure cycle. If, however, the final pressure is outside (e.g., below or above) the predetermined full pressure range, the crimper 510 is considered to not have reached full pressure. This determination made by the mobile electronic device 108 generates the counts shown in the home screen 500 of the crimper 510. Specifically, by comparing the received final pressure information to the predetermined full pressure range, the mobile electronic device 108 is able to determine how many cycles the crimper 510 has completed, and how many of the completed cycles were completed to full pressure 510, as shown in FIG. 26.


The mobile electronic device 108 communicates with the remote server 112 to forward the final pressure data points, the total number of cycles completed by the crimper 510, and the total number of full pressure cycles completed by the crimper 510. The remote server 112 can store the performance analysis for the crimper 510. When the inventory and reporting application is launched on the external device 116, the external device 116 communicates with the remote server 112 to receive updated information regarding the power tool devices 104.


The inventory and reporting application includes a reporting option 600 when launched on the external device 116. Selecting the reporting option 600 allows a user to have access to performance data for different power tool devices and generate meaningful reports on the performance of specific power tool devices or groups of power tool devices.



FIG. 25 is a flowchart showing a process 599 for generating a report on the performance of one or more power tool devices 104. In the illustrated embodiment, the report quantifies the performance of the crimper 510. In other embodiments, the generated report may quantify the performance of other power tool devices. First, the inventory and reporting application detects an indication that the user selected the reporting option 600 (step 601). The inventory and reporting application then generates a reporting start page 604, as shown in FIG. 27. The reporting start page 604 includes a search field 606, a date range field 608, a quick reporting area 612, and a power tool device list 616. The inventory and reporting application receives an indication from the user regarding the specific type of power tool devices that the user wishes to analyze (step 617). In the illustrated embodiments, a filter selection (see search field 606) has been entered such that only crimpers are displayed on the reporting start page 604. In some embodiments, a report can be generated for one power tool device 104 or multiple power tool devices 104 of the same type (e.g., three crimpers, or two impact wrenches, etc.). In other embodiments, the report can include different portions, each dedicated to one power tool device 104 or one type of power tool devices 104. The different portions can then be presented to the user as a single report.


The inventory and reporting application generates common performance metrics applicable to all the displayed power tool devices 104 and displays the common performance metrics on the quick reporting area (step 618). The quick reporting area 612 indicates select metrics related to the operation of the power tool devices listed. In FIG. 27, the quick reporting area 612 shows a total number of cycles performed by the crimpers 510 collectively, a total number of full pressure cycles, and a percentage of the full pressure cycles compared to the total number of cycles. In the illustrated start page 604, only one type of power tool device 104 is shown. However, in other instances, common performance metrics for different tool types are shown. In other instances, when the reporting start page 604 is not restricted by a filter to a specific type of power tool device 104, the inventory and reporting application may not display any performance metrics on the quick reporting area 612 and step 618 is bypassed.


In the illustrated embodiment, the power tool device list 616 includes only crimpers. The crimpers shown in the power tool device list 616 provide the power tool usage data to generate the common performance metrics shown in the quick reporting area 612. Once the user has specified the type of power tool devices to be used, the user also specifies the date range for the report. The date range field 608 is used to specify a particular time period for which power tool device performance is analyzed. In one example, the performance report is run four times per year. In other embodiments, the performance report may be run more or less frequently. As shown in FIG. 28, the user can select specific dates to run the performance report. The inventory and reporting application receives the user's indication of the date range for the report and uses the specified date range to limit the power tool usage data used in the creation of the report (step 619). In some embodiments, the user may not need to specify particular dates. Rather, the inventory and reporting application may provide common options for date ranges such as, for example, one week, one month, one quarter, one year, etc.


The list 616 of power tool devices, specifically crimpers 510, provides information to the user regarding the power tool devices. The information shown to the user is received by the external device 116 from the server 112. As shown in FIG. 27, the list 616 provides an image 620 of the specific power tool device, a tool and/or serial number 624, a model number and/or description of the power tool device 628, a location 632, the date on which the power tool device was last synced 636, number of cycles completed 640 since the crimper 510 was serviced, and an indication of the percentage of remaining voltage on the back-up power supply 644. The indication of remaining voltage on the back-up power supply 644 is helpful, in particular, for those power tool devices 104 in which the back-up power supply is inaccessible to an operator of the power tool device 104 (e.g., the crimper 510).


As shown in FIG. 27, some of the power tool devices may also include a warning icon 645 when an aspect of the power tool device (e.g., the crimper 510) that is to be addressed. For example, the inventory and reporting application may display a warning icon 645 associated with a particular power tool device 104 when the voltage percentage of the back-up power supply 110 drops below a certain threshold. Such a warning icon 645 alerts the user to take the power tool device 104 (e.g., the crimper 510) to a service center to replace the back-up power supply 110. In some embodiments, the power tool device 104 itself can output a warning indication (e.g., a red light, a vibration, sound, etc.) when the back-up power supply 110 is approaching a low voltage threshold. In other embodiments, the power tool device 104 provides no indication of the voltage level of the back-up power supply 110, and the user relies on the inventory and reporting application to be alerted when the back-up power supply 110 is to be replaced. The inventory and reporting application may additionally or alternatively display a warning icon 645 when the number of cycles since the last service approaches or exceeds a certain threshold. As shown in FIG. 27, some of the warning icons 645 may be more or less dark or apparent than others. With respect to the warning icon 645 displayed based on the number of cycles since the last service, the warning icon may appear darker and darker as the number of cycles since the last service increases and thereby approaches the predetermined threshold.


