The present invention relates to anti-vibration handles. More specifically, the present invention relates to anti-vibration handles for use with power tools such as reciprocating saws.
Power tools often produce vibrations during use. These vibrations can be caused by the operation of the saw as well as the interaction with the tool and the work piece. The vibrations can pass through the power tool to the handle or handles and ultimately to the users hands. The vibrations can cause fatigue or a reduced grip on the power tool making its use less efficient and more difficult.
In one construction, the invention provides a power tool that includes a tool operable to work on a workpiece, a drive mechanism coupled to the tool and operable to move the tool, and a housing defining an interior. The drive mechanism is disposed within the interior. A handle has a first end and a second end. The first end is fixed to the housing and the second end is spaced apart from the housing to define a gap therebetween. An insert is fixedly attached to the housing and the second end to fill the gap. The insert is more flexible then the handle and the housing.
In another construction, the invention provides a power tool that includes a tool operable to work on a workpiece, a motor coupled to the tool and operable to move the tool, a first housing, and a second housing coupled to the first housing to define an interior space. The motor is disposed within the interior space. A handle includes a first end fixedly attached to the first housing and a second end spaced apart from the first housing. An insert is fixedly attached to the first housing and the second end. The insert includes a first plurality of corrugations.
In another construction, a power tool includes a tool operable to work on a workpiece, a drive mechanism coupled to the tool and operable to move the tool, a housing defining an interior, the drive mechanism disposed at least partially within the interior, and a handle having a first end and a second end. The first end is fixed to the housing and the second end is spaced apart from the housing to define a gap therebetween. An insert is fixedly attached to the housing and the second end to fill the gap. The insert is more flexible than the handle and the housing. The housing includes a first engaging portion and the handle includes a second engaging portion each engageable with the insert to substantially fixedly attach the insert to the housing and the handle, and the insert includes a third engaging portion, and a fourth engaging portion.
In another construction, a power tool includes a housing that defines a main portion including an interior and a D-shaped handle having a first leg that extends from the main portion and a second leg spaced apart from the main portion to define a gap. A drive mechanism is disposed within the interior and an insert is fixedly attached to the main portion and the second leg to fill the gap. The insert is more flexible than the main portion and the D-shaped handle.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The present invention provides a power tool 10 that includes an anti-vibration handle 15. While the invention is illustrated as applied to a battery powered reciprocating saw, the invention could be applied to conventionally powered (AC) reciprocating saws as well as other power tools that are battery powered or conventionally powered.
In preferred constructions, the housing 20 is formed from a first housing portion 45 and a second housing portion 50 that attach to one another to complete the housing 20. In other constructions, other arrangements or arrangements with more than two housing portions are employed.
The first housing portion 45 includes a first engaging portion 70 that is best illustrated in
The handle 25 is preferably formed from a first handle portion 90 and a second handle portion 95 in a manner similar to that of the housing 20.
The handle 25 includes a first end 100 and a second end 102 opposite the first end 100. The first end 100 is fixedly attached to the housing 20 such that any relative movement therebetween is a result of material flexing and resilience. In a preferred arrangement, the first handle portion 90 is formed as part of the first housing portion 45 and the second handle portion 95 is formed as part of the second housing portion 50. A series of corrugations 104 are formed at the interface between the first end of the handle 100 and the housing 20 to increase the flexibility and relative movement available between the handle 25 and the housing 20 at the first end of the handle 100.
The second end of the handle 102 is opposite the first end 100 and is spaced apart from the housing 20 to define a gap 106 therebetween. The second end of the handle 102 includes a projection 105 that is part of a second engaging portion 108. In the illustrated construction, the projection 105 is cylindrical and extends in a direction that is substantially normal to an axis of reciprocation 120 of the saw blade 35. The second engaging portion 108 includes a cylindrical aperture 170, engaging slots 175, and a pair of pins 185.
An insert 125 engages the housing 20 at the first engaging portion 70 and engages the handle 25 at the second engaging portion 108 to fill in the gap 106 between the second end of the handle 102 and the housing 20. As illustrated in
In the illustrated construction, three corrugations 135 are provided between the third engaging portion 140 and the second engaging portion 130 to increase the flexibility of the insert 125. The corrugations 135 are disposed within the gap 106 and allow for axial expansion as well as twisting motions between the handle 25 and the housing 20. In addition, the corrugations 135 assist in dissipating vibrations produced in the housing 20 such that the vibration amplitude is reduced as it passes to the handle 25.
The fourth engaging portion 140 extends from the corrugations 135 in a direction substantially opposite the third engaging portion 130 and includes an extension 150, a pair of ribs 155, a pair of gussets 160, and a boss 165. The extension 150 includes a cylindrical portion that is sized to fit within the cylindrical aperture 170 of the handle 25 to inhibit the unwanted entry of dirt, dust, or debris into the handle 25. The ribs 155 are size and shaped to engage the slots 175 formed in the handle 25. The gussets 160 each include an aperture 180 that is sized to receive one of the pins 185 positioned adjacent the cylindrical aperture 170 of the handle 25. The boss 165 extends in a direction that is substantially parallel to the reciprocation axis 120 and includes a slot 190 having a long axis that extends along the same axis. The slot 190 is sized to receive the projection 105 while still allowing movement of the projection 105 with respect to the boss 165.
In preferred constructions, the handle 25 and the housing 20 are formed from a plastic material. In some constructions, a softer material may be positioned over all or portions of the housing 20 and the handle 25 to improve the grip of a user. In still other arrangements, these softer portions may be over-molded over portions of the housing 20 or the handle 25. The insert 125 is preferably formed from a material that is more flexible and/or softer than the housing 20 and the handle 25. For example, some constructions employ a rubber-like material to form the insert 125.
To assemble the handle 25 and the housing 20, the first handle portion 90 and the first housing portion 45 are preferably molded as a single piece with the gap 106 positioned between the second end of the handle 102 and the housing 20. The second handle portion 95 and the second housing portion 50 are molded in a similar fashion. The insert 125 is positioned within the first housing portion 45 and the handle 25, 90 such that the first engaging portion 70 engages the third engaging portion 130. The fourth engaging portion 140 is then engaged with the second engaging portion 108 of the handle 25, 90 by engaging the gusset apertures 180 with the pins 185, engaging the ribs 155 with the slots 175, and positioning the projection 105 within the slot 190 of the boss 165. In this position, the corrugations 135 of the insert 125 are disposed outside and between the housing 20 and the handle 25 in the gap 106. The second housing portion 50, the second handle portion 95, and the insert 125 engage one another in a manner similar to that just described. The second housing portion 50 then attaches to the first housing portion 45 and the second handle portion 95 engages the first handle portion 90 to complete the assembly.
During use, the user positions the shoe 40 on a workpiece and actuates a trigger or otherwise activates the motor 60. The motor 60 drives the interconnecting mechanism 65 that converts the rotary motion of the motor 60 to reciprocating motion of the saw blade 35. The rotating motor 60, interconnecting mechanism 65, and the saw blade 35 interacting with the workpiece produce vibrations at the housing 20. The vibrations move along the housing 20 and pass to the handle 25. However, the slight relative movement provided between the housing 20 and the handle 25 by the insert 125 and the corrugations 104 dissipates the vibrations. In addition, the more flexible rubber-like material used to make the insert 125 helps absorb vibrations.
Various features and advantages of the invention are set forth in the following claims.
This application is a continuation of U.S. application Ser. No. 13/542,740 filed Jul. 6, 2012 and issued as U.S. Pat. No. ______, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13542740 | Jul 2012 | US |
Child | 14601540 | US |