From the list 616 of the power tool devices, the user can also select one or more power tool devices (e.g., crimper 510) to analyze their performance by selecting specific checkboxes 646 shown in FIG. 28. The inventory and reporting application receives an indication from the user specifying one or more power tool devices 104 for which performance data is to be analyzed (step 647). As shown in FIG. 29, when the user selects one of the crimpers (or other power tool device 104), the inventory and reporting application displays an information screen 650 for each of the selected power tool devices 104 (step 651). The information screen 650 contains general information regarding the crimper 510. In particular, the information screen 650 includes the power tool device name 654, a date range 658, a specific customer (if applicable) 662, a job name (if applicable) 666, an operator 670, notes 674, and other relevant information. In the illustrated embodiment, the user selected power tool device number 2757-20. The inventory and reporting application displays this information to the user to provide the user an opportunity to verify that the crimper selected is the correct crimper.


After the user sufficiently verified the information shown on the information screen 650, the inventory and reporting application displays an alert screen 680 to the user (step 682). The alert screen 680, as shown in FIG. 30, is based on the number of cycles for which the crimper 510 did not achieve full pressure. More particularly, the alert screen 680 includes one or more alerts 684. Each alert 684 provides information regarding a cycle of the crimping machine. For example, as shown in FIG. 30, the alert 684 includes a cycle number, a date and time associated with the detected failure, the maximum pressure reached by the crimper, and a text box. In some embodiments, the alert 684 also includes a tool identifier (e.g., the tool name, the tool serial and/or model number, etc.). A user can determine whether the alert 684 is substantive, and may include notes in the text box explaining why the crimper 510 failed to reach full pressure and/or what actions were taken to compensate for the crimper 510 not reaching full pressure. In some embodiments, the inventory and reporting application does not continue to generate a report until each of the alerts 684 has been addressed by the user by typing characters into the text box. In the embodiments for which more than one power tool device 104 was selected to be included in the report, the alert screen 680 may include alerts pertaining to more than one power tool device 104. The user then addresses different alerts pertaining to different power tool devices 104 from a single screen.


After addressing the alerts 684, the inventory and reporting application generates a report that analyzes the performance of one or more specific power tool devices (step 686). As shown in FIG. 31, the report includes overview information such as, for example, a date range for the report, a customer, a job name, an operator, etc. The report also identifies the tools analyzed while performing the report. The tools analyzed for the generated report are listed under the heading “Tools.” In other embodiments, the heading may be different. In the illustrated embodiment, the report is generated for two crimpers. Additionally, the report includes a quick reporting area 688 for providing high-level indicators of the performance of the one or more power tool devices. In the illustrated embodiments, the quick reporting area 688 includes information regarding the total number of cycles completed by the crimpers 510 included in the report, the total number of full pressure cycles, and the percentage of total full pressure cycles. In other embodiments, other performance measures may be displayed in the quick reporting area 688. In particular, the quick reporting area 688 and the nature of the alerts changes based on the power tool device being analyzed. For example, if a torque specific tool was being analyzed, the quick reporting area 688 may include information about the total number of fastening applications, the number of fastening application that reached optimal torque, etc. Also, to generate the performance metrics shown in the quick reporting area 688 and in the rest of the report, the inventory and reporting application may process data from more than one power tool device 104. For example, the inventory and reporting application may be summed, averaged, or otherwise combined for display on the report. Additionally or alternatively, the data for each power tool device 104 may be displayed separately.


The report also includes a graphical display 690 illustrating specific data points of the performance data. In the illustrated embodiments, the graphical display 609 includes information regarding the final pressure reached by the crimper 510 and the full pressure range. As shown in FIG. 31, a couple of data points are noticeably outside of the full pressure range, thereby indicating that at least two cycles were not completed to full pressure. Below the graphical display, the report includes the alerts 684 addressed as part of the alert screen 680. In other embodiments, the layout of the report may be different. For example, the alerts 684 may be positioned elsewhere on the screen, and/or the general information may also be placed elsewhere.


Although the reports generated by the inventory and reporting application were only described in relation to the crimper, similar methods can be followed for other and different electric power tool devices. Additionally, although the generated report was illustrated in a particular set-up, other arrangements of information may be implemented based on user preferences and/or specific power tool devices.



FIG. 32 illustrates an exemplary method 700 of determining power tool attendance. The mobile electronic device 108 receives a list of a first plurality of power tools (step 704). As described above, the list may be an inventory of power tools assigned to the user of the mobile electronic device 108. As described above, the mobile electronic device 108 may receive the list from the remote server 112. Alternatively, as described above, the user of the mobile electronic device 108 may create the list of the first plurality of power tools (i.e., the user's inventory) at the mobile electronic device 108, for example, by creating an inventory via the touch display 212 of the mobile electronic device 108.


The mobile electronic device 108 receives a selection to detect nearby tools (step 708). As described above, the mobile electronic device 108 may receive the selection when a user selects a “tool attendance” selector on the inventory screen 236 of FIG. 10. The mobile electronic device 108 receives identification signals from a second plurality of power tools within communication range of the mobile electronic device 108 (step 712). As described above, the power tools 104a-c broadcast identification information for the power tool device 104. The mobile electronic device 108 detects which power tool devices 104 are nearby based on the broadcast signals from the power tool devices 104. The power tools devices 104 may broadcast the signals periodically (unprompted by an external device) or may broadcast in response to a ping from the mobile electronic device 108.


The mobile electronic device 108 determines that a subset of the first plurality of power tools is not nearby (i.e., missing) based on the identification signals received (step 716). As described above, the mobile electronic device 108 compares the list of the first plurality of electronic device to the second plurality of electronic devices. The mobile electronic device 108 determines which of the first plurality of electronic devices are or not found nearby based on the identification signals. The subset of the first plurality of electronic devices may include only one power tool 104 or multiple power tools 104. That is, the mobile electronic device 108 may determine that one or more of the first plurality of power tools is or not found nearby by determining that a signal was not received from the one or more power tools 104 making up the subset within a predetermined time period. Thus, the absence of a signal from a particular power tool 104 indicates to the mobile electronic device 108 that the particular tool is not nearby. The mobile electronic device 108 generates an indication that the subset of the first plurality of power tools is not nearby (i.e., missing) (step 720). As described above, the mobile electronic device 108 may display the subset of the first plurality of power tools on the touch display 212.


In some embodiments, the inventory and reporting application receives, from one or more mobile electronic devices 108, the voltage levels of the back-up power supplies 110 of a plurality of the power tools 104. As described above, the one or more mobile electronic devices 108 receive the voltage levels of the back-up power supplies 110 wirelessly from the respective power tools 104 via respective wireless communication controllers 109. The inventory and reporting application, in turn, generates a list of the power tools 104 and the voltage levels of the respective back-up power supplies 110. Additionally, the inventory and reporting application determines whether each voltage level is below a first low battery threshold and whether each voltage level is below a second low battery threshold. The second low battery threshold is a lower level than the first low battery threshold and is indicative of a back-up power supply being nearer to depletion and in need of replacement. The inventory and reporting application then generates an indication (e.g., warning icon 645) for each power tool having a back-up power supply 110 with a voltage level below the first or second low battery threshold. For example, with reference to FIG. 27, the inventory and reporting application may generate a list of the power tools 104 along with a low battery indication for each power tool 104 having a back-up power supply 110 having a voltage level below the first or second low battery threshold. For example, in FIG. 27, a warning icon 645 having a first form is used to indicate a back-up power supply 110 at 10% is below the first low battery threshold, and a warning icon 645 having a second form, which is darker than the first form, is used to indicate a back-up power supply at 4% is below the second low battery threshold.



FIG. 33 illustrates an example method 724 for adding a power tool device to an inventory list. The mobile electronic device 108 receives a request to add a nearby power tool device (step 728). The mobile electronic device 108 receives the request from a user interface (for example, the touch display 212). As described above, the mobile electronic device 108 may receive the request when a user selects the add item option 248 on the inventory screen 236 of FIG. 10.


The mobile electronic device 108 receives identification signals from a plurality of power tool devices 104 within communication range of the mobile electronic device 108 (at step 732). As described above, the power tools 104a-c broadcast identification information for the power tool device 104. The mobile electronic device 108 detects which power tool devices 104 are nearby based on the broadcast signals from the power tool devices 104. The power tools devices 104 may broadcast the signals periodically (unprompted by an external device) or may broadcast in response to a ping from the mobile electronic device 108.


The mobile electronic device 108 displays identification information of the plurality of power tool devices 104 (at step 736). For example, the mobile electronic device 108 displays the identification information on a touch display 212 of the mobile electronic device 108. The mobile electronic device 108 receives a selection of a power tool device 104 from the plurality of power tool devices 104 (at step 740). As described above, the mobile electronic device 108 receives the selection of the power tool device 104 when the user selects the power tool device 104 on the touch display 212 of the mobile electronic device 108.


The mobile electronic device 108 adds the power tool device 104 to the inventory list (at step 744). As described above, the mobile electronic device 108 and the inventory and reporting application save the information of the power tool device 104 to the inventory list. The inventory list may be stored on the remote server 112.


In some embodiments, another process is provided for adding a new power tool device using the mobile electronic device 108 to an inventory of a user. With reference to FIG. 14, the user selects the add a nearby device (option 264) from the add item screen 252. The inventory and reporting application receives signals from the communicating power tool devices 104a-c within communication range of the mobile electronic device 108. The signals from the communicating power tool devices 104a-c include identification information for each power tool device. The identification information includes, for example, a customized name associated with the power tool device, a model number, a unique identifier, a tool number, etc. In some embodiments, the power tool devices 104 may periodically broadcast the identification information for the power tool device 104 without requiring a ping signal from the mobile electronic device 108, and in other embodiments, the mobile device 108 sends a ping signal and the power tool devices 104 that are nearby (i.e., within communication range) reply with the signal including identification information.


The inventory and reporting application then compares the received responses to the power tool devices already in the inventory of the user. If a received response corresponds to a power tool device 104 that is already part of the inventory, the inventory and reporting application does not display that power tool device 104 to the user and continues to check the rest of the responses (step 282). If, on the other hand, the received response corresponds to a power tool device 104 that is not part of the inventory, the inventory and reporting application displays the power tool device 104 to the user (step 286). Thereby, the inventory and reporting application only displays those power tool devices 104 that are nearby and that are not already part of the inventory for the user. See, for example, FIG. 15, which illustrates a list generated by the inventory and reporting application that identifies a power tool device that is nearby and not yet part of the user's inventory. The mobile device 108 then receives a user selection of one of the listed power tools, and, in response, adds the power tool to the inventory of the user.



FIG. 34 illustrates an example method 748 for analyzing metrics information of a power tool device 104. The mobile electronic device 108 receives identification signals from a plurality of power tool devices 104 within communication range of the mobile electronic device 108 (at step 752). As described above, the power tools 104a-c broadcast identification information for the power tool device 104. The mobile electronic device 108 detects which power tool devices 104 are nearby based on the broadcast signals from the power tool devices 104. The power tools devices 104 may broadcast the signals periodically (unprompted by an external device) or may broadcast in response to a ping from the mobile electronic device 108.


The mobile electronic device 108 displays identification information of the plurality of power tool devices 104 (at step 756). As described above, the mobile electronic device 108 may display the identification information on a touch display 212 of the mobile electronic device 108. The mobile electronic device 108 receives a selection of a power tool device 104 to be analyzed from the plurality of power tool devices 104 (at step 760). As described above, the mobile electronic device 108 may receive the selection of the power tool device 104 when the user selects the power tool device 104 on the touch display 212 of the mobile electronic device 108.


The mobile electronic device 108 receives metrics information regarding the power tool device 104 in response to the selection of the power tool device 104 to be analyzed (at step 764). As described above, the mobile electronic device 108 receives metrics information of the power tool device 104 via the short-range transceiver, for example over a Bluetooth® connection. The power tool device 104 may transmit the metrics information when it receives a request from the mobile electronic device 108 in response to the selection or a further user input (e.g., by selecting the sync tool data selector 580 (FIG. 23)).


The mobile electronic device 108 displays the metrics information for the power tool device (at step 768). As described above, the mobile electronic device 108 may display the metrics information on a touch display 212 of the mobile electronic device 108 (see, e.g., FIGS. 23 and 26).


Throughout the above description, reference is made to the inventory and reporting application or other software as taking action (e.g., receiving, generating, displaying, and the like). Such actions may be performed by the device on which the application or software is being executed (e.g., the mobile device 108 or the external device 116) in response to or based on the execution of the application or software on that device.


Thus, the invention provides, among other things, a system that allows a user to control, manage, and maintain a large number of power tool devices. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A method of adding power tool devices to an inventory list using a mobile electronic device, the method comprising: receiving, via a user interface of the mobile electronic device, a request to add a nearby power tool device to the inventory list;transmitting, via a short-range transceiver of the mobile electronic device, a broadcast message in response to receiving the request to add a nearby power tool device to the inventory list;receiving, via the short-range transceiver, identification signals from a plurality of power tool devices in response to the broadcast message;determining, using a processor of the mobile electronic device, that the plurality of power tool devices is not in the inventory list;displaying, via the user interface, identification information of the plurality of power tool devices based on determining that the plurality of power tool devices is not in the inventory list;receiving, via the user interface, a selection of a power tool device from the plurality of power tool devices displayed on the user interface; andadding, using the processor, the power tool device selected from the plurality of power tool devices to the inventory list.
  • 2. The method of claim 1, further comprising: receiving, from the remote server via the network interface, the inventory list including a third plurality of power tool devices;receiving, via the user interface, a third selection to detect nearby power tool devices;receiving, via the short-range transceiver, identification signals from a fourth plurality of power tool devices;determining, using the processor, that a second subset of the third plurality of power tool devices is missing based on the identification signals; andgenerating, using the processor, an indication that the second subset of the third plurality of power tool devices is missing.
  • 3. The method of claim 2, further comprising generating, using the processor, an indication that the fourth plurality of power tool devices are nearby.
  • 4. The method of claim 1, further comprising storing the inventory list on a remote server, wherein the inventory list is updated using the processor via a network interface of the mobile electronic device.
  • 5. The method of claim 1, further comprising transmitting, to the remote server via the network interface, at least one selected from a group consisting of new user-defined tool modes, power tool usage information, new identification information, and power tool device status for the power tool device.
  • 6. The method of claim 1, further comprising receiving, from the power tool device, via the short-range transceiver, at least one selected from a group consisting of: power tool status, power tool operation statistics, power tool identification, stored power tool usage information, power tool maintenance data, battery pack identification, battery pack stored voltage, battery pack charge characteristics, and battery pack discharge characteristics.
  • 7. The method of claim 1, further comprising: receiving, via the user interface, a second request to add a second nearby power tool device of a connected manufacturer;transmitting, via a network transceiver of the mobile electronic device, a query to a remote server;receiving, from the remote server via the network interface, identification information of a second plurality of power tool devices based on the query;displaying, via the user interface, the second plurality of power tool devices;receiving, via the user interface, a second selection of a second power tool device from the second plurality of power tool devices; andadding, using the processor, the second power tool device to the inventory list.
  • 8. The method of claim 1, further comprising: receiving, via the user interface, a third request to add a third power tool device of a non-connected manufacturer;receiving, via the user interface, information of the third power tool device; andadding, using the processor, the third power tool device to the inventory list.
  • 9. A method of analyzing metrics of a hydraulic crimper using a mobile electronic device, the method comprising: receiving, via a short-range transceiver of the mobile electronic device, identification signals from a plurality of power tool devices;displaying, via a user interface of the mobile electronic device, identification information of the plurality of power tool devices;receiving, via the user interface, a selection of a hydraulic crimper to be analyzed from the plurality of power tool devices;receiving, via the short-range transceiver, metrics information regarding the hydraulic crimper in response to the selection of the hydraulic crimper to be analyzed; anddisplaying, via the user interface, the metrics information of the hydraulic crimper,wherein the metrics information includes a total number of cycles and a total number of full pressure cycles.
  • 10. The method of claim 9, further comprising: receiving, from a remote server via a network interface of the mobile electronic device, an inventory list including a second plurality of power tool devices;receiving, via the user interface, a second selection to detect nearby power tool devices;receiving, via the short-range transceiver, identification signals from a third plurality of power tool devices;determining, using the processor, that a subset of the second plurality of power tool devices is missing based on the identification signals; andgenerating, using the processor, an indication that the subset of the second plurality of power tool devices is missing.
  • 11. The method of claim 10, further comprising generating, using the processor, an indication that the third plurality of power tool devices are nearby.
  • 12. The method of claim 9, wherein metrics information includes at least one selected from a group consisting of: an internal battery percentage and cycles since last service.
  • 13. The method of claim 9, further comprising transmitting, via the short-range transceiver, a broadcast message in response to receiving a request to scan for nearby power tool devices, wherein receiving the identification information of the plurality of power tool devices occurs in response to the broadcast message.
  • 14. A method for determining power tool attendance using a mobile electronic device, the method comprising: receiving a list of a first plurality of power tool devices at the mobile electronic device;receiving, via a user interface of the mobile electronic device, a selection to detect nearby power tool devices;transmitting, via a short-range transceiver of the mobile electronic device, a broadcast message in response to receiving the selection to detect nearby power tool devices;receiving, via the short-range transceiver, identification signals from a second plurality of power tool devices in response to the broadcast message;determining, using a processor of the mobile electronic device, that a subset of the first plurality of power tool devices is missing based on the identification signals; andgenerating, using the processor, an indication that the subset of the first plurality of power tool devices is missing.
  • 15. The method of claim 14, further comprising: determining, using the processor, that a second subset of the first plurality of power tool devices is not configured to communicate with the processor; andgenerating, using the processor, an indication that the second subset of the first plurality of power tool devices is not configured to communicate with the processor.
  • 16. The method of claim 14, further comprising generating, using the processor, an indication that the second plurality of power tool devices are nearby.
  • 17. The method of claim 14, wherein receiving the list of the first plurality of power tool devices includes receiving the list of the first plurality of power tool devices from a user input via the user interface.
  • 18. The method of claim 14, wherein receiving the list of the first plurality of power tool devices includes receiving the list of the first plurality of power tool devices from a server via a network interface of the mobile electronic device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/175,957 filed on Jun. 15, 2015, the entire contents of which are hereby incorporated by reference.

US Referenced Citations (362)
Number Name Date Kind
3597742 Philipps Aug 1971 A
3882305 Johnstone May 1975 A
4545106 Juengel Oct 1985 A
5528248 Steiner et al. Jun 1996 A
5563607 Loomis et al. Oct 1996 A
5592396 Tambini et al. Jan 1997 A
5604506 Rodal Feb 1997 A
5629693 Janky May 1997 A
5719587 Rodal Feb 1998 A
5760742 Branch et al. Jun 1998 A
5903462 Wagner et al. May 1999 A
6031488 Hua et al. Feb 2000 A
6046687 Janky Apr 2000 A
6055484 Lysaght Apr 2000 A
6097337 Bisio Aug 2000 A
6123241 Walter et al. Sep 2000 A
6157313 Emmermann Dec 2000 A
6161629 Hohmann et al. Dec 2000 A
6184801 Janky Feb 2001 B1
6225890 Murphy May 2001 B1
6232874 Murphy May 2001 B1
6279668 Mercer Aug 2001 B1
6343276 Barnett Jan 2002 B1
6349266 Lysaght et al. Feb 2002 B1
6390205 Wallgren et al. May 2002 B2
6405598 Bareggi Jun 2002 B1
6430416 Loomis Aug 2002 B1
6469615 Kady et al. Oct 2002 B1
6520270 Wissmach et al. Feb 2003 B2
6522949 Ikeda et al. Feb 2003 B1
6547014 McCallops et al. Apr 2003 B2
6611755 Coffee et al. Aug 2003 B1
6668212 Colangelo, II et al. Dec 2003 B2
6675196 Kronz Jan 2004 B1
6677938 Maynard Jan 2004 B1
6732077 Gilbert et al. May 2004 B1
6768994 Howard et al. Jul 2004 B1
6784801 Watanabe et al. Aug 2004 B2
6801853 Workman Oct 2004 B2
6848516 Giardino Feb 2005 B2
6853909 Scherzinger Feb 2005 B2
6872121 Wiener et al. Mar 2005 B2
6892131 Coffee et al. May 2005 B2
6913087 Brotto et al. Jul 2005 B1
6923285 Rossow et al. Aug 2005 B1
6934631 Dentinger et al. Aug 2005 B2
6938689 Farrant et al. Sep 2005 B2
6954048 Cho Oct 2005 B2
6980812 Sandhu et al. Dec 2005 B1
6981311 Seith et al. Jan 2006 B2
7020555 Janky et al. Mar 2006 B1
7034711 Sakatani et al. Apr 2006 B2
7035710 Balling Apr 2006 B2
7036703 Grazioli et al. May 2006 B2
7043364 Scherzinger May 2006 B2
7050907 Janky et al. May 2006 B1
7086483 Arimura et al. Aug 2006 B2
7089113 Janky et al. Aug 2006 B1
7102303 Brotto et al. Sep 2006 B2
7117169 Zara Oct 2006 B2
7123149 Nowak et al. Oct 2006 B2
7137541 Baskar et al. Nov 2006 B2
7158885 Janky et al. Jan 2007 B1
7211972 Garcia et al. May 2007 B2
7218227 Davis et al. May 2007 B2
7243440 DeKeyser Jul 2007 B2
7263441 Janky et al. Aug 2007 B1
7283090 Dentinger et al. Oct 2007 B2
7298240 Lamar Nov 2007 B2
7313476 Nichols et al. Dec 2007 B2
7319395 Puzio Jan 2008 B2
7328086 Perry et al. Feb 2008 B2
7328757 Davies Feb 2008 B2
7330129 Crowell et al. Feb 2008 B2
7336181 Nowak et al. Feb 2008 B2
1346422 Tsuchiya et al. Mar 2008 A1
7343764 Solfronk Mar 2008 B2
7346406 Brotto et al. Mar 2008 B2
7348921 Yu Mar 2008 B2
7359762 Etter et al. Apr 2008 B2
7365681 Yu Apr 2008 B2
7382272 Feight Jun 2008 B2
7383882 Lerche et al. Jun 2008 B2
7398153 Workman et al. Jul 2008 B2
7415355 Janky et al. Aug 2008 B2
7431682 Zeiler Oct 2008 B2
7437204 Lev-Ami et al. Oct 2008 B2
7453355 Bergstrom et al. Nov 2008 B2
7464769 Nakazawa et al. Dec 2008 B2
7466263 Yu Dec 2008 B1
7468650 Childress et al. Dec 2008 B2
7480568 Dentinger et al. Jan 2009 B2
7489993 Coffee et al. Feb 2009 B2
7540334 Gass et al. Jun 2009 B2
7580794 Janky et al. Aug 2009 B2
7613590 Brown Nov 2009 B2
7623248 Laflamme Nov 2009 B2
7627427 Nichols et al. Dec 2009 B2
7627503 Champagne Dec 2009 B1
RE41185 Gilmore et al. Mar 2010 E
7679552 Dentinger et al. Mar 2010 B2
7690569 Swanson et al. Apr 2010 B2
7739138 Chauhan et al. Jun 2010 B2
7742874 Mayfield et al. Jun 2010 B1
7750811 Puzio et al. Jul 2010 B2
7755482 Hubbard Jul 2010 B2
7772850 Bertness Aug 2010 B2
7773945 Reynolds Aug 2010 B2
7783423 Verma et al. Aug 2010 B2
7784104 Innami et al. Aug 2010 B2
7787981 Austin et al. Aug 2010 B2
7809495 Leufen Oct 2010 B2
7817062 Li et al. Oct 2010 B1
7830993 Riley et al. Nov 2010 B2
7850071 Sakamoto et al. Dec 2010 B2
7868591 Phillips et al. Jan 2011 B2
7898391 Maguire et al. Mar 2011 B2
7898403 Ritter et al. Mar 2011 B2
7900524 Calloway et al. Mar 2011 B2
7911379 Cameron Mar 2011 B2
7917654 Toivonen Mar 2011 B2
7928845 LaRosa Apr 2011 B1
7931096 Saha Apr 2011 B2
7941330 Buentello May 2011 B1
7942084 Wilson, Jr. et al. May 2011 B2
7942211 Scrimshaw et al. May 2011 B2
7953965 Qin et al. May 2011 B2
7961078 Reynolds et al. Jun 2011 B1
7982624 Richter et al. Jul 2011 B2
7999658 Reynolds et al. Aug 2011 B1
8004397 Forrest et al. Aug 2011 B2
8004664 Etter et al. Aug 2011 B2
8005647 Armstrong et al. Aug 2011 B2
8022814 Yogeeswaran et al. Sep 2011 B2
8032152 Manson et al. Oct 2011 B2
8041591 Kawai Oct 2011 B2
8049636 Buckingham et al. Nov 2011 B2
8068848 Manson et al. Nov 2011 B2
8068849 Manson et al. Nov 2011 B2
8081063 Maguire Dec 2011 B2
8081987 Manson et al. Dec 2011 B2
8081988 Manson et al. Dec 2011 B2
8081989 Manson et al. Dec 2011 B2
8095149 Manson et al. Jan 2012 B2
8103438 Petrie et al. Jan 2012 B2
8125529 Skoskiewicz et al. Feb 2012 B2
8144000 Darby, Jr. et al. Mar 2012 B2
8159345 Stevens Apr 2012 B2
8161613 Schuele et al. Apr 2012 B2
8171828 Duvan et al. May 2012 B2
8210275 Suzuki et al. Jul 2012 B2
8224518 Cameron Jul 2012 B2
8225319 Laithwaite et al. Jul 2012 B2
8239125 Petrie et al. Aug 2012 B2
8255358 Ballew et al. Aug 2012 B2
8260322 Allen et al. Sep 2012 B2
8260452 Austin et al. Sep 2012 B2
8264374 Obatake et al. Sep 2012 B2
8279112 Carrick Oct 2012 B2
8280784 Hurtis et al. Oct 2012 B2
8281871 Cutler et al. Oct 2012 B2
8286723 Puzio et al. Oct 2012 B2
8294424 Bucur Oct 2012 B2
8306836 Nichols et al. Nov 2012 B2
8310206 Bucur Nov 2012 B2
8319950 Snyder Nov 2012 B2
8330426 Suzuki et al. Dec 2012 B2
8330580 Reynolds et al. Dec 2012 B2
8344879 Harmon et al. Jan 2013 B2
8351982 Rofougaran Jan 2013 B2
8386283 Hand Feb 2013 B2
8406697 Arimura et al. Mar 2013 B2
8412179 Gerold et al. Apr 2013 B2
8438955 Wilson, Jr. et al. May 2013 B2
8446254 Carrick et al. May 2013 B2
8482721 Snyder Jul 2013 B2
8484370 Coffee et al. Jul 2013 B1
8485049 Yokoyama et al. Jul 2013 B2
8493243 Ahmadi Jul 2013 B2
8514058 Cameron Aug 2013 B2
8576095 Harmon et al. Nov 2013 B2
8589273 Creeden et al. Nov 2013 B2
8600932 Poling et al. Dec 2013 B2
8611250 Chen et al. Dec 2013 B2
8615450 Fanelli Dec 2013 B1
8618949 Maynard et al. Dec 2013 B2
8638375 Amor Molares et al. Jan 2014 B2
8639434 Snoeck et al. Jan 2014 B2
8645176 Walton et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8666936 Wallace Mar 2014 B2
8668136 Ahem et al. Mar 2014 B2
8682541 Best et al. Mar 2014 B2
8725777 Deking et al. May 2014 B2
8755161 James Jun 2014 B2
8768609 Maynard et al. Jul 2014 B2
8768667 Lindores Jul 2014 B2
8776644 Harper et al. Jul 2014 B2
8788496 Darby, Jr. et al. Jul 2014 B2
8791806 Granruth Jul 2014 B2
8818617 Miller et al. Aug 2014 B2
8855937 Lindores Oct 2014 B2
8915430 Shah et al. Dec 2014 B2
8919456 Ng et al. Dec 2014 B2
8928463 Landau et al. Jan 2015 B2
8947225 Best et al. Feb 2015 B2
8954222 Costantino Feb 2015 B2
8954227 Bertosa et al. Feb 2015 B2
8965841 Wallace Feb 2015 B2
8970377 Heine Mar 2015 B2
8981680 Suda et al. Mar 2015 B2
8996237 Bertosa et al. Mar 2015 B2
9002572 Lipscomb et al. Apr 2015 B2
9031585 Kahle et al. May 2015 B2
9033219 Schoner et al. May 2015 B2
9041561 Wallace et al. May 2015 B2
9043402 Fosburgh et al. May 2015 B2
9061392 Forgues et al. Jun 2015 B2
9073134 Koeder et al. Jul 2015 B2
9092753 Fanelli Jul 2015 B1
9094793 Kusakari et al. Jul 2015 B2
9111234 Wallace et al. Aug 2015 B2
9126317 Lawton et al. Sep 2015 B2
9129248 Reynolds et al. Sep 2015 B2
9177488 Chontos Nov 2015 B2
9194917 Brochhaus Nov 2015 B2
9216505 Rejman et al. Dec 2015 B2
9232614 Hiroi Jan 2016 B2
9233457 Wanek et al. Jan 2016 B2
9256988 Wenger et al. Feb 2016 B2
9257865 Hiuggins et al. Feb 2016 B2
9281770 Wood et al. Mar 2016 B2
9298803 Wallace Mar 2016 B2
9355495 Miller May 2016 B2
9392404 Daoura Jul 2016 B2
9443432 Tambini et al. Sep 2016 B2
9466198 Burch Oct 2016 B2
9467862 Zeiler Oct 2016 B2
9641964 Kulkarni May 2017 B2
9749780 Huang et al. Aug 2017 B2
9756402 Stampfl et al. Sep 2017 B2
9773268 Bonner Sep 2017 B2
9792655 Griffin Oct 2017 B2
9811962 Phillips Nov 2017 B2
9815166 Goldstein Nov 2017 B2
9819132 Peloquin Nov 2017 B2
9836907 Phillips Dec 2017 B2
9886680 Johnson et al. Feb 2018 B2
9898705 Kahle Feb 2018 B2
9898884 Arora Feb 2018 B1
9908760 High Mar 2018 B2
9928055 Douberley Mar 2018 B1
9934545 Kropp Apr 2018 B2
10152688 DeBusk Dec 2018 B2
20030121677 Watanabe et al. Jul 2003 A1
20040182587 May et al. Sep 2004 A1
20050035659 Hahn et al. Feb 2005 A1
20050110639 Puzio et al. May 2005 A1
20060009879 Lynch et al. Jan 2006 A1
20060076385 Etter et al. Apr 2006 A1
20060220955 Hamilton Oct 2006 A1
20080001755 Puzio et al. Jan 2008 A1
20080084324 Wallace et al. Apr 2008 A1
20080084332 Ritter et al. Apr 2008 A1
20080084333 Forrest et al. Apr 2008 A1
20080084334 Ballew Apr 2008 A1
20080086320 Ballew et al. Apr 2008 A1
20080086321 Walton Apr 2008 A1
20080086322 Wallace Apr 2008 A1
20080086323 Petrie et al. Apr 2008 A1
20080086349 Petrie Apr 2008 A1
20080086391 Maynard et al. Apr 2008 A1
20080086427 Wallace Apr 2008 A1
20080086428 Wallace Apr 2008 A1
20080086497 Wallace et al. Apr 2008 A1
20080086508 Ballew Apr 2008 A1
20080086509 Wallace Apr 2008 A1
20080086685 Janky et al. Apr 2008 A1
20080181398 Pappu Jul 2008 A1
20080252446 Dammertz Oct 2008 A1
20090015585 Klusza Jan 2009 A1
20090250364 Gerold et al. Oct 2009 A1
20090251330 Gerold et al. Oct 2009 A1
20090267769 Stevens Oct 2009 A1
20100096151 Östling Apr 2010 A1
20100154599 Gareis Jun 2010 A1
20100176766 Brandner et al. Jul 2010 A1
20100181964 Kadous et al. Jul 2010 A1
20110056716 Jönsson et al. Mar 2011 A1
20110067895 Nobe et al. Mar 2011 A1
20110073343 Sawano et al. Mar 2011 A1
20110162858 Coste Jul 2011 A1
20110282631 Poling et al. Nov 2011 A1
20110302051 Arbatli Dec 2011 A1
20110309931 Rose Dec 2011 A1
20120167721 Fluhrer Jul 2012 A1
20120168189 Eckert Jul 2012 A1
20120267134 Matthias et al. Oct 2012 A1
20120292070 Ito et al. Nov 2012 A1
20120325507 Fluhrer et al. Dec 2012 A1
20130024245 Nichols et al. Jan 2013 A1
20130035978 Richardson et al. Feb 2013 A1
20130071815 Hudson et al. Mar 2013 A1
20130087355 Oomori et al. Apr 2013 A1
20130109375 Zeiler et al. May 2013 A1
20130126202 Oomori et al. May 2013 A1
20130133907 Chen et al. May 2013 A1
20130133911 Ishikawa et al. May 2013 A1
20130138465 Kahle et al. May 2013 A1
20130138606 Kahle et al. May 2013 A1
20130153250 Eckert Jun 2013 A1
20130187587 Knight et al. Jul 2013 A1
20130188058 Nguyen et al. Jul 2013 A1
20130191417 Petrie et al. Jul 2013 A1
20130204753 Wallace Aug 2013 A1
20130255980 Linehan et al. Oct 2013 A1
20130304545 Ballew et al. Nov 2013 A1
20130327552 Lovelass et al. Dec 2013 A1
20140006295 Zeiler et al. Jan 2014 A1
20140015389 Vatterott et al. Jan 2014 A1
20140052384 Poling et al. Feb 2014 A1
20140070924 Wnger et al. Mar 2014 A1
20140107853 Ashinghurst et al. Apr 2014 A1
20140122143 Fletcher et al. May 2014 A1
20140149416 Wallace May 2014 A1
20140151079 Furui et al. Jun 2014 A1
20140158389 Ito et al. Jun 2014 A1
20140159662 Furui et al. Jun 2014 A1
20140159919 Furui et al. Jun 2014 A1
20140159920 Furui et al. Jun 2014 A1
20140166324 Puzio et al. Jun 2014 A1
20140184397 Volpert Jul 2014 A1
20140266024 Chinnadurai et al. Sep 2014 A1
20140284070 Ng et al. Sep 2014 A1
20140292245 Suzuki et al. Oct 2014 A1
20140304545 Chen et al. Oct 2014 A1
20140316837 Fosburgh et al. Oct 2014 A1
20140324194 Larsson et al. Oct 2014 A1
20140331830 King et al. Nov 2014 A1
20140334270 Kusakawa Nov 2014 A1
20140336810 Li et al. Nov 2014 A1
20140336955 Li et al. Nov 2014 A1
20140350716 Fly et al. Nov 2014 A1
20140365259 Delplace et al. Dec 2014 A1
20140379136 Schlegel et al. Dec 2014 A1
20150000944 Dusselberg et al. Jan 2015 A1
20150002089 Rejman et al. Jan 2015 A1
20150042247 Kusakawa Feb 2015 A1
20150084745 Hertz et al. Mar 2015 A1
20150097674 Mondal et al. Apr 2015 A1
20150122524 Papp May 2015 A1
20150127205 Brochhaus May 2015 A1
20150135306 Winkler et al. May 2015 A1
20150179036 Heine et al. Jun 2015 A1
20150191096 Becker et al. Jul 2015 A1
20150340921 Suda et al. Nov 2015 A1
20150356858 Daoura et al. Dec 2015 A1
20160088482 Zeiler Mar 2016 A1
20170008159 Boeck et al. Jan 2017 A1
20170201295 Kusakawa Jul 2017 A1
20170353847 Coulis et al. Dec 2017 A1
20180190103 Daoura Jul 2018 A1
Foreign Referenced Citations (13)
Number Date Country
10309703 Sep 2004 DE
202006014606 Jan 2007 DE
2147750 Jan 2010 EP
2786338 Oct 2014 EP
2000176850 Jun 2000 JP
2004072563 Mar 2004 JP
2006123080 May 2006 JP
WO199521386 Aug 1995 WO
WO2002030624 Apr 2002 WO
WO2007090258 Aug 2007 WO
WO2008063983 May 2008 WO
2013063507 May 2013 WO
WO2013063106 May 2013 WO
Non-Patent Literature Citations (7)
Entry
Trimble Alltrak, “Take Control of your Assets”, 2009, downloaded Jul. 13, 2015 (4 pages).
ToolWatch, “ToolWatch Enterprise”, 2006 (8 pages).
ASAP Systems “Barcloud Inventory Management & Asset Tracking Software”2015, downloaded Jul. 13, 2015, (23 pages).
Gigatrak, <http://www.gigatrak.com/>, 2010 (3 pages).
International Search Report and Written Opinion for Application No. PCT/IB2016/000987 dated Dec. 9, 2016 (14 pages).
European Patent Office Search Report for Application No. 16811092.2 dated Oct. 2, 2018, 8 pages.
United States Patent Office Action for U.S. Appl. No. 16/164,960 dated Feb. 8, 2019, 14 pages.
Related Publications (1)
Number Date Country
20160364687 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62175957 Jun 2015 